ВЛИЯНИЕ ЗАПОЛНЕНИЯ УРОВНЕЙ ПРИЛИПАНИЯ С РОСТОМ ТОКА НА ФОРМИРОВАНИЕ ОТРИЦАТЕЛЬНОГО СОПРОТИВЛЕНИЯ В УСЛОВИЯХ ДВОЙНОЙ ИНЖЕКЦИИ

г. м. авакьянц, в. м. арутюнян, р. с. барсегян

Проанализирована возможность возникновения участка отрицательного сопротивления S-типа на прямой ветви вольт-амперной харакристики p^+nn^+ -структуры, в базе которой имеются уровни прилипания для дырок.

Введение. Постановка задачи

Наличие в полупроводниках и диэлектриках различного рода ловушек для электронов и дырок необходимо учитывать при изучении процессов прохождения тока в приборах, изготовленных на основе этих материалов. Рассмотрим ниже влияние уровней прилипания (УП) для дырок на вольт-амперную характеристику (ВАХ).

Роль заполнения ловушек с ростом тока в условиях монополярной инжекции при пренебрежении диффузионной составляющей тока изучалась в [1] для УП для электронов, в [2, 3] — для системы из двух УП для электронов, в [4] — для экспоненциального распределения ловушек. По этим вопросам имеется общирная библиография (см., напр., обзоры [5]).

Влияние дырочных УП на ВАХ рлп+-структуры (в режиме двойной инжекции) рассматривалось в диффузионном приближении в [6, 7]; в дрейфовом — задача решалась в [8]. Однако к настоящему времени нет единого мнения относительно вида ВАХ при токах, соответствующих непосредственно заполнению УП (в так называемой "переходной" области). В настоящей работе обсуждаются условия, необходимые для формирования участка отрицательного сопротивления в процессе заполнения УП и дан расчет прямой ветви ВАХ рпл+-структуры, в базе которой имеются дырочные УП донорного типа, энергетически недалеко расположенные от потолка валентной зоны. Длина п-базы структуры заметно превышает по величине диффузионную длину дырок, рассмотрение проведено в дрейфовом приближении. Предполагается также, что рекомбинация осуществляется через глубокие центры, характеризующиеся не сильно отличающимися друг от друга сечениями захвата для электронов и дырок (что исключает эффект увеличения времени жизни дырок то с ростом тока). Концентрация рекомбинационных центров мала и их зарядом ниже пренебрегается. Хотя наличие УП может повлиять на величину времени жизни дырок, тем не менее тр не меняется с ростом тока. Кроме того, предполагается наличие вблизи дна зоны проводимости мелких ионизованных доноров, определяющих тип проводимости материала.

Крайние p- и n^+ — слои структуры считаются высоколегированными и короткими, падением напряжения на них пренебрегается. ВАХ структуры при этих условиях будет целиком определяться процессами, имеющими место в *n*-базе. Коэффициенты инжекции переходов равны единице.

Расчет переходной характеристики

Концентрация уровней прилипания P_+ , захвативших дырки, определяется из кинетики выражением

$$P_{+} = \frac{p}{p+p_{1}} P. \tag{1}$$

Здесь *Р* — полная концентрация УП, *p*₁ — приведенная концентрация согласно статистике Шокли—Рида—Холла.

Из условия квазинейтральности

$$n = p + N_g + \frac{p}{p+p_1}P,$$
(2)

оставляя дрейфовые члены в выражениях для электронной и дырочной составляющих тока, имеем следующее квадратное уравнение для концентрации дырок d:

$$p^{2} + k(M - n_{0})p + kp_{1}(N_{g} - n_{0}) = 0.$$
(3)

Здесь

$$n_0 \equiv \frac{j}{eu_n E}, \quad k \equiv \frac{b}{b+1}, \quad M \equiv P + N_g + \frac{p_1}{k}. \tag{4}$$

Остальные обозначения обычные.

Тогда из (3)

$$p = -\frac{k}{2}(M - n_0) \pm \sqrt{\frac{k^2}{4}(M - n_0)^2 + kp_1(n_0 - N_g)}.$$
 (5)

Заметим, что с ростом тока $(M - n_0)$ вначале уменьшается, проходит через нуль и затем увеличивается по абсолютной величине, в то же время $p_1 \cdot (n_0 - N_g)$ остается положительным. Здесь плюс с ростом тока сменяется на минус. Следует отметить, что подстановка выражения(5) в уравнение непрерывности

$$\frac{d(pE)}{p} = -\frac{dx}{u_p \tau_p} \tag{6}$$

позволяет провести интегрирование и получить два уравнения для связи напряженности электрического поля E с координатой x и плотностью тока j. Однако эти выражения сложные и существенно трансцендентные, поэтому для получения пригодных для дальнейшего анализа выражения E = f(x, j) нужно сделать несколько допущений. Здесь эти уравнения не приводятся, так как было замечено, что гораздо удобнее и проще проводить анализ без заметной ошибки с приближенными выражениями для р. Оказалось, что (5) в диапазоне

$$N_{g} < n_{0} < M_{S} \tag{7}$$

можно представить в виде

$$p = \frac{p_1(n_0 - N_g)}{M - n_0} \,. \tag{8}$$

B (7)

$$s = 1 - \frac{2p_1}{kM} \left(\sqrt{2 + \frac{Pk}{p_1}} - 1 \right).$$
 (9)

В диапазоне

$$Ms < n_0 < Mm \tag{10}$$

$$p \simeq -\frac{k}{2}(M-n_0) + \sqrt{kp_1n_0}$$
 (11)

Наконец, при

$$n_0 > Mm$$
 (12)

$$=k(n_0-M).$$
 (13)

В (10) и (12)

$$m \equiv 1 + \frac{2p_1}{kM} \left(1 + \sqrt{2 + \frac{Pk}{p_1}} \right).$$
 (14)

Подстановка (8) в (6) дает

$$\frac{MN_g - 2n_0N_g + n_0^2}{(n_0 - N_g)(M - n_0)} dE = \frac{dx}{u_p \tau_p}$$
(15)

С учетом (7) в знаменателе (15) можно оставить лишь член Mn₀. Тогда из (15) имеем

$$\frac{MN_g + n_0^2}{Mn_0} dE = \frac{dx}{u_p \tau_p}.$$
 (16)

В предположении

$$N_g < n_0 < \sqrt{MN_g} \tag{17}$$

нз (16) легко получить

$$E_{\rm IV} = \sqrt{\frac{2jx}{en_n u_p \tau_p N_g}} \tag{18}$$

и квадратичную зависимость тока от напряжения

p

$$j = \frac{9}{8} \cdot \frac{e u_n u_p \tau_p N_g}{d^3} V^2, \qquad (19)$$

описывающую ВАХ структуры, когда УП еще не заполнены [8].

В диапазоне

$$\sqrt{N_g M} < n_0 < Ms \tag{20}$$

(16) можно привести к виду

$$\frac{dE}{E} = \frac{eu_n M dx}{u_p \tau_p j}; \tag{21}$$

решение (21) с граничным условием

$$E = E'_1, \ x = x'_1$$
 (22)

дается в виде

$$E_{\rm III} = E'_1 \exp\left[\frac{ebM(x-x'_1)}{j^{\tau_p}}\right]$$
 (23)

Легко убедиться, что (23) описывает участок локального отрицательного сопротивления.

Значения для n₀, равные Ms и Mm (которые легко получить, сравнивая члены в подкоренном выражении в (5)) являются границами, где применимо выражение (11). Имеем

$$E_{11}(x_1) = E_1 = \frac{j}{eu_n Mm}, \quad x = x_1$$
 (24)

И

$$E_{11}(x_1) = E_1^* = \frac{j}{eu_n Ms}, \quad x = x_1^*.$$
 (25)

Подставляя (11) в (6), имеем при условии (25)

$$E_{\rm II} = \sqrt{\left[(E_1')^{\frac{3}{2}} - \frac{3}{kMu_p\tau_p} \sqrt{\frac{kp_1j}{eu_n}(x_1' - x)} \right]^2}.$$
 (26)

При использовании (13) получаем

$$E_{\rm I} = \sqrt{\frac{2jx}{eu_n u_p \tau_p M}} \tag{27}$$

и квадратичную зависимость

$$j = \frac{9}{8} e u_n u_p \tau_p M \frac{V^2}{d^3},$$
 (28)

когда УП уже заполнены [8]. Таким образом, база может быть разделена на 4 области (см. рис. 1). "Переходную" характеристику

Рис. 1. Схема разделения базы на области и схематическая картина распределения напряженности электрического поля по базе.

58

структуры можно описать, воспользовавшись выражениями (28), (26), (23) и (18) следующим образом:

$$V = \frac{2}{3} \sqrt{\frac{2jx_1^3}{eu_n u_n \tau_p M}} + \frac{u_p \tau_p k M}{5} \left(\frac{eu_n}{k p_1 j}\right)^{\frac{1}{2}} \cdot \left\{ (E_1')^{\frac{5}{2}} - \frac{1}{k M u_p \tau_p} \sqrt{\frac{k p_1 j}{eu_n}} (x_1' - x_1) \right\}^{\frac{5}{3}} + \frac{j^2 u_p \tau_p}{e^2 u_n^2 M^2 s} \left\{ \exp\left[\frac{e b M (x_2 - x_1')}{j \tau_p}\right] - 1 \right\} + \frac{2}{3} \sqrt{\frac{2j(d - x_2)^3}{eu_n u_p \tau_p N_g}} \right\}$$

Сшивая решения в областях между собой при условии непрерывности напряженности электрического поля на границах областей, (29) можно представить в виде

$$\frac{u_p\tau_p}{4d^2} V = B^2 K + \sqrt{\frac{MB}{N_g}} \left[B \sqrt{\frac{x_2}{d}} + \frac{1}{3} \sqrt{\left(1 - \frac{x^2}{d}\right)^3} \right]^2, \quad (30)$$

где

$$K \equiv \frac{1}{3m^2} + \frac{1}{5} \sqrt{\frac{kM}{p_1}} \left[\left(s \right)^{-\frac{5}{2}} - \left(m \right)^{-\frac{5}{2}} \right] - \frac{1}{s}, \qquad (31)$$

$$B \equiv \frac{j\tau_p}{2ebMd} \,. \tag{32}$$

Для х можно получить выражение

$$\frac{x_2}{d} = \frac{B}{1-B} [A - \ln B].$$
(33)

Здесь

$$A = \frac{1}{m!} + \frac{2}{3} \sqrt{\frac{kM}{p_1}} \left[\left(s \right)^{-\frac{3}{2}} - \left(m \right)^{-\frac{3}{2}} \right] + \ln \left(\frac{Ms^2}{N_g} \right) - 1.$$
(34)

Дифференцируя (30) по *j* и приравнивая его нулю, убеждаемся, что на ВАХ имеется участок отрицательного сопротивления S-типа. Срыв имеет место при достижении

$$\frac{x_2}{d} = \frac{1 - 4B}{4 - B};$$
(35)

отсюда можно получить соответствующее моменту срыва выражение

$$B = \frac{3 + A - \ln B}{(4 + A - \ln B) [3 + 4(A - \ln B)]}.$$
 (36)

Численные расчеты свидетельствуют о том, что B < 1. Тогда можно получить из (33) и (35) более простое (отличающееся от (36) не более чем на $10^{0}/_{0}$ при разумных значениях A) выражение для тока срыва

$$j_{\rm cp} = \frac{1}{2\left(A+1-\ln B\right)} \cdot \frac{ebMd}{\tau_p} \cdot \tag{37}$$

Представим (37) в виде

Г. М. Авакьянц и др.

$$j_{\rm cp} = n \cdot \frac{ebN_d}{\tau_n} \cdot \tag{38}$$

Наибольшим членом в (30) в точке срыва является последний член, а срыв (согласно (35)) наступает при вытеснении IV области на четверть длины базы. Для напряжения срыва имеем

$$V_{\rm cp} = \sqrt{\frac{3MB}{N_g}} \cdot \frac{d^2}{2u_p\tau_p} = r \frac{d^2}{2u_p\tau_p} \cdot$$
(39)

Полученные в результате численных расчетов некоторые значения В, п и г приведены в таблице.

	$P=10N_g$	$P=50N_g$
$\frac{p_1}{k} = N_g$	B=0,027 n=0,648 r=0,569	B=0,021 n=2,184 r=1,045
$\frac{p_1}{k} = 5Ng$	0,02 0,64 0 ,566	0,023 2,576 1,135
$\frac{p_1}{k} = \frac{N_g}{5}$	0,027 0,605 0,550	0,022 2,253 1,071

Обсуждение результатов

Одним из самых эффективных методов получения электронно-дырочной плазмы в твердом теле является двойная инжекция носителей из обоих прямосмещенных переходов p^+nn^+ -структуры [9]. Сформированная у электродов плазма заполняет базу так, как это диктуется условием нейтральности и приложенным к структуре напряжением. Перенос в глубь базы плазмы (облака из свободных электронов и дырок, нейтрализующих связанный на неподвижных центрах заряд) спределяется не только амбиполярной диффузией. Скорость переноса сильно зависит от величины напряженности электрического поля в базе.

В [10] было введено понятие об изменении результирующей силы, действующей на электронно-дырочную плазму со стороны дрейфовой составляющей электрического поля, приходящемся на одну инжектированную дырку $\frac{d}{dp}[e(n-p)E_{\tau}]$. Отмечено, что если это изменение результирующей силы растет с током, то плазма входит глубже в базу, распределение носителей становится более плоским.

Причиной роста $\frac{d}{dp} [e(n-p)E_{\tau}]$ являются микропроцессы, свя-

занные, в частности, с присутствием в полупроводнике различного рода центров. В рассматриваемой выше модели таковыми центрами

60

являются уровни прилипания для дырок. Анализ в [10] показал, что в "коротких" структурах, для описания токопрохождения в которых диффузионное приближение, роста результирующей применяется силы с током нет. Присутствие же незаполненных до инжекции ловушек в p+nn+-структуре, длина базы которой значительно превосходит диффузионную длину дырок, способствует накоплению напряжения на базе, которое начинает резко уменьшаться в процессе заполнения УП дырками. Тогда и растет с током указанное выше изменение результирующей силы, способствующее протаскиванию носителей через полупроводник. Эффект модуляции базы УП в процессе заполнения их дырками приводит к участку отрицательного сопротивления S-типа на прямой ветви ВАХ длинных p+nn+-структур. S-образность возникает при переходе от квадратичной зависимости (19) к квадратичной зависимости (28). Исключаем из рассмотрения вероятность пинч-эффекта, так как не достигается состояние вырожденной электроннодырочной плазмы. Предполагается также наличие в базе условий, исключающих существенный разогрев плазмы по сравнению с температурой решетки.

Проиллюстрируем сказанное выше расчетом изменения результирующей силы. Нетрудно убедиться, что

$$\frac{1}{k_1 T (b+1)} \cdot \frac{d}{dp} [e (n-p) E_{\tau}] = \frac{j}{e D_p b^2 n_0^2} \left[p \frac{dn}{dp} - n \right], \tag{40}$$

где D_p — коэффициент диффузии для дырок, k_1 — постоянная Больцмана.

Используя (2), имеем для рассматриваемой здесь модели

$$p\frac{dn}{dp} - n = -N_g - \left(\frac{p}{p+p_1}\right)^2 P.$$
(41)

Если теперь воспользуемся выражением (8) для концентрации дырок (в предположении $n_0 \gg N_g$), то

$$\frac{p}{p+p_1} \simeq \frac{n_0}{M},\tag{42}$$

и нетрудно убедиться, что существует область токов (7), где изменение результирующей силы растет прямо пропорционально плотности тока. В этой области токов имеет место участок локального отрицательного сопротивления, вхождение которого в глубь базы приблизительно на четверть последней приводит к срыву на ВАХ всей структуры. Привлечение выражений (11) и (13) для анализа изменения результирующей силы, как и ожидалось, не дает роста последней с током.

Заметим, что срыв, согласно (38) и (39), характеризуется сравнительно малыми величинами *j*_{ср} и *V*_{ср}. Напомним, что величина тока, равная <u>ebNgd</u>, характеризует в обычной теории двойной инжекции

τ

[11] (при отсутствии УП) лишь начало высокого уровня инжекции, переход от закона Ома к квадратичной закономерности (19). Характерна слабая температурная зависимость параметров срыва. Последние уменьшаются с охлаждением и увеличиваются с нагревом, что связано с температурной зависимостью p_1 , характеризующей данный УП.

Следует отметить, что учет УП существенен не только в материалах типа $A_{11}B_{VI}$, SiC и др. Путем облучения таких полупроводников как Si и Ge, в них может быть создано заметное количество радиационных дефектов, являющихся УП для дырок. УП могут быть созданы в этих материалах и в процессе термообработки и изготовления p^+nn^+ -структур.

Из-за сравнительно малых величин тока и напряжений срыва, а, следовательно, малых потребляемых мощностей, рассмотренные выше приборы могут найти применение в качестве различных функциональных устройств в микроэлектронике и полупроводниковой технике.

Настоящая работа была доложена на І Всесоюзном совещании молодых ученых по физике полупродниковых приборов и микроэлектронике [12].

Институт раднофизики и электроники АН АрмССР

Поступила 10. VIII. 1971

ЛИТЕРАТУРА

- 1. M. A. Lampert, Phys. Rev. 103, 1648 (1956).
- 2. A. C. English, R. E. Drews, Sci. Electr., 9, 1 (1963).
- 3. А. И. Розекталь, Л. Г. Парицкий, ФТП, 4, 392 (1970).
- 4. А. Роуз, Основы теории фотопроводимости. Изд. Мир, М., 1966.
- М. А. Lampert, Repts. Progr. Phys., 27, 329 (1964). М. И. Елинсон, В. Б. Сандомирский, З. Аббясов, В сб. Вопросы пленочной влектроники. Изд. Сов. радио. М., 1966.
- 6. Г. М. Авакьянц, А. У. Рахимов, Изв. АН АрмССР, Физика, 1, 164 (1966); 2, 105 (1967).
- 7. А. Ю. Лейдерман, ФТП 3, 1492 (1969).
- Г. М. Авакьянц, В. М. Арутюнян, Изв. АН АрмССР, Физика, 3, 200 (1968); ФПП, 3, 964 (1969).
- 9. Б. Анкер-Джонсон, Труды IX Мождународной конференции по физике полупроводников, Изд. Наука. М., 1970, стр. 859.
- 10. Г. М. Авакьяну, В. М. Арутюнян, Р. С. Барселян, ДАН АрмССР, 53, 218 (1971).
- 11. M. A. Lampert, A. Rose, Phys. Rev., 121, 26 (1961).
- В. М. Арупионян, Р. С. Барселян, В сб. Вопросы микроэлектроники и физики полупроводниковых приборов. Изд. Мецинереба, 1971, г. Тбилиси, стр. 50-51.

ՀՈՍԱՆՔԻ ԱՃԻՆ ԶՈԻԳԸՆԹԱՑ ԿՊՉՈՒՆՈՒԹՅԱՆ ՄԱԿԱՐԴԱԿՆԵՐԻ ԼՑՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԲԱՑԱՍԱԿԱՆ ԴԻՄԱԴՐՈՒԹՅԱՆ ՎՐԱ ԿՐԿՆԱԿԻ ՆԵՐՀՈՍՔԻ ՊԱՅՄԱՆՆԵՐՈՒՄ

Գ. Մ. ԱՎԱԳՅԱՆՑ, Վ. Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ռ. Ս. ԲԱՐՍԵՂՑԱՆ

Վերլուծված է S-տիպի բացասական դիմադրության առաջացման հնարավորությունը իր

62

հիմքում խոռոչների համար կպչունության մակարդակներ ունեցող p+nn+-ստրոշկտուրայի վոլտ-ամպերային բնութագրի ուղիղ ճյուղում։

AN INFLUENCE OF TRAP OCCUPANCE WITN THE INCREASE OF CURRENT ON THE FORMATION OF NEGATIVE RESISTANCE IN THE CASE OF DOUBLE INJECTION

G. M. AVAKIANTS, V. M. HARUTUNIAN, R. S. BARSEGIAN

A possibility of the rise of S-type negative resistance region on the straight branch of current-voltage characteristic of p^+nn^+ -structures in the base of which hole traps are available has been analysed.