ДВОЙНАЯ ИНЖЕКЦИЯ В ПОЛУПРОВОДНИК С ИЗМЕНЯЮЩИМИСЯ С РОСТОМ ТОКА ВРЕМЕНАМИ ЖИЗНИ ЭЛЕКТРОНОВ И ДЫРОК

Г. М. АВАКЬЯНЦ, В. М. АРУТЮНЯН

Показана возможность и предложена физика формирования двух участков отрицательного сопротивления *S*-типа на прямой ветви вольтамперной характеристики "длинной" структуры, функционирующей в режиме двойной инжекции.

Несмотря на большое число работ, посвященных изучению прохождения тока через компенсированные полупроводники [1—21], интерес к этому вопросу не ослабевает, так как явление инжекции лежит в основе работы целого ряда полупроводниковых приборов [2, 3, 17, 22], где к тому же всегда имеются специально введенные или неконтролируемые ловушки для носителей заряда.

В работах [9, 14, 18] рассматривалось прохождение тока через «длинную» структуру с двойной инжекцией, изготовленную из электронного полупроводника, компенсированного примесью, создающей глубокие акцепторные однократно заряженные центры в нижней половине запрещенной зоны. Сравнительно сильное тепловое взаимодействие с валентной зоной является причиной уменьшения времени жизни дырок τ_p с ростом уровня инжекции, что приводит к более слабой модуляции высокоомной базы, чем при $\tau_p = \text{const.}$ С дальнейшим ростом тока τ_p становится либо постоянным [9, 14], либо растет [18]. В обоих случаях смена кинетики приводит к участку отрицательного сопротивления (ОС) на прямой ветви вольт-амперной характеристики (ВАХ).

В настоящей работе проведен анализ процессов, происходящих при изменении τ_{p} с током, и показана возможность наличия двойного срыва на ВАХ. Дана физическая интерпретация полученных результатов.

Принятая модель и основные уравнения

Рассмотрим полупроводник *п*-типа, легированный мелкими донорами и компенсированный примесью, создающей глубокие акцепторы в нижней половине запрещенной зоны (рис. 1). Такое расположение рекомбинационного центра позволяет вплоть до очень больших плотностей тока пренебречь всюду ниже тепловым выбросом электронов в зону проводимости. Падением напряжения на крайних слоях структуры пренебрегается, переходы считаются идеально инжектирующими. Рассматривается случай высокого уровня инжекции.

Из условия квазинейтральности имеем

$$n = p + \frac{N_g p - \delta_0 N_g (p_1 + \theta_n)}{p + p_1 + \theta_n}, \qquad (1)$$

Рис. 1. Зонная модель.

где

$$\delta_0 = \frac{N - N_g}{N_g} , \qquad (2)$$

n и p—концентрации электронов и дырок, N_g и N—концентрации мелких доноров и глубоких акцепторов, p_1 —эффективная плотность свободных дырочных состояний в валентной зоне, «приведенная» к уровню ловушек [5, 23].

Радиус экранирования L , для указанной на рис. 1 модели равен [21]

$$L_D = \sqrt{\frac{\varepsilon k_0 T}{4 \pi e^2 \left[n + p + \frac{N_- (N - N_-)}{N}\right]}}.$$
 (3)

Эдесь N_{-} — концентрация отрицательно заряженных глубоких акцепторов, остальные обозначения обычные. Тогда электронно-дырочная плазма квазинейтральна на расстояниях r, много больших максимального радиуса экранирования, получаемого из (3) при условиях теплового равновесия, ибо с ростом тока размер экранирующего облака L_D уменьшается^{*}. Итак, требуется, чтобы

$$r \gg L_D = \sqrt{\frac{\epsilon k_0 T}{4 \pi e^2 \left[2 n_T + \frac{\delta_0 N_g}{1 + \delta_0} \right]}}.$$
 (4)

Условие квазинейтральности предполагает выполнение всюду ниже неравенств

$$\left|\frac{\varepsilon}{4\pi e}\frac{dE}{dx}\right| < (p-p_T+N_g), \quad n-n_T+N_{-}.$$
⁽⁵⁾

Как показывают оценки, (5) выполняется во всем исследуемом интервале токов.

Согласно статистике Шокли-Рида

* В [24] показано, что подвижность носителей в компенсированном полупроводнике с ростом концентрации носителей тока не уменьшается.

198

$$z_{\rho} \simeq \frac{p + p_1 + \theta_n}{\theta_n} z_{\rho}^0, \tag{6}$$

где 0 равно отношению коэффициентов рекомбинации электронов и дырок, $\tau_p^0 = [< v_p \sigma_p > N]^{-1}.$

Запишем (1) в виде

$$p^{2} + [N_{g} + p_{1} - n(1 - \theta)]p - (p_{1} + \theta n)(n + \delta_{0}N_{g}) = 0$$
(7)

и представим п как

$$n = n_0 - \frac{p}{b} , \qquad (8)$$

где n₀ характеризует уровень инжекции, *b*—отношение подвижностей электронов и дырок.

При

$$n_0 < Ms, \tag{9}$$

$$s = \frac{1}{a} \left\{ 1 - \theta_1 + \frac{2(1-\theta)(p_1 + \delta_0 \theta N_g)}{kM} - \frac{2(1-\theta)}{k!} \left[\frac{k\theta}{1-\theta} + \frac{k(p_1 + \delta_0 \theta N_g)}{M} \left(1 + \frac{p_1 + \delta_0 \theta N_g}{kM} \right) + \frac{kap_1 \delta_0 \theta N_g}{(1-\theta) M(p_1 + \delta_0 \theta N_g)} \right]^{1/2} \right\}$$

из (7) получим

$$p \simeq \frac{(p_1 + \theta_{n_0})(n_0 + \delta_0 N_g)}{M - n_0(1 - \theta_1)} \,. \tag{10}$$

В (9) и (10) приняты следующие обозначения:

$$a \simeq 1 - \theta \frac{6b+8}{b}, \ M = N_g \left(1 + \frac{\delta_0 \theta}{b}\right) + \frac{p_1}{k}, \ \theta_1 = \frac{b+2}{b} \theta, \ k = \frac{b}{b+1}.$$
(11)

При

$$n_0 > Mm, \tag{12}$$

где *m* отличается от *S* лишь знаком перед корнем, концентрацию дырок можно представить в виде

$$p = \frac{k}{1-\theta} [n_0 (1-\theta_1) - M].$$
 (13)

Из уравнений для электронной и дырочной составляющих плотности тока ј получим

$$E = \frac{j}{eu_n n_0} - \frac{k_0 T}{e} \frac{b \frac{dn}{dx} - \frac{dp}{dx}}{bn_0} = E_T + E_D, \qquad (14)$$

где х — расстояние от *p-n*-перехода вдоль базы, E_T — токовая (дрейфовая) составляющая электрического поля, E_D — его демберовская составляющая.

199

Воспользовавшись уравнением непрерывности для дырочной и электронной составляющих тока, получаем два уравнения [8, 10], описывающих распределение носителей в базе структуры. Одно из уравнений имеет вид

$$\frac{D^{p}}{D_{p}}\frac{d^{2}p}{dx^{2}} + \beta_{p}\left(\frac{dp}{dx}\right)^{2} + \frac{F_{-}}{k_{0}T(b+1)}\frac{dp}{dx} = \frac{p-p_{T}}{bD_{p}\tau_{p}}, \qquad (15)$$

где

$$D^{p} = \frac{\frac{d}{dp}(np)}{bn_{0}} D_{p,}$$
(16)

$$\beta_{p} = \frac{p}{bn_{0}} \frac{d^{2}n}{dp^{2}} - \frac{u_{p}}{j(b+1)} \left(b \frac{dn}{dp} - 1 \right) F_{-}, \qquad (17)$$

$$F_{-} = \frac{d}{dp} \left[e \left(n - p \right) E_{T} \right], \tag{18}$$

а второе уравнение есть

$$\frac{D^{n}}{D_{n}}\frac{d^{2}n}{dx^{2}} + \beta_{n}\left(\frac{dn}{dx}\right)^{2} + \frac{F_{+}}{k_{0}T(b+1)}\frac{dn}{dx} = \frac{n-n_{T}}{\tau_{n}}, \quad (15a)$$

где

$$D^{n} = b \frac{dp}{dn} D^{p} = \frac{p + n \frac{dp}{dn}}{bn_{0}!} D_{n}, \qquad (16a)$$

$$\beta_n = \frac{n}{bn_0} \frac{d^2 p}{dn^2} - \frac{u_n}{j(b+1)} \left(b \frac{dn}{dp} - 1 \right) F_+, \qquad (17a)$$

$$F_{+} = \frac{d}{dn} \left[e\left(n-p\right) E_{T} \right] = \left(\frac{dn}{dp}\right)^{-1} F_{-}; \qquad (18a)$$

 F_- и F_+ имеют размерность силы и впервые были рассмотрены в [10]. Сгруппировав члены с F_- и F_+ , (15) и (15а) можно переписать в виде

$$D^{p}\frac{d^{2}p}{dx^{2}} + \mu^{-}E\frac{dp}{dx} + D_{n}\frac{p}{bn_{0}}\frac{\partial^{2}n}{\partial p^{2}}\left(\frac{dp}{dx}\right)^{2} = \frac{p-p_{T}}{\tau_{p}}, \qquad (19)$$

$$D^n \frac{d^2 n}{dx^2} + \mu^+ E \frac{dn}{dx} + D_n \frac{n}{bn_0} \frac{\partial^2 p}{\partial n^2} \left(\frac{dn}{dx}\right)^2 = \frac{n - n_T}{\tau_n}, \qquad (20)$$

где

$$\mu^{-} = \frac{p \frac{dn}{dp} - n}{bn + p} u_{n}, \quad \mu^{+} = u_{n} \frac{p - n \frac{dp}{dn}}{bn + p} = \left(\frac{dn}{dp}\right)^{-1} \mu^{-}.$$
 (21)

При линейной зависимости *n* от *p* $\left(\frac{\partial n}{\partial p}=1\right)$ из (19) и (20) можно получить уравнения, проанализированные в [5, 23]. При этом $\mu^- =$ $= \mu^+ = \mu$ и $D^p = D^n = D$; μ называют эффективной подвижностью [23] или биполярной дрейфовой подвижностью [5], а D – эффективным коэффициентом диффузии [23] или коэффициентом биполярной диффузии [5]. Когда $\tau_n = \tau_p = \tau$, μ и *D* описывают амбиполярные дрейф и диффузию.

Сравнивая между собой выражения (18), (18а) и (21), нетрудно убедиться, что имеет место зависимость

$$F_{\pm} = eE \frac{\mu \pm k_0 T}{eD_a} (b+1).$$
 (22)

Величина F_+ связана с параметром $\alpha_1 j$, введенным в [8], следующим образом

$$F_{+} = \frac{\alpha_1 j}{k u_p} \cdot \qquad (23)$$

Аналогичное выражение можно получить для F. Интерпретация введенных здесь обозначений D^{\pm} и μ^{\pm} и соотношений между ними будет дана ниже.

Анализ зависимости времени жизни носителей и других параметров задачи от уровия инжекции

Подставляя значение р из (10) в (6), получаем

$$\tau_{p} = \tau_{p}^{0} \left(1 + \frac{p_{1}}{\theta n_{0}} \right) N(n_{0}),$$

$$N(n_{0}) = \frac{1 + \delta_{0} + \frac{p_{1}}{kN_{g}} + \frac{\theta n_{0}}{kN_{g}}}{1 - \frac{p_{1}\delta_{0}}{b n_{0}} \left(1 - \frac{b n_{0}}{\delta_{0}N_{g}} \right) - \frac{n_{0}}{N_{g}} \left(1 - \frac{\theta}{k} \right)}.$$
(24)

В дрейфовом приближении (в пренебрежении в (15) членами со второй производной и квадратом первой производной концентрации дырок по координате, а в (14)—демберовской составляющей поля) и при приравнивании $N(n_0)$ единице задача была решена в [9]. Было показано, что в области токов, где τ_p уменьшается, после участка

$$j = \frac{8}{9} e u_n \sqrt{\frac{1}{\theta} u_p \tau_p^0 p_1 \delta_0 N_g} \frac{V^{3/2}}{d^2}$$
(25)

в приближении квазинейтральности следует участок OC, связанный с вхождением в базу области локального OC, причем значение n₀ на границе между участком локального OC и $j \sim V^{3/2}$ равно

$$n_{01} = \sqrt{\frac{p_1 \delta_0 N_g}{\frac{p_1}{N_g} + \theta (1 + \delta_0)}}.$$
 (26)

Параметры точки срыва следующие [9]*:

 Попытка распространения в [9] расчета, фактическа проделанного для структуры с двойной инжекцией, на случай симметричных структур является не совсем удачной. Г. М. Авакьянц, В. М. Арутюнян

$$j_{\rm cp} = \frac{ebd}{3\tau_p^0} \sqrt{\frac{p_1 \delta_0 N_g}{\theta \left[1 + \delta_0 + \frac{p_\perp}{\delta N_g}\right]^3}},$$
 (27)

$$V_{\rm cp} = \left(\frac{2}{9}\right)^{1/3} \frac{d^2}{2 \, u_p \tau_p^0} \left[1 + \hat{v}_0 + \frac{p_1}{\theta N_g} \right]^{-1} \cdot$$
(28)

В работе [20] была осуществлена экспериментальная проверка этих соотношений, показавшая хорошее соответствие теории с опытом для кремниевых диодов, компенсированных кадмием.

Воспользовавшись зависимостью (10), для результирующей силы F _ имеем

$$F_{-} \simeq \frac{j(b+1)}{u_{n} n_{0}^{2}} \left[\frac{2\theta(1-\theta_{1})}{M} \left(1 - \frac{p_{1}}{2bM} \right) n_{0}^{3} - n_{0}^{2} \left(\theta + \frac{p_{1}(1-\theta_{1})}{M} \right) + \right]$$
(29)

$$+ p_1 \delta_0 N_g \left(1 - \frac{3 n_0}{M} \right) \left| \frac{1}{p_1 + 2 \theta n_0} \approx - \frac{j (b+1) \left| n_0^2 \left(\theta + \frac{p_1}{M} \right) - p_1 \delta_0 N_g \right|}{u_n n_0^2 \left(p_1 + 2 \theta n_0 \right)} \right|.$$

Заметим, что начиная приблизительно с

$$n'_{01} = \sqrt{\frac{p_{1}\delta_{0}N_{g}M}{\theta M + p_{1}(1 - \theta_{1})}}$$
(30)

при $p_1 > 2\theta n_0$ результирующая сила F_{-} увеличивается с ростом тока. При заметно меньших уровнях инжекции

$$F_{-} \sim \frac{j}{n_0^2}; \tag{31}$$

с уменьшением уровня инжекции результирующая сила все сильнее противодействует продвижению по базе возмущения из n + n-перехода и модуляции им высокоомной базы.

При р1>2 впо имеем

$$F_{-} \sim -E_{T}.\tag{32}$$

Заметим, что (26) и (30) совпадают друг с другом при очевидном неравенстве

$$p_1 < \theta M.$$
 (33)

При значении noi т, становится постоянным, если

$$p_1 < \delta_{\theta} \theta N_g. \tag{34}$$

Расчет эффективного коэффициента диффузии D^p (16) при выборе *p* согласно (10) дает следующую зависимость:

$$\frac{D^{p}}{D_{p}} = \frac{3\,\theta n_{0} + 2\,p_{1} + \delta_{0}\theta N_{g} + \frac{\delta_{0}N_{g}p_{1}}{n_{0}}}{b\,(p_{1} + 2\,\theta n_{0})},$$
(35)

202

т. е. с ростом инжекции D^p уменьшается. С учетом (19) уменьшается, следовательно, и эффективная диффузионная длина $L^p = \sqrt{D^p \tau_p}$. Таким образом, наличие срыва никак не может быть связано с механизмом увеличения диффузионной длины с ростом тока [2, 6]. Срыв вызван прекращением уменьшения времени жизни дырок, сменой кинетики, что будет обсужденониже.

Воспользовавшись соотношением между эффективными коэффициентами диффузии электронов и дырок (16а), можно получить

$$\frac{D^{n}}{D_{n}} = \frac{\left[\delta_{0}\theta N_{g} + p_{1} + 2\theta n_{0}\right] \left[3\theta n_{0} + 2p_{1} + \delta_{0}\theta N_{g} + \frac{\delta_{0}p_{1}N_{g}}{n_{0}}\right]}{b(p_{1} + 2\theta n_{0})(N_{g} + p_{1} - 2n_{0})}, \quad (36)$$

т. е. с ростом тока D^n проходит через минимум.

При использовании (13) из (6) следует, что

$$\frac{\tau_p}{\tau_p^0} = \frac{1}{\theta} \frac{n_0 \left(1 - \frac{2\theta}{b}\right) - M\left(1 - \theta\right) \left(1 - \frac{p_1}{kM}\right)}{n_0 \left(1 - \theta\right) - M},$$
(37)

т. е. в диапазоне $Ms < n_0 < Mm$ уже произошло увеличение τ_p . Результирующая сила

$$F_{-} = \frac{2 k (1 - \theta) M_j}{b^2 n_0^2} = \text{const}$$
(38)

не меняется с током; при этом

$$D^n = \frac{2D_p}{b+1} \tag{39}$$

равен эффективному коэффициенту биполярной диффузии [5, 23] для случая, соответствующего накоплению в полупроводнике значительной концентрации избыточных электронов и дырок. Итак, при уровнях инжекции, близких к M, на ВАХ возможен второй участок ОС S-типа, обусловленный увеличением времени жизни неосновных носителей τ_p . Зависимости D^n , D^p , τ_n и τ_p от n_0 схематически приведены на рис. 2.

Обсуждение результатов

Используя (31), (32) и (39), можно схематически построить зависимость результирующей силы F_{-} от тока (рис. 3). Заметим, что F_{\pm} и μ^{\pm} меняют знак с ростом тока. Нужно подчеркнуть, что $E\mu^{\pm}$ не являются скоростями частиц в электрическом поле. Это есть скорости дрейфа возмущения, причем дрейфа в ту сторону, куда движутся неосновные носители заряда. Этот дрейф сгустка электронов и дырок отнюдь не независим от концентрации уже имеющегося заряда подвижных и связанных носителей.

В свою очередь F_{-} (F_{+}), согласно (18) и (18а), есть приходящееся на одну инжектированную дырку (электрон) изменение силы, действующей на единицу объема электронно-дырочной плазмы в результате приложения внешнего напряжения. Для краткости вводится термин «результи-399—2

Рис. 2. Схематическое изображение зависимостей D^n , D^p , τ_n и τ_p от уровня инжекции.

Рис. 3. Схематическое изображение зависимости рекультирующей силы от плотности тока.

рующая сила». Лишь в условиях, когда µ⁻ и µ⁺ становятся равными u_n, результирующая сила становится равной еЕ. Возвращаясь к рис. 3, можно считать, что при F >0 имеет место нетривиальное накопление инжектируемых электронов в узкой области у n⁺·n-перехода, дифференциальное сопротивление которой, согласно расчетам [9], отрицательно. Это в первую очередь связано с наличием слабого рекомбинационного барьера для дырок. входящих в базу из p⁺.n-перехода. Однако с ростом приложенного напряжения время жизни дырок уменьшается, рекомбинационный барьер ослабевает все сильнее. С прекращением уменьшения времени жизни дырок результирующая сила F_ меняет знак, что способствует продвижению области ЛОС вглубь базы и приводит в конечном счете к S-образности на ВАХ всего образца [9]. Результирующая сила растет пропорционально току, т. е. с ростом тока область ЛОС все глубже входит в базу, способствуя тем самым уменьшению сопротивления и дальнейшему увеличению тока. Таким представляется нам механизм обратной связи, приводящий к срыву на ВАХ образца. Все незаполненные до инжекции глубокие акцепторные центры ($\delta_0 N_{\mu}$) забиваются электронами, с $n_0 \simeq \delta_0 N_g$ с ростом уровня инжекции начинает уменьшаться время жизни электронов. Из-за условия 0<1 постепенное накопление в базе дырок способствует перезарядке глубоких уровней и увеличению времени жизни дырок. Согласно [2, 6] это приводит к падению напряжения на структуре и второму срыву.

Свидетельством наличия эффективного рекомбинационного барьера является более слабая степенная зависимость $j \sim V^{3/2}$ (25) вместо $j \sim V^2$, подчеркивающая вместе с тем, что нет полного блокирования инжекции в базу из-за уменьшения с ростом тока времени жизни. Следует заметить, что если при первом срыве низкоомная область входит в базу со стороны n^+ -n-перехода, то при втором—со стороны p^+ -n-перехода. В условиях, когда нет участка с $\tau_p \equiv \text{сопst}$, возмущение со стороны p^+ -n-перехода раньше втягивается в базу и имеет место лишь один срыв (см. [2, 6]).

Подчеркнем, что рост с током результирующей силы всегда связан с вполне определенной кинетикой взаимодействия носителей заряда с глубокими центрами. Например, в ситуации, рассмотренной в [9, 14] и настоящей работе, необходимо близкое к потолку валентной зоны расположение глубокого центра и соответственно сильное тепловое взаимодействие с ней. В случае, рассмотренном в [7], необходимо наличие незаполненных до инжекции глубоких центров. Указанные обстоятельства ведут к определенным физическим условиям, обязательно предшествующим и по существу обуславливающим последующий рост результирующей силы. В [7] наличие пустых ловушек приводит к задержке раскомпенсации, а в случае, рассмотренном здесь, возникает рекомбинационный барьер. С последующим ростом тока физические условия, необходимые для существования рекомбинационного барьера и задержки, нарушаются, что и находит выражение в росте результирующей силы.

Уменьшение с током D^{p} связано с уменьшением с ростом тока числа нейтральных центров, так как захват глубокими центрами электронов при-

водит к усилению связанного отрицательного заряда, удерживающего около себя все большее количество подвижных дырок. Лишь с заполнением всех пустых ловушек ($n_0 = \delta_0 N_g$) имеет место совместная диффузия в полупроводнике инжектированных из переходов электронов и дырок с коэффициентом биполярной диффузии (39).

Институт раднофизики и электроники АН АрмССР

Поступила 25. V. 1973

ЛИТЕРАТУРА

1. А. А. Лебедев, В. И. Стафеев, В. М. Тучкевич. ЖТФ, 26, 2131 (1956).

- M. A. Lampert. Repts. Progr. Phys., 27, "329 (1964). M. A. Lampert, P. Mark-Current Injection in Solids, Acad. Press, N. Y. and London, 1970.
- 3. Вопросы пленочной электроники. Сб. Советское радно, М., 1966, стр. 50, 83, 170.
- 4. Ю. С. Акимов, И. В. Рыжиков. ЭТ, серия 2, № 4, 3 (1972); № 6, 47 (1972).
- С. М. Рывкин. Фотовлектрические явления в полупроводниках, Физматгиз, М., 1963.
- 6. B. H. Cmachees. OTT, 3, 2513 (1961); 5, 11 (1963).
- 7. Г. М. Авакьяну. Радиотехника и электроника, 10, 1880 (1965); Изв. АН АрмССР, Физика, 1, 248 (1966).
- 8. В. В. Осипов, В. И. Стафеев. ФТП, 1, 1795 (1967). В. В. Осипов. В. А. Холоднов. ФТП, 5, 1387 (1971); 6, 441 (1972).
- 9. Г. М. Авакьянц, В. М. Арутюнян. Изв. АН АрмСРР, Физика, 4, 318 (1969).
- 10. Г. М. Авакьяну, В. М. Арутюнян, Р. С. Барсегян. ДАН АрмССР, 53, 218 (1971); Изв. АН АрмССР, Физика, 7, 55 (1972).
- 11. В. А. Душкин, Л. П. Музюкин, В. И. Мурынин, В. И. Стафеев. ФТП, 4, 1761 (1970).
- 12. А. А. Лебедев и др. ФТП, 4, 1130, 2208 (1970); 5, 22, 31, 876, 2277 (1971); 6, 1067 (1972).
- 13. В. А. Сабликов, И. Б. Павлинов. ДАН УзбССР, 3, 27 (1967); 4, 21 (1968).
- 14. Г. М. Авакьяну, В. М. Арутюнян. ДАН АрмССР, 46, 228 (1969).
- C. Constantinescu, A. Glodeanu. Stari locale in semiconductori, Ed. Acad. RSR, Bucuresti, 1967.
- 16. N. Holonyak. Proc. IRE, 50, 2421 (1962).
- 17. П. М. Караивориий-Алкалаев, А. Ю. Лейдерман. Глубокие примесные уровни в широкозонных полупроводниках, Фан, Ташкент, 1971.
- 18. Ю. А. Абрамян. Диссертация, Ереван, 1970.
- Г. М. Авакьянц, З. Н. Адамян, Р. С. Барсеіян, С. А. Тарумян. ФТП, 5, 809 (1971); Изв. АН АрмССР, Физика, 5, 41 (1970); ДАН АрмССР, 52, 76 (1971). Г. М. Авакьянц, С. В. Минасян, В. А. Погосян. Микроэлектроника, 1, 250 (1972).
- 20. Р. С. Барселян. Диссертация, Ереван, 1972.
- В. К. Григорьев. О. И. Казанцев, В. И. Мурыгин, В. С. Рубин, В. И. Стафевв. ФТП, 3, 1861 (1969); 4, 116 (1970).
- 22. D. Dascalu. Injectia unipolara in dispozitive electronice semiconductoare, Ed. Acad. RSR, Buceresti, 1972.
- 23. Р. Смит. Полупроводники, ИЛ, М., 1962.
- 24. Г. М. Авакьянц, А. А. Джереджян, Г. С. Караян. Изв. АН АрмССР, Физика, 7, 267 (1972).

ԿՐԿՆԱԿԻ ԻՆԺԵԿՑԻԱՆ ԿԻՍԱՀԱՂՈՐԴԻՉՆԵՐՈՒՄ, ՀԱՇՎԻ ԱՌՆԵԼՈՎ ՀՈՍԱՆՔԻ ՄԵԾԱՑՄԱՆ ՀԵՏԵՎԱՆՔՈՎ ԷԼԵԿՏՐՈՆՆԵՐԻ ԵՎ ԽՈՌՈՉՆԵՐԻ ԿՅԱՆՔԻ ՏԵՎՈՂՈՒԹՅԱՆ ՓՈՓՈԽՈՒԹՅՈՒՆԸ

Գ. Մ. ԱՎԱԳՑԱՆ, Վ. Մ. ՀԱՐՈՒԹՅՈՒՆՑԱՆ

Յույց է տրված երկար ստրուկտուրաների վոլտ-ամպերային բնուքիագրի ուղիղ մասում երկու տիպի բացասական գիմադրության հատվածի ձևավորման հնարավորությունը կրկնակի ինժեկցիայի ռեժիմում։

DOUBLE INJECTION INTO SEMICONDUCTOR WITH HOLE AND ELECTRON LIFETIMES VARYING WITH CURRENT

G. M. AVAKYANTS, V. M. HARUTUNYAN

The possibility and the formation mechanism of two regions of S-type negative resistance on the direct branch of CV-characteristic for the long-structure working in double injection regime is shown.