КРАТКИЕ СООБЩЕНИЯ

ПОЛЕ ИЗЛУЧЕНИЯ СФЕРИЧЕСКОГО РЕФЛЕКТОРА В ПРИБЛИЖЕНИИ КИРХГОФА

П. М. ГЕРУНИ, Э. Д. ГАЗАЗЯН, Р. В. ТЕР-АНТОНЯН

Общие закономерности, которым подчиняется поле излучения осесимметричных зеркальных антенн, исследованы достаточно подробно [1, 2]. Целью настоящего сообщения является выяснение уровня кроссполяризационной компоненты поля излучения зеркального сферического рефлектора в приближении Кирхгофа.

Пусть вогнутая идеально проводящая сторона сферического зеркала освещается электрическим диполем, помещенным в параксиаль-

Рис. 1. Для простоты показано мериднанальное сеченке зеркала. О — центр сферической поверхности с раднусом *г*. Облучатель с дипольным моментом *p* расположен в парахсналь том фокусе $F\left(OF = \frac{r}{2}\right)$. Луч *FSP* лежит в мериднанальной плоскости $\varphi = \text{const.}$

ном фокусе зеркала (рис. 1). Для рассеянного поля в зоне Фраунгофера в декартовой системе координат имеем выражение

$$\vec{E}(\vec{R}) = k^2 |\vec{p}| \frac{e^{ikR}}{R} \{ \hat{x} [A(\theta) + B(\theta)\cos 2\varphi] + \hat{y} [B(\theta)\sin 2\varphi] + \hat{z} [C(\theta)\cos\varphi] \}.$$
(1)

Здесь $\vec{R}[R, \theta, \varphi)$ — радиус-вектор точки наблюдения, k — волновое число и для упрощения записи введены обозначения

$$A(\theta) = \frac{1}{2} B_2(\theta) \sin^2 \theta + A_2(\theta) \left(1 - \frac{1}{2} \sin^2 \theta\right) + \frac{1}{2} C_2(\theta) \sin \theta \cos \theta, \quad (2)$$

$$\begin{split} B(\theta) &= \frac{1}{2} \ C_2(\theta) \sin \theta \cos \theta - \frac{1}{2} \ A_2(\theta) \sin^2(\theta) - \frac{1}{2} \ B_2(\theta) \ (1 + \cos^2 \theta), \\ C(\theta) &= B_2(\theta) \sin \theta \cos \theta - C_2(\theta) \sin^2 \theta - A_2(\theta) \sin \theta \cos \theta, \end{split}$$

где

$$iA_{2}(\theta) = \int A_{1}(\psi) L(\psi) \exp\{ik\alpha\} J_{0}(k\beta) d\psi,$$

$$B_{2}(\theta) = i \int B_{1}(\psi) L(\psi) \exp\{ik\alpha\} J_{2}(k\beta) d\psi,$$

$$C_{2}(\theta) = \int C_{1}(\psi) L(\psi) \exp\{ik\alpha\} J_{1}(k\beta) d\psi.$$
(3)

В формулах (3) интегрирование проводится по сегменту [0, утах], $J_n(k\beta) - функции Бесселя,$

$$\begin{split} A_1(\psi) &= \cos\frac{\psi+\omega}{2}\cos\psi + \frac{1}{2}\,\sin\frac{\psi+\omega}{2}\sin\psi, \quad B_1(\psi) = \frac{1}{2}\,\sin\frac{\psi+\omega}{2}\,\sin\psi, \\ C_1(\psi) &= \sin\frac{\psi+\omega}{2}\,\cos\psi, \ L(\psi) = \rho(\psi)\,\sin\psi\cos^{-1}\frac{\psi-\omega}{2}, \\ \alpha(\theta, \psi) &= \rho(\psi)[1+\cos\theta\cos\psi], \ \beta(\theta, \psi) = \rho(\psi)\sin\psi\sin\theta, \\ \omega(\psi) &= \psi - 2\arccos\left(\frac{1}{2}\sin\psi\right), \ \rho(\psi) = \frac{r}{2}\,(\sqrt{3+\cos^2\psi} - \cos\psi). \end{split}$$

Отметим, что формулы (1-3) будут описывать поле излучения параболонда с фокальным параметром, равным г. если сделать подстановку $\omega(\psi) = 0$ и $\rho(\psi) = r (1 + \cos \psi)^{-1}$.

2

Вблизи оси зеркала (0 «1) основная и кросс-поляризационная компоненты поля с достаточной точностью совпадают соответственно с x- и y-компонентами поля [1]. Поэтому диаграммы мы будем строить для декартовых (х и у) компонент поля. Конкретный расчет выполнен для большого зеркала пятиметровой сферической антенны ДАС-5, описанной в работе [3]. В меридианальной плоскости $\varphi = \frac{\pi}{4}$ (плоскость максимума кросс-поляризационной компоненты поля вблизи

Отметим, что подынтегральные выражения в (3) представляют собой осциллирующие функции и поэтому существенное значение имеет эффективное использование времени работы ЭВМ. С этой целью при программировании в подынтегральных выражениях были выделены части, не зависящие от параметра в. Их значения в точках разбиения интервала интегрирования вычислялись всего один раз при $\theta = 0$. Для всех последующих θ эти значения (при интегрировании методом трапеций) просто считывались из соответствующих блоков.

оси зеркала) расчет сводится к определению функций $|A(\theta)|$ и $|B(\theta)|$.

Диаграммы рассчитывались для нескольких значений ψ_{\max} при kr = 2512, с шагом $\Delta \theta = 1'$. ЭВМ "Раздан-З" выдавала одновременно нормированные величины $F_1(\theta) = \frac{|A(\theta)|}{|A(0)|}$ и $F_2(\theta) = \frac{|B(\theta)|}{|A(0)|}$ на каждое значение θ в среднем через минуту, при разбиении интервала интерирования на 2500 частей. Полученные результаты представлены на рис. 2—5. Они дают возможность исследовать вопросы изменения диаграмм в зависимости от используемого раскрыва.

Центральная область сферического зеркала примерно до угла $\psi_{max} = 0,37$ рассеивает как параболоид. По мере увеличения угла ψ возрастает доля излучения, расходящегося от оси зеркала. В сочетании с уменьшением \hat{x} -компоненты токов к периферии это приводит к сглаживанию интерференционной картины в диаграмме по основной (x) компоненте поля. Наиболее естественное объяснение картины для кросс-компоненты большого зеркала ($\psi_{max} = 1,14$) заключается в том, что по мере увеличения угла ω увеличивается к периферии относительная величина y-компоненты токов.

Как видно из рис. З и 4, для центральной области большого сферического рефлектора максимум диаграммы для кросс-поляризации примерно равен 0,01 от максимума диаграммы по основной поляризации. Для зеркала с $\psi_{max} = 1,14$ (рис. 5) соответствующий уровень повышается незначительно (до 0,017).

Поступила 28.ХІІ.1972

ЛИТЕРАТУРА

Б. Е. Кинбер. Раднотехника и электроника, 5, 720 (1960).
 В. П. Нарбут, Н. С. Хмельницкая. Сб. Антенны, вып. 3, 1968.
 П. М. Геруни. Сб. Антенны, вып. 4, 1968.

ՍՖԵՐԻԿ ՀԱՑԵԼՈՒ ՃԱՌԱԳԱՅԹՄԱՆ ԴԱՇՏԸ ԿԻՐԽՀՈՖԻ ՄՈՏԱՎՈՐՈՒԹՅԱՄԲ

۹. Մ. ՀԵՐՈՒՆԻ, Է. Դ. ԳԱԶԱԶՑԱՆ, Ռ. Վ. ՏԵՐ-ԱՆՏՈՆՑԱՆ

Աշխատանջում Կիրխմոֆի մոտավորությամբ ուսումնասիրված է սֆերիկ Հայելային ռեֆլեկտորի ճառագայթման դաշտը։ Որպես ճառագայթիչ ընտրված է էլեկտրական դիպոլը, որը տեղավորված է Հայելու պարակսիալ ֆոկուսում։ Բերված են ուղղորդվածության գիագրամի կոնկրետ Հաշվարկների արդյունքները դաշտի հիմնական և կրոս-րևեռվածության բաղադրիչների համար, Հայելու տարբեր բացվածքների դեպքում։

THE RADIATION FIELD OF SPHERICAL REFLECTOR IN KIRCHHOFF APPROXIMATION

P. M. HERUNI, E. D. GAZAZIAN, R. V. TEP-ANTONIAN

The radiation field of spherical reflector with the Hertz electrical dipole in the paraxial focus is considered. The patterns of the fundamental and cross-polarization components for different sizes of the reflector are obtained.