ОБ ЭЛЕКТРОМАГНИТНОМ МЕХАНИЗМЕ ОБРАЗОВАНИЯ *W*-МЕЗОННЫХ ПАР ЧАСТИЦАМИ ВЫСОКИХ ЭНЕРГИИ*

н. л. тер-исаакян, в. а. хозе

Получены выражения для полных сечений фото- и электророждения пар W-мезонов на нуклоне и на ядре в асимптотической области энергий. Вычисления проводятся с по мощью ковариантной формулировки метода Вейцзеккера—Вильямса. Обсуждаются специфические особенности применения этого метода к рассмотрению процессов образования W-мезонов.

1. В последнее время в связи с прогрессом в создании ускорителей больших энергий и разработкой проектов ускорителей на сверхвысокие энергии возрос интерес к теоретическому рассмотрению процессов рождения W-мезонов с целью получения, например, разумных оценок возможного числа событий в том или ином эксперименте.

Процессы фоторождения пар *W*-мезонов, одиночного рождения *W*-мезонов в столкновении лептонов и адронов с адронами, а также рождения *W*-мезонов на встречных пучках обсуждались в ряде работ (см., напр., [2 — 11]).

В настоящей работе проводится исследование фото- и электророждения пар W-мезонов в процессах

$$\gamma + N \to N + W^+ + W^-, \tag{1a}$$

$$\gamma + A \to A + W^+ + W^-, \tag{1b}$$

$$e + N \rightarrow e + N + W^+ + W^-, \qquad (2\alpha)$$

$$e + A \rightarrow e + A + W^+ + W^-. \tag{28}$$

Для получения асимптотического поведения сечений исследуемых продессов нами используется ковариантная формулировка метода Вейцзеккера-Вильямса (ВВ), развитая в работе [12]. Обсуждаются специфические особенности применения этого метода при рассмотрении процессов образования W-мезонов.

Процессы (1) рассматривались в ряде работ (напр., [2—4]¹, результаты которых, однако, не согласуются между собой и расходятся с нашими.

2. Рассмотрим процесс, изображенный на рис. 1 в общем случае произвольных частиц а и b

$$a + b \to a + X, \tag{3}$$

где Х-произвольный комплекс частиц. Введем обозначения

$$s = 2 p_1 p_2, \quad t = -q^2 = -(p_1 - p_1')^2, \quad \Delta^2 = 2 q p_2.$$
 (4)

* Предварительный вариант настоящей работы был представлен на XVI Международную конференцию по физике высоких энергий в Батавии [1].

¹ Более подробная библиография содержится в работах [2-4, 9].

По аналогии с работой [12] (см. также [13—14]) при условии s, $\Delta^2 \gg t$, m_a^2 можно получить наиболее общий вид ковариантной формулы BB

$$d\sigma = \frac{\alpha}{\pi} \frac{d\Delta^2}{\Delta^2} \frac{dt}{t} f(s, \Delta^2, t) \sigma_{\overline{t}}(\Delta^2), \qquad (5)$$

$$f(s, \Delta^2, t) = [E(t) + \lambda M(t)] \left(1 - \frac{\Delta^2}{s}\right) \left(1 - \frac{t_{\min}}{t}\right) + (1 + \lambda) M(t) \frac{\Delta^4}{2s^2}.$$

Здесь $\lambda = \frac{t}{4 m_a^2}$, $t_{\min} = \frac{m_a^2 \Delta^4}{s (s - \Delta^2)}$, $\sigma_{\gamma} (\Delta^2)$ — сечение фотопроцесса $\gamma + b \rightarrow X$; функции E(t) и M(t) описывают электрическую и магнитную структуру частицы a. Если спин частицы a равен $\frac{1}{2}$, имеем

$$E(t) = \frac{G_E^2(t)}{1+\lambda}, \quad M(t) = \frac{G_M^2(t)}{1+\lambda}, \quad (6)$$

где $G_E(t)$ и $G_M(t)$ — электрический и магнитный формфакторы. Для бесспиновой частицы

$$E(t) = F^{2}(t), \quad M(t) = 0,$$
 (7)

F(t) — формфактор частицы a.

Если частица а-точечный фермион (е, µ), формула (5) принимает вид

$$d\sigma = \frac{\alpha}{\pi} \frac{dt}{t} \frac{d\Delta^2}{\Delta^2} \left(1 - \frac{\Delta^2}{s} + \frac{\Delta^4}{2s^2} - \frac{m_a^2 \Delta^4}{t s^2} \right) \sigma_{\gamma} (\Delta^2). \tag{8}$$

В ряде случаев формула (5) может быть представлена в более простой форме, которая определяется поведением σ_{γ} (Δ^2) при $\Delta^2 \rightarrow \infty$. Например, если $\sigma_{\gamma}(\Delta^2) \rightarrow \frac{1}{\Delta^2}$ при $\Delta^2 \rightarrow \infty$, то при вычислении интегрального сечения существенны малые значения переменных Δ^2 и t ($t \ll m_a^2$, $\Delta^2 \ll s$) и формула (5) переходит в юбычную (ковариантную) формулу BB

$$d\sigma = \frac{Z^2 \alpha}{\pi} \frac{dt}{t} \frac{d\Delta^2}{\Delta^2} \sigma_{\overline{1}}^- (\Delta^2), \qquad (9)$$

где Ze — заряд частицы а.

3. Рассмотрим теперь процесс (1 *a*) упругого фоторождения на нуклоне. Частица *a* в этом случае—нуклон, частица *b*—фотон, Х—пара *W*-мезонов; $\sigma_{T}(\Delta^2) \equiv \sigma_{TT}(\Delta^2)$ — полное сечение процесса $\gamma + \gamma \rightarrow W^+ + W^-$.

Мы предполагаем, что формфакторы нуклона описываются дипольной формулой и подчиняются «скейлингу»

$$G_E^{(p)}(t) = \frac{G_M^{(p)}}{\mu_p} = \frac{G_M^{(n)}}{\mu_n} = \frac{1}{(1+t/t_0)^2},$$
 (10)

$$T_E^{(n)} \simeq 0, \quad t_0 = 0,71 \quad (\Gamma_{\mathcal{BB}})^2,$$

где µ_p — магнитный момент протона, µ_n — магнитный момент нейтрона.

Формфакторы эффективно ограничивают область интегрирования по переданному импульсу областью $t \leq t_0$. Кроме того, в силу степенного роста по Δ^2 сечения $\sigma_{TT}(\Delta^2)$ в случае $x \neq 1$ (см. ниже формулу (12)) при интегрировании формулы (5) существенны большие значения величины Δ^2 , до $\Delta^2 \sim s$. Анализ возникающих интегралов показывает, что для получения точного ответа в формуле (5) необходимо сохранять члены вида $\frac{\Delta^2}{s}$ и $\frac{t}{m_a^2}$. Поэтому величина интегрального сечения чувствительна к поведению формфакторов при $t \sim t_0$ и, следовательно, в данном случае нельзя ограничиться ступенчатым приближением для формфактора (G=1при $t \lesssim t_0$, G=0 при $t > t_0$) в отличие, например, от случая, когда $\sigma_T(\Delta^2)$ падает с ростом Δ^2 .

При аномальном магнитном моменте W-мезона *, равном нулю, для вычисления вклада в полное сечение, определяемое диаграммой рис. 1, методом BB (формулой (5)) можно пользоваться практически во всей области энергий.

Действительно, в силу тождества

$$p_{2y} \gamma^{\lambda}_{y\mu}(p_2, p_1) p_{1\mu} = \varkappa [k^2 p_{2\lambda} - k_{\lambda}(p_2 k)],$$

$$k = (p_2 - p_1)$$
(11)

для вершины взаимодействия W-мезона с фотоном [11] при сходе с массовой поверхности фотона в случае x = 0 в сечении виртуального фотопроцесса $\sigma_{TT}(\Delta^2)$ наряду с членами вида $\frac{\Delta^2}{M^4}$, $\frac{1}{M^2}$ и $\frac{1}{\Delta^2}$ появляются члены вида $\frac{t}{M^4}$ (но не $\frac{\Delta^2 t}{M^6}$), где M — масса W-мезона, которые в силу обрезающего эффекта формфакторов дают вклад в полное сечение порядка $\frac{t_0}{M^4}$. Этими членами можно пренебречь по сравнению с основными членами $\frac{s}{M^4}$ и $\frac{1}{M^2}$, которые мы умеем вычислять с помощью метода BB. Таким образом, при x = 0 точность применения метода BB— $\frac{t_0}{M^4} \ll 1$.

При $x \neq 0$ сход с массовой поверхности фотона приводит к появлению членов вида $\frac{\Delta^2 t}{M^6}$ в сечении виртуального фотопроцесса, которые дают вклад в полное сечение порядка $\frac{st_0}{M^6}$. Поэтому при $x \neq 0$ методом BB можно пользоваться лишь для вычисления ведущих асимптотических членов $\sim \frac{s}{M^4}$, а учет членов порядка $\frac{1}{M^2}$ возможен лишь при выполнении условия $\frac{st_0}{M^4} \ll 1$.

При
$$\frac{\Delta^2}{M^3} \gg 1$$
 сечение процесса $\gamma + \gamma \rightarrow W^{+} + W^{-}$ имеет вид

$$\sigma_{TT} (\Delta^2) = \frac{\pi \alpha^2}{24} \frac{\Delta^2}{M^4} P(\mathbf{x}),$$

(z) = (1 - z)² [5 + 2 z + 5 z²]. (12)

Наш результат при x=0, + 1 согласуется с [2, 5] и расходится с [3]; при x= — 1 наш результат расходится с [2, 5]¹.

Интегрируя (5) по области изменения переменных

$$\frac{m_a^2 \Delta^4}{s \left(s - \Delta^2\right)} \leqslant t \leqslant s - \Delta^2, \quad 4 M^2 \leqslant \Delta^2 \leqslant s, \tag{13}$$

получаем при s >> M²

$$\sigma_{p} \simeq \frac{\alpha^{3}s}{24 M^{4}} P(x) [0,44 + 0,022 \,\mu_{p}^{2}],$$

$$\sigma_{n} \simeq \frac{\alpha^{3}s}{24 M^{4}} P(x) [0,022 \,\mu_{n}^{2}].$$
(14)

Заметим, что наряду с диаграммой рис. 1 в рассматриваемый процесс, вообще говоря, дает вклад диаграмма рис. 2. Вклад интерференции между этими диаграммами в полное сечение обращается в нуль в силу С-инвариантности. При x = 0 диаграмма рис. 2 не дает растущего с S вклада,

Рис. 1.

Рис. 2.

поэтому при $s \gg M^2$ сечение определяется диаграммой рис. 1. При $x \neq 0$ вклад диаграммы рис. 2 может оказаться сравнимым с вкладом диаграммы рис. 1.

¹ В связи с этим отметим, что выражение для сечения комптоновского рассеяния фотона на W-мезоне при z = — 1, приведенное в работе [2], ошибочно. Правильный результат имеет вид

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{k_2}{k_1}\right)^2 \left[(1 + \cos^2\theta) + \frac{1}{3} (5 + \cos^2\theta) \frac{k_1^2 + k_2^2}{M^2} - \frac{8}{9} \frac{k_1 k_2}{M^2} \cos^2\theta \right],$$

где обозначения соответствуют работе [2].

4. Для процесса (1 в) когерентного рождения пары W-мезонов на ядре формфактор ядра обрезает интегрирование по t при $t = t_0^A \approx \approx 0,42/A^{2/3}(\Gamma_{98})^2$. Для достаточно тяжелых ядер $R_A = \sqrt{\frac{t_0^A}{M_A^2}} \approx 0,69A^{-4/3} \ll \ll 1$, поэтому основную роль играют переданные импульсы $t \ll M_A^2$, а следовательно, $\frac{\Delta^2}{s} \lesssim R_A \ll 1$ и формула (5) принимает вид

$$d\sigma = \frac{\alpha Z^2 F^2(t)}{\pi} \frac{dt}{t} \frac{d\Delta^2}{\Delta^2} \left(1 - \frac{M_A^2 \Delta^4}{t s^2} \right) \sigma_{\gamma} (\Delta^9), \qquad (15)$$

где F(t) — формфактор ядра. Анализ показывает, что в данном случае вид формфактора оказывается несущественным, поэтому с хорошей точностью можно пользоваться ступенчатым приближением (F(t)=1 при $t \leq t_0^A$ и F(t) = 0 при $t > t_0^A$). Интегрируя (15) по области изменения переменных, которая в этом случае принимает вид

$$\frac{M_A^2 \Delta^*}{s^2} \leqslant t \leqslant t_0^A, \quad 4 M^2 \leqslant \Delta^2 \leqslant s R_A, \tag{16}$$

получаем1

$$\sigma_{\tau A} = \frac{\alpha^3 Z^2 \, s R_A}{18 \, M^4} \, P(x). \tag{17}$$

5. Сечения процессов (2) могут быть получены аналогичным образом, если считать частицу *a* электроном, а частицу *b*—нуклоном (ядром). В этом случае интегрирование по переданному импульсу не обрезается и поэтому вклад в интеграл по *t* дает вся область. При x=0 сход с массовой поверхности фотона не приводит к появлению в сечении виртуального фоторождения членов типа $\frac{\Delta^2 t}{M^6}$, поэтому метод ВВ применим с логарифмической точностью и для получения результата можно воспользоваться (8), где под $z_{\gamma} (\Delta^2)$ надо понимать $\sigma_{\gamma p (n)}$ или $\sigma_{\gamma A}$, определяемые формулами (14) и (17). Применимость метода ВВ в этом случае обеспечивается ультрарелятивизмом электрона, испускающего γ -квант.

Интегрируя (8) по области изменения переменных (13), где $m_a = m_e$, при $s \gg M^3$ и x = 0 для процессов (2a) и (2a) соответственно получаем

$$\sigma_{ep}^{\circ} = \frac{5\alpha^4}{36\pi} \frac{s}{M^4} [0,44 + 0,022 \,\mu_p^2] \ln \frac{s}{m_e^2},$$

$$\sigma_{en}^{\circ} = \frac{5\alpha^4}{36\pi} \frac{s}{M^4} [0,022 \,\mu_n^2] \ln \frac{s}{m_e^2},$$
(18a)

¹ В работе [2] при вычислении сечения (1*в*) неверно использован метод ВВ. В наших, обозначениях это эквивалентно учету только первого члена в (15). Соответствующие результаты работы [4] также расходятся с нашими.

Н. Л. Тер-Исаакян, В. А. Хозе

$$\sigma_{eA}^* = \frac{5 \, a^4 \, Z^2}{27 \, \pi} \, \frac{s R_A}{M^4} \ln \frac{s}{m_e^2} \, .$$
 (19a)

При $\varkappa \neq 0$ сход с массовой поверхности фотона приводит к появлению дополнительных членов типа $\frac{t\Delta^3}{M^6}$ в сечении виртуального фоторождения, поэтому в такой форме методом ВВ пользоваться нельзя.

Вычисление асимптотических выражений для сечений процессов (2) при $x = \pm 1$ может быть также проведено с помощью метода BB, но уже по виртуальному фотону, испускаемому нуклоном (ядром). В этом случае сечения процессов (2) можно выразить через сечение фоторождения $\gamma + e \rightarrow e + W^+ + W^-$, полученное в [11]. Применимость метода BB здесь обеспечивается, аналогично разделу 2, обрезающей ролью формфакторов. Воспользовавшись формулой (5), в которой $\sigma_{\gamma} (\Delta^2)$ — сечение процесса $\gamma + e \rightarrow e + W^+ + W^-$ [11]

$$\sigma_{\gamma}(\Delta^2) = \frac{\alpha^3 \Delta^4}{32 \, M^6} \quad (\varkappa = -1),$$

$$\sigma_{\gamma}(\Delta^2) = \frac{\alpha^3 \Delta^3}{72 M^4} \ln \frac{\Delta^3}{m_e^2} \quad (\varkappa = +1),$$

для процесса (2a) при $s \gg M^2$ получим

$$\begin{aligned} \sigma_{ep}^{+1} &= \frac{\alpha^4 s}{72 \pi M^4} \left[0,44 + 0,022 \,\mu_p^2 \right] \ln \frac{s}{m_e^2} \\ \sigma_{en}^{+1} &= \frac{\alpha^4 s}{72 \pi M^4} \left[0,022 \,\mu_n^2 \right] \ln \frac{s}{m_e^2} \\ \sigma_{ep}^{-1} &= \frac{\alpha^4}{32 \pi} \, \frac{s^2}{M^6} \left[0,035 + 0,048 \,\mu_p^2 \right] \\ \sigma_{en}^{-1} &= \frac{\alpha^4}{32 \pi} \, \frac{s^2}{M^6} \left[0,048 \,\mu_n^2 \right] \end{aligned} \qquad (x = -1). \tag{18c}$$

Сечение процесса (2 в) получим аналогичным образом, воспользовавшись формулой (15)¹,

$$\sigma_{eA}^{+1} = \frac{a^4 Z^2}{54\pi} \frac{sR_A}{M^4} \ln \frac{s}{m_e^2} \quad (z = +1), \tag{198}$$

$$\sigma_{eA}^{-1} = \frac{\alpha^4 Z^2}{384 \pi} \frac{s^3 R_A^2}{M^6} \qquad (x = -1).$$
(19c)

¹ При получении (19с) мы воспользовались дипольной формулой для формфактора $F(t) = \left(1 + \frac{t}{t_0^A}\right)^{-2}$, $t_0^A = 0.42 \ A^{-2/3} \ (\Gamma s \theta)^2$. Пользоваться ступенчатым формфактором с параметром обрезания t_0^A в этом случае нельзя из-за квадратичного роста с Δ^2 сечения фоторождения при $z = -1 \left(\sigma_{\gamma} (\Delta^2) \sim \frac{\Delta^4}{M^6}\right)$.

Заметим, что формулы (18) и (19) описывают вклад в полное сечение диаграмм типа рис. 3. Диаграммы типа рис. 4, по-видимому, дают вклад в полное сечение порядка $\frac{1}{M^2}$ при x = 0 и порядка $\frac{s}{M^4}$ при $x \neq 0$. Поэтому при z = 0 и z = -1 вкладом этих диаграмм можно пренебречь. При x = +1 они могут дать вклад, сравнимый с (18) и (19). Вклад интерференции в полное сечение здесь также отсутствует в силу С-инвариантности.

Рис. 4.

Подчеркнем, что полученные формулы описывают поведение сечений в низшем порядке по электромагнитному взаимодействию. В силу неперенормируемости электродинамики W-мезонов область применимости формул теории возмущений ограничена энергиями So, выше которых они приходят в противоречие с основными принципами квантовой теории поля [16—18].

Согласно [2, 16] при x=0 $\frac{s_0}{M^2} \sim \frac{8}{a}$, а при x $\neq 0$ $\frac{s_0}{M^2} \sim \frac{1}{x} \sqrt{\frac{24}{a}}$. Для процессов на ядре эти условия несколько видоизменяются, так как ограничения, следующие из условия унитарности, должны быть наложены на величи ну Δ^2 , а не непосредственно на S, а в силу обрезания переданного импульса $t \lesssim t_0^A$ формфакторами ядра обрезаются также большие Δ^2 , $\Delta^2 \lesssim$ ≤ sR₁. Поэтому ограничения, следующие из условия унитарности для пооцессов на ядре, принимают вид

$$\frac{s}{M^2} \lesssim \frac{8}{\pi} \frac{1}{R_A} \quad (\pi = 0), \qquad (20a)$$

$$\frac{s}{M^2} \lesssim \frac{1}{\varkappa} \sqrt{\frac{24}{\alpha}} \frac{1}{R_A} \quad (\varkappa \neq 0). \tag{20b}$$

Приведем численные оценки. В таблице приведены результаты при E=10³ Гэв (Е-энергия налетающей частицы в лаб. системе), M=5 Гэв и х = 0. Для сравнения приведены также полные сечения процессов одиночного рождения Ш-мезона

$$e + N \to N + v + W^{-}, \qquad (21a)$$

 $e + A \rightarrow A + v + W^{-}$ (218)

$$\nu + N \to N + \mu^- + W^+, \qquad (22a)$$

$$\nu + A \to A + \mu^- + W^+, \qquad (22_{\beta})$$

взятые из работы [6].

Таблица

Полные сечения различных процессов рождения *W*-мезонов при лабораторной энергии налетающей частицы $E = 10^3 \ \Gamma sa$, $M = 5 \ \Gamma sa$ и z = 0. τ_{1p}^0 , τ_{7n}^0 — сечения, процессов (1*a*), σ_{ep}^0 , σ_{en}^0 — сечения процессов (2*a*), σ_{ep}^0 , σ_{en}^0 — сечения процессов (21*a*), σ_{grp}^0 , σ_{vn}^0 — сечения процессов (22*a*); σ_{1Fe}^0 , σ_{eFe}^0 , σ_{vFe}^0 — сечения процессов (1*a*), (2*a*), (21*b*) и (22*b*) на ядре железа

σ ⁰ γp	σ ⁰ ηη	σ ⁰ _{ep}	σ ⁰ en	σ ^{0'} <i>ep</i>	o ^{0'} en
5,25.10-35	7.10-36	1,85.10-36	2,47.10-37	7,78.10-38	1,13.10-38
σ ⁰ _{νp}	σ ⁰ _{νn}	σ ⁰ _{γFe} /26	σ ⁰ _{eFe} /26	$\sigma_{eFe}^{0'}/26$	$\sigma_{vFe}^0/26$
2,02·10 ⁻³⁶	1,27.10-37	5,4.10-34	2,23.10-35	1,4.10-37	1,31.10 ⁻³⁵

Как видно из таблицы, сечения парного электророждения *W*-мезонов на нуклоне (2a) оказываются на порядок больше соответствующих сечений одиночного рождения (21a) $\left(\frac{\sigma_{ep}^0}{\sigma_{ep}^0} \sim 25\right)$ и совпадают по порядку величины с сечениями нейтринорождения (22a) $\left(\frac{\sigma_{ep}^0}{\sigma_{vp}^0} \sim 0.92\right) \cdot \mathcal{A}_{\Lambda R}$ процессов на ядре железа сечения парного электророждения (2e) превышают на два порядка соответствующие сечения одиночного рождения (21e) $\left(\frac{\sigma_{eA}^0}{\sigma_{eA}^0} \sim 160\right)$ и совпадают по порядку величины с сечениями нейтрино-

рождения (22в) $\left(\frac{\sigma_{eA}^0}{\sigma_{vA}^0} \sim 1,7\right)$.

Имея в виду степенной рост с энергией сечений исследованных нами процессов (2a) и (2e), можно заключить, что при достаточно высоких энергиях и не слишком больших массах W-мезона эти процессы будут основным источником W-мезонов в eN(eA)-столкновениях. Мы не обсуждаем процессы одиночного рождения W-мезонов в реакциях

$$\gamma + N \rightarrow W +$$
адроны,
 $e + N \rightarrow W + e +$ адроны

обусловленные полуслабым и электромагнитным взаимодействиями. Сечения этих процессов сильно зависят от исходных гипотез и в зависимости от них изменяются в пределах 4—6 порядков [19—20].

Авторы благодарят И. Ф. Гинзбурга, Б. Л. Иоффе, С. Г. Матиняна. В. Г. Сербо и В. Н. Фоломешкина за полезные обсуждения.

Ереванский физический институт лияф АН СССР

Поступила 12.Х.1973

ЛИТЕРАТУРА

- 1. V. A. Khoze, N. L. Ter-Isaakian. Report at the XVI International Conference on High Energy Physics, Batavia, 1972.
- 2. S. A. Bludman, J. A. Young. Phys. Rev., 126, 303 (1962).
- 3. И. В. Лягин, И. С. Цукерман. ЖӘТФ, 42, 1619 (1962). 4. В. Г. Компаниец, В. Н. Фоломешкин. ЯФ, 8, 966 (1968).
- 5. В. Г. Компаниец. ЯФ, 12, 826 (1970).
- 6. R. Brown, J. Smith. Phys. Rev., D3, 207 (1971).
- 7. L. M. Lederman, B. G. Pope. Phys. Rev. Lett., 27, 765 (1971).
- 8. В. В. Соловьев, И. С. Цукерман. ЖЭТФ, 42, 125 (1962).
- 9. C. N. Llewellyn Smith. SLAC-PUB-958, Chapter 3, 135 (1971).
- 10. А. М. Алтухов, И. Б. Хриплович. ЯФ, 13, 633 (1971).
- 11. Н. Л. Тер-Исаакян, В. А. Хозе. ЯФ, 15, 87 (1972); ЖЭТФ, 62, 42 (1972).
- 12. В. Н. Грибов, В. А. Колкунов, Л. Б. Окунь, В. М. Шехтер. ЖЭТФ, 41, 1839 (1961).
- 13. M. Gourdin. Nucl. Phys., B32, 415 (1971).
- 14. С. 1. Матинян, Н. Л. Тер-Исаакян, В. А. Хозе, Ю. Г. Шахназарян. ЯФ, 16, 793 (1972).
- 15. J. Oppenheimer. Phys. Rev., 59, 462 (1941).
- 16. Л. Д. Ландау. ЖЭТФ, 10, 718 (1940).
- 17. Б. Л. Исффе, М. В. Терентьев. ЖЭТФ, 47, 744 (1964).
- 18. Б. Л. Иоффе. ЖЭТФ, 47, 975 (1964).
- 19. H. W. Hearing, M. Pratap, J. Smith. Phys. Rev., D5, 177 (1972).
- 20. K. O. Mikaelian. Phys. Rev., D5, 70 (1972).

ԲԱՐՁՐ ԷՆԵՐԳԻԱՆԵՐԻ ՄԱՍՆԻԿՆԵՐԻ ԿՈՂՄԻՑ W-ՄԵԶՈՆՆԵՐԻ ՉՈՒՑԳԵՐԻ ԱՌԱՋԱՑՄԱՆ ԷԼԵԿՏՐԱՄԱԳՆԻՍԱԿԱՆ ՄԵԽԱՆԻԶՄԻ ՎԵՐԱԲԵՐՑԱԼ

1. L. SDP-FUULUABUL, 4. U. MARD

Ստացված են արտահայտություններ նուկլոնի և միջուկի վրա W -մկզոնների ֆոտո- և էլեկարոառաջացման լրիվ կարվածքների համար։

Հաշիվները կատարված են կովարիանտ տեսքի Վեյցզեկեր-Վիլլամսի մեթեոդի օգնությամբ։

ON THE ELECTROMAGNETIC MECHANISM OF W-BOSON PAIR PRODUCTION BY HIGH ENERGY PARTICLES

N. L. TER-ISAAKIAN, V. A. KHOZE

The theoretical total cross-sections for W-boson pair photo- and electroproduction processes on nucleon and nucleus are obtained in the asymptotic energy region. The calculations are carried out by means of the covariant formulation of the Weizsäcker-Williams method. The features of the application of this method to the W-boson production processes are discussed.