ПРОЕКЦИОННЫЙ АЛГОРИТМ ДЛЯ ПРЯМОУГОЛЬНОГО РЕЗОНАТОРА С ДИЭЛЕКТРИЧЕСКИМ ШАРОМ

В. А. САФАРЯН

Проекционным методом решена задача о прямоугольном резонаторе с диэлектрическим шаром. Составлена программа для ЭВМ "Раздан-3". Обсуждаются результаты расчета.

Введение

Полые резонаторы, содержащие диэлектрические и, особенно, гиротоопные тела (намагниченные ферриты), находят различное применение в радиотехнике и радиофизических исследованиях. Однако до сих пор в литературе почти отсутствуют точные сведения о полях и собственных частотах резонаторов с включениями, нарушающими регулярность. Между тем в настоящее время разработаны эффективные способы расчета таких резонаторов, к числу которых относятся модификации метода Галеркина [1]. Сходимость метода в данном случае гарантирована, т. е. с увеличением порядка получаемой системы уравнений приближенное решение может как угодно мало отличаться от точного. В [1] приведены некоторые примеры решения резонаторных задач с применением ЭВМ; большая часть данных относится к резонаторам с включениями в виде параллелепипеда. Дальнейшие приложения метода Галеркина в этой области, насколько известно, в литературе не появлялись. В частности, представляющие принципиальный, а также технический интерес резонаторы с шарообразными телами еще не исследовались.

Целью настоящей работы является применение метода Галеркина для, построения алгоритма решения задачи о собственных колебаниях резонатора в виде параллелепипеда с диэлектрическим шаром переменного радиуса в центре.

Алгоритм, который понадобится для исследования резонатора с ферритовым шаром, будет мало отличаться от предлагаемого и настоящую работу можно рассматривать как подготовительный этап в этом направлении, а также шаг к изучению ферритовых резонаторов.

1. Описание алгоритма

Алгоритм построен на основе обращения алгебраической формулировки (8.17) работы [1]. Матричное уравнение при этом принимает вид

$$\overset{\mathbf{v}}{\partial} \mathcal{Q}^{-1} \overset{\mathbf{A}}{M} \mathcal{Q}^{-1} a = \frac{1}{(\omega^N)^2} a, \qquad (1)$$

где $a = (a_1, a_2 \cdots a_N)$ — вектор коэффициентов представления электрической индукции

Проекционный алгоритм для резонатора с диэлектрическим шаром

$$\vec{D} = \varepsilon \sum_{n=1}^{N} a_n \vec{E}_n, \qquad (2)$$

а $\partial \Omega^{-1} M \Omega^{-1}$ — матрица, составленная как произведение матриц с элементами

$$\dot{\check{\mathcal{D}}}_{ij} = \int_{V} \varepsilon \vec{E}_{i} \vec{E}_{j}^{*} dv,$$

$$\dot{\check{M}}_{ij} = \int_{V} \psi \vec{H}_{i} \vec{H}_{j}^{*} dv,$$

$$\Omega_{j}^{-1} = \frac{1}{\omega_{i}} \delta_{j}.$$

$$(3)$$

Индексы і и ј понимаются как совокупности трех чисел

$$i = (m, n, p), j = (m', n', p'),$$

 ω_j — собственные частоты пустого резонатора. Отметим, что функции базиса \vec{E}_l и \vec{H}_l ортонормированы в виде

$$\varepsilon_0 \int_V \vec{E}_i \vec{E}_j^* dv = \delta_{ij}, \quad \mu_0 \int_V \vec{H}_i \vec{H}_j dv = \delta_{ij}. \tag{4}$$

В случае дивлектрического образца $\check{M} = I$ (единичная матрица) и уравнение (1) переходит в следующее

$$\overset{\mathsf{v}}{\partial} \Omega^{-2} a = \frac{1}{(\omega^N)^2} a. \tag{5}$$

Вычисление собственных частот резонатора, содержащего дивлектрическое тело, сводится к нахождению собственных чисел матрицы. В работе решается система уравнений (5), дающая коэффициенты представления (2).

Заменим в (3) интеграл по V суммой интегралов по областям с постоянными диэлектрическими проницаемостями. Используя условия нормировки (4), будем иметь

$$\int_{V} \varepsilon \vec{E}_{l} \vec{E}_{j}^{*} dv = \varepsilon_{\vartheta} \int_{V-\Delta V} \vec{E}_{l} \vec{E}_{j}^{*} dv + \varepsilon \int_{\Delta V} \vec{E}_{l} \vec{E}_{j}^{*} dv = \delta_{lj} + (\varepsilon - \varepsilon_{0}) \int_{\Delta V} \vec{E}_{l} \vec{E}_{j}^{*} dv,$$

где ∆V—объем шара.

В случае дивлектрического шара, расположенного симметрично, как показано на рис. 1, после подстановки вихревых базисных функций ([1], приложение к гл 1) исходной формулой для расчета матричных влементов $\overset{v}{\partial}_{ii}$ будет

$$\hat{\Phi}_{ij} = \hat{b}_{ij} + \varepsilon_0 \left(\frac{\varepsilon}{\varepsilon_0} - 1\right) \int_{\Delta V} \left[(A_x)_i \sin \frac{m\pi}{a} x \cos \frac{n\pi}{b} y \right]$$

 $\times \sin \frac{p\pi}{c} z (A_x)_j \sin \frac{m'\pi}{a} x \cos \frac{n'\pi}{b} y \sin \frac{p'\pi}{c} z +$

$$+ (A_y)_l \cos \frac{m\pi}{a} x \sin \frac{n\pi}{b} y \sin \frac{p\pi}{c} z (A_y)_j \cos \frac{m'\pi}{a} x \sin \frac{n'\pi}{b} y \sin \frac{p'\pi}{c} z + (6)$$

 $+ (A_z)_l \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y \cos \frac{p\pi}{c} z (A_z)_j \cos \frac{m'\pi}{a} x \cos \frac{n'\pi}{b} y \cos \frac{p'\pi}{c} z \bigg] dv,$

где A_x , A_y , A_z — постоянные коэффициенты, a, b, c — размеры резонатора в произвольных единицах длины l.

Интегрирование по шару производится следующим образом. Шар представляется в виде системы цилиндрических слоев (рис. 2), имеющих

Рис. 2.

одну и ту же толщину при всех $R\left(h=\frac{R}{\tilde{N}}=0,0025\right)$. Радиусы цилиндрических слоев вычисляются по формуле

 $r_{\overline{n}} = h\sqrt{\overline{N}^2 - \overline{n}^2}, \quad \overline{n} = 1, \ 2 \cdots \overline{N}.$

150

Заменив в (6) произведения тригонометрических функций их суммами и разностями, перейдя затем от декартовых координат к цилиндрическим и используя для преобразования аргументов формулу

$$A\cos\varphi \pm B\sin\varphi = \sqrt{A^2 + B^2}\cos(\varphi \mp \varphi_0),$$

под интегралом получим выражения типа

$$\cos\left[\pi r_{n}\sqrt{\left(\frac{\overline{m\pm m'}}{a}\right)^{2}\pm\left(\frac{\overline{n\pm n'}}{b}\right)^{2}}\cos\left(\varphi\mp\varphi_{0}\right)\right].$$

Проинтегрировав по φ , а затем по r, для n-ого цилиндрического слоя $\Delta V_{\overline{n}}$ окончательно получим

$$\delta_{ij} + (\varepsilon - \varepsilon_0) \int_{\Delta V_{\overline{n}}} \vec{E}_i \, \vec{E}_j^* \, dv = \delta_{ij} + 2 \left(\frac{\varepsilon}{\varepsilon_0} - 1 \right) r_{\overline{n}} \Phi(r_{\overline{n}})$$

Здесь

$$\Phi(r_{\overline{n}}) = P_{x} + P_{y} + P_{z},$$

$$P_{x} = \frac{mm'pp'(\sigma - q)(I_{1} - I_{2} + I_{3} - I_{4})}{a^{3}bc^{3}vwv'w'},$$

$$P_{y} = \frac{nn'pp'(\sigma - q)(I_{1} - I_{2} - I_{3} + I_{4})}{ab^{3}c^{3}vwv'w'},$$

$$P_{z} = \frac{(\sigma + q)(I_{1} + I_{2} + I_{3} + I_{4})vv'}{abcww'},$$

$$\sigma = \frac{c}{abcww'}\pi h,$$
(7)

$$q = \frac{c}{(p+p')\pi} \sin \frac{p+p'}{c} \pi h,$$

$$v = \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}, \quad v' = \sqrt{\left(\frac{m'}{a}\right)^2 + \left(\frac{n'}{b}\right)^2},$$

$$w = \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{c}\right)^2}, \quad w' = \sqrt{\left(\frac{m'}{a}\right)^2 + \left(\frac{n'}{b}\right)^2 + \left(\frac{p'}{c}\right)^2},$$

причем при $p = p' \neq 0$ значение о должно быть взято равным h, а при p = -p' = 0 и о, и q приравниваются h. Эначения P_z при $\rho = 0$ или $\rho' = 0$ дополнительно умножаются на $1/\sqrt{2}$, а при p = p' = 0 — на 1/2.

Далее, в (7) введены обозначения

$$I_{\overline{m}} = \frac{J_1(\pi r_{\overline{n}} \cdot z_{\overline{m}})}{z_{\overline{m}}} \qquad (\overline{m} = 1, 2, 3, 4),$$

где J_1 — функция Бесселя первого порядка, а $z_{\overline{m}}$ принимают следующие значения: В. А. Сафарян

$$z_{1} = \sqrt{\left(\frac{m-m'}{a}\right)^{2} + \left(\frac{n-n'}{b}\right)^{2}}, \quad z_{2} = \sqrt{\left(\frac{m+m'}{a}\right)^{2} + \left(\frac{n-n'}{b}\right)^{2}},$$
$$z_{3} = \sqrt{\left(\frac{m-m'}{a}\right)^{2} + \left(\frac{n+n'}{b}\right)^{2}}, \quad z_{4} = \sqrt{\left(\frac{m+m'}{a}\right)^{2} + \left(\frac{n+n'}{b}\right)^{2}}.$$

При m = m' и n = n

$$I_1 = \frac{\pi}{2} r_{\overline{n}} \cdot$$

Переходя к шару и заменив интегрирование суммированием по формуле трапеций, окончательно получим

$$\dot{\vartheta}_{ij} = \delta_{ij} + 2\left(\frac{\varepsilon}{\varepsilon_0} - 1\right) \left[\Phi\left(r_0\right) + 2\sum_{\overline{n}=1}^{N} \Phi\left(r_{\overline{n}}\right)\right],\tag{8}$$

где r₀= R — радиус исследуемого шара.

Однородная система уравнений (5) решалась итерационным методом ([2], гл. XII, § 11). Находилось наибольшее собственное значение матрицы $1/(\omega^N)^2$, позволяющее вычислить приближенное значение низшей собственной частоты резонатора ω_1^N и соответствующий собственный вектор матрицы a, дающий коэффициенты a_n представления (2) индукции основного типа колебаний. В таблицах и на графиках численные значения ω_1^N даны в виде волновых чисел

$$k_1^N = \omega_1^N \sqrt{\varepsilon_0 \mu_0},$$

выраженных в единицах $[i^{-1}]$.

Автором была составлена программа на языке АЛГОЛ, которая эксплуатировалась на ЭВМ «Раздан-З».

3. Результаты расчетов

В расчетах был использован базис из 20 функций

E 110	E ₁₃₀	E150	E 310	E 510	E ₃₃₀	. E ₃₅₀	E 530
E112	E132	E152	E 312	E 512	E 332	E 352	E 532
E114	E ₁₃₄		E 314		E ₃₃₄ .		

Для проверки вычислений рассматривался также случай с другим базисом, а именно, содержащим как Е-поля, так и Н-поля. Как и следовало ожидать, последние не внесли какого-либо вклада.

В качестве теста были вычислены собственные частоты резонатора с цилиндрическим образцом длиной С, расположенным вдоль Z, при двух радиусах цилиндра, поскольку эти данные можно сравнить с имеющимися в литературе [1]. Как видно из сравнения данных, приведенных в табл. 1, получаемые результаты достоверны.

Большее расхождение при малом радиусе цилиндра естественно; заметим, что число «работающих» базисных функций в данном случае было

152

		Таблица и
2 R/a	k_1^N [1] ($\epsilon = 10 \epsilon_0$)	$k_1^N (\varepsilon = 10 \varepsilon_0)$
0,2 1	2,81825	2,86174 1,40865

меньше, чем в [1], поскольку из базиса, приведенного выше, не использовались все функции с отличным от нуля третьим индексом.

Для этого же резонатора были получены также данные, не имеющиеся в литературе, а именно, при радиусе $\frac{2R}{a} = 1$ и $\varepsilon = 20 \varepsilon_0 - k_1^N = 0,99621$ а при $\varepsilon = 30 \varepsilon_0 - k_1^N = 0,81344.$

Основные результаты расчета относятся к резонатору со сферическим образцом, показанному на рис. 1. Как частный случай, рассматривался резонатор с равными сторонами. Эначения k_1^N сведены в табл. 2.

	10.00	142.5		2
	ab	27/	110	1
1000	uv		200	

s = 10.so			£ ==	50 s _o	
2 R/a	k ₁ ^N	2 R/a	k ₁ ^N	2 R/a	k ₁ ^N
0 0,1 0,2 0,3 0,4 0,5	4,44288 4,39694 4,05794 3,32778 2,67773 2,23508	0,6 0,7 0,8 0,9 1	1,93236 1,71617 1,55621 1,43456 1,34000	0 0,2 0,4 0,6 0,8 1	4,44288 2,66440 1,28242 0,87985 0,69531 0,59273

Графики соответствующих коэффициентов представления (2) приведены на рис. 3 и 4. Все коэффициенты отнесены к a₁. Рис. 5 показывает изменение собственной частоты резонатора в зависимости от диэлектрической проницаемости при разных размерах шара. Для этого же резонатора были проведены вычисления при уменьшении числа базисных функций, а именно, бралось 20, 15, 10 и 5 функций. Функции отбрасывались, начиная с высших номеров, в следующем порядке: 110, 130, 112, 310, 312, 132, 114, 150, 152, 510, 350, 512, 530, 352, 532, 330, 134, 314, 332, 334. Результаты приведены в табл. 3 и представлены графически на рис. 6. Они иллюстрируют сходимость процесса.

Таблица З

$\epsilon = 10 \epsilon_0$					
N 2R/a	20	15	10	5	
0,1 0,2 0,3 0,4	4,39694 4,05794 3,32778 2,67713	4,39731 4,07476 3,38533 2,73352	4,39750 4,08292 3,40342 2,74187	4,39802 4,10240 3,47499 2,82203	

В. А. Сафарян

Для случая параллелепипеда со сторонами a=b=2l, c=l и диэлектрической проницаемостью шара $\varepsilon = 10 \varepsilon_0$ результаты вычислений приведены в табл. 4, а соответствующие графики—на рис. 7.

В заключение отметим, что эксплуатация составленной программы на большой ЭВМ легко позволила бы увеличить базис и точность интегриро-

155

Таблица 4

$\epsilon = 10 \epsilon_0$				
2 R/c	k ₁ ^N	2 R/c	k ₁ ^N	
0 0,1 0,2 0,3 0,4 0,5	2,22144 2,21583 2,17824 2,08010 1,91064 1,69906	0,6 0,7 0,8 0,9 1	1,49197 1,31442 1,16862 1,05087 0,95500	

Рис. 7.

вания, что, в свою очередь, дало бы возможность перейти к области малых образцов с весьма высокой диэлектрической проницаемостью.

За постановку задачи и руководство работой выражаю благодарность профессору В. В. Никольскому.

Институт радиофизики и электроники АН АрмССР

Поступила 30.111.1973

ЛИТЕРАТУРА

- 1. В. В. Никольский. Вариационные методы для внутренних задач электродинамики, Наука, М., 1967.
- 2. Б. П. Демидович, И. А. Марон. Основы вычислительной математики, Физматгиз, М., 1960.

ՊՐՈԵԿՑԻՈՆ ԱԼԳՈՐԻԹՄ ԴԻԷԼԵԿՏՐԻԿ ԳՆԴՈՎ ՈՒՂՂԱՆԿՅՈՒՆԱՁԵՎ ՌԵԶՈՆԱՏՈՐԻ ՀԱՄԱՐ

4. น. บนรนครนบ

Պրոեկցիոն մենհոդով լուծված է խնդիր դիէլեկտրիկ դնդով ուղղանկլունաձև ռեղոնատորի վերաբերյալ։ Կազմված է ծրագիր «Հրազդան-3» էՀՄ-ի համար։ Քննարկվում են հաշվումների արդյունըները։

PROJECTION ALGORITHM FOR RECTANGULAR RESONATOR WITH A DIELECTRIC SPHERE

V. A. SAFARIAN

A' problem of a rectangular resonator with a dielectric sphere has been solved by the projection method. The problem is programmed for "Razdan-3" computer and results of computations are discussed.