# ШИРИНА РАДИАЛЬНОГО РАСПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ПЕРЕДАЧИ ЭНЕРГИИ В ТРЕКАХ АЛЬФА-ЧАСТИЦ С ЭНЕРГИЕЙ (4-25) *МЭВ* В МОНОКРИСТАЛЛАХ NaCl

### Д. И. ВАЙСБУРД, А. А. ВОРОБЬЕВ, А. И. КОМОВ, Л. А. МЕЛИКЯН

Найдены условия, при которых превращение радиационных дефектов при облучении можно использовать для определения эффективных поперечных размеров треков частиц в твердых телах. Подходящей оказалась обнаружениая авторами реакция восстановления  $F_2$ -центров при повторных облучениях кристаллов NaCl альфа-частицами. В экспериментах на циклотроне Томского политехнического института определены эффективные радиусы треков альфа-частиц с энергиями (4÷25) Мэв. Получено (155±15) Å. Показано, что найденный таким способом радиус трека есть ширина радиального распределения объемной передачи энергии альфа-частицы в NaCl на уровне 6.10<sup>19</sup>  $gs/cm^3$ .

Изучение процессов в треках частиц в твердых телах имеет Фундаментальное значение для создания твердотельных трековых камер и детекторов частиц высоких энергий, для установления механизмов изменения макросвойств твердых тел при облучении. Впервые треки ядерных частиц в твердых телах описаны в 1959 году [1, 2, 3]. Это были следы осколков деления тяжелых ядер. В треках осколков происходит столь сильное локальное изменение структуры вещества (фазовые переходы и т. п.), что они доступны прямому наблюдению методами оптической и электронной микроскопии в соединении с химическим избирательным травлением. Им посвящено около сотни Работ (напр. [1÷7]). В треках подавляющего большинства остальных частиц: электронов, протонов, альфа и т. д.—образуются, в основном, точечные дефекты атомных размеров, которые практически не доступны прямым методам наблюдения. Изучению их косвенными методами посвящено не более десяти работ [8, 9].

Физико-химические процессы в треках заряженных частиц опре-Аеляются локальной объемной плотностью возбуждений. Последнюю обычно характеризуют косвенно линейной передачей энергии (ЛПЭ), равной потерям энергии частицы на единицу траекторного пробега (dE/dR), так как имеются надежные методы измерения и расчета этой величины [10, 11, 12]. Однако прямой характеристикой объемной плотности возбуждений в треках является введеная в [13] объемная передача энергии (ОПЭ =  $dE/d\Omega$ ), где (dE) — энергия, потерянная частицей и передаиная элементу объема ее трека ( $d\Omega$ ). ОПЭ и ЛПЭ связаны соотношением

$$dE/d\Omega = (1/\circ)(dE/dR), \tag{1}$$

<sup>г</sup> де z — эффективное поперечное сечение трека альфа-частицы при <sup>Эн</sup>ергии от E до E + dE. Данные по ОПЭ для большинства частиц <sup>От</sup>сутствуют, так как не известны поперечные размеры их треков.

В настоящей работе для определения эффективных поперечных размеров треков альфа-частиц используется кинетика превращения радиационных дефектов. Идея метода в следующем. Пусть в начальном состоянии кристалл содержит концентрацию N некоторых дефектов, способных при облучении превращаться в другие. Текущую концентрацию вторых обозначим n. Пусть на превращение одного дефекта первого вида необходимо затратить энергию  $\varepsilon_0$ . Если ОПЭ  $\gg N\varepsilon_0$ , то каждая частица в эффективном объеме ее трека  $\Omega$  превратит все первые дефекты во вторые до предельной концентрации N. Тогда при последующих перекрытиях треков в этом месте кристалла локальная концентрация вторых дефектов изменяться не будет. Распределение треков [8, 9, 14] является пуассоновским, т. е. объем k-кратного перекрывания треков составляет [ $(\Omega_V)^k |k!$ ] ехр (—  $\Omega_V$ ) часть единицы объема, где v-концентрация треков. Тогда

$$n = \sum_{k=1}^{n} [N(\Omega \nu)^{k} | k!] \exp(-\Omega \nu) = N [1 - \exp(-\Omega \nu)].$$
<sup>(2)</sup>

Таким образом, если N достаточно мало, то макрокинетика накопления относительной концентрации радиационных дефектов (n|N) определяется только объемом трека  $\Omega$ . Процесс превращения дефектов заканчивается, когда весь объем кристалла, не менее чем однократно, перекрыт треками. С другой стороны, наиболее точные измерения концентрации дефектов абсорбционным методом могут быть выполнены, если  $N = (10^{16} \div 10^{18}) \ cm^{-3}$ . Чтобы для точно измеримых концентраций дефектов выполнялось необходимое условие ОПЭ $\gg$ N $\varepsilon_0$ ,  $\varepsilon_0$  должно быть малым, т. е. реакция превращения дефектов должна обладать большим выходом. Подходящим оказался обнаруженный нами процесс восстановления  $F_2$ -центров в треках альфа-частиц при повторных облучениях кристаллов, который проявляется в следующем эксперименте.

1) Пластинки монокристаллов NaCl, выращенных из расплава соли марки О.С.Ч., облучаются альфа-частицами при комнатной температуре (Ткомн.). В кристалле образуются различные электронные и Наиболее интенсивно центры окраски. накапливаются дырочные Часть из них, попарно объединяясь, превращается *F*<sub>1</sub>-центры. в F<sub>2</sub>-центры. На накопление одного F2-центра затрачивается є = 2.2·10<sup>5</sup> эв/центр. Облучение продолжается до накопления концентрации их (10<sup>16</sup>÷5·10<sup>17</sup>) см<sup>-3</sup>.

2) Эффективность коагуляции  $F_1$ - в  $F_2$ -центры сильно зависит от температуры. При  $T < 200^{\circ}$ К она в  $10^2$  меньше, чем при  $T_{\text{комн.}}$ , так что  $\varepsilon = 2 \cdot 10^7 \ \text{эв/центр}$ . Если охладить кристалл до  $T = 170^{\circ}$ К и продолжить облучение, то наблюдается практически в "чистом виде" только разрушение  $F_2$ -центров, накопленных при  $T_{\text{комн.}}$ . Механизм разрушения  $F_2$ -центров в треках протонов и альфа-частиц подробно изучен и изложен в другой работе [16]. Основной вклад в разрушение вносит туннельная рекомбинация одного из электронов  $F_2$ -центра с

130

нелокализованной дыркой  $h^+$  (подвижным  $V_k$ -центром). При этом образуются близко расположенные анионная вакансия и  $F_1$ -центр:  $F_2 + h^+ \rightarrow (v_a^+, F_1)$ . В частности, в состоянии максимальной близости они занимают соседние анионные узлы и образуют  $F_2^+$ -центр.

3) Кристалл нагревается до  $T_{\text{комн.}}$ . При этом возникает дополнительное число  $F_2$ -центров за счет термостимулированной коагуляции  $F_1$ -центров, созданных низкотемпературным облучением. А большинство ( $v_a^+$ ,  $F_1$ )-центров объединяются в  $F_2$ -центры.

4) Последующее облучение при  $T_{\text{комн.}}$  быстро восстанавливает <sup>исходную</sup> концентрацию  $F_2$ -центров сверх накопленной при нагревании <sup>кристалла от 170°K до  $T_{\text{комн.}}$  (рис. 1а). Восстановление сводится к <sup>захвату</sup> электрона  $F_2^+$  или ( $v_a^+$ ,  $F_1$ )-центром:  $F_2^+ + e^- \rightarrow F_2$ ; ( $v_a^+$ ,  $F_1$ ) +  $e^- \rightarrow F_2$ -и не требует больших затрат энергии. При этом вы-<sup>код</sup>  $F_2$ -центров в 10<sup>3</sup> раз больше, чем при первоначальном накопле-<sup>нии</sup>, т. е. при восстановлении затрачивается всего  $\varepsilon_0 = 3.10^2$  <u>эв/центр.</u> <sup>как</sup> видно из рис. 1а, 2, дозная зависимость концентрации восстанов-<sup>ленных</sup> центров есть кривая с насыщением, которую удобно характе-<sup>ризовать</sup> уровнем насыщения  $\Lambda$  и начальной энергией, затрачиваемой <sup>на</sup> восстановление одного центра ( $\varepsilon$ ). При малых N дозная зависи-<sup>мость</sup> концентрации центров, восстановленных облучением, удовлетво-</sup>



Рис. 1 а— Зависимость концентрации F<sub>2</sub>—центров, восстановленных облучением, от концентрации треков альфачастиц (v) в NaCl.

б—Энергия, затрачиваемая на восстановление одного F<sub>2</sub>—центра (с), в зависимости от уровня насыщения их концентрации (N).



Рис. 2. Экспериментальные кривые восстановления концентрации F<sub>2</sub>—центров при различных уровнях насыщения (N).

Ряет простой формуле (2) (рис. 1а). При больших N она становится более сложной (рис. 2). Восстановление малых концентраций особенно удобно для определения эффективного объема трека. Остается выяснить, какие N можно считать "малыми", не внося заметной погрешности в измерение  $\Omega$ . Оказывяется, что  $\varepsilon$  существенно зависит от N (рис. 16). При больших N практически постоянна величина  $\varepsilon$  и равна воему наименьшему значению  $\varepsilon_0 = 3 \cdot 10^2 \ \text{эв/центр.}$  С уменьшением неограниченно возрастает  $\varepsilon$ , достигая  $10^3 \ \text{эв/центр}$  и больше. Буде считать, исходя из эксперимента, что для восстановления одног  $F_2$ - центра необходимо затратить  $\varepsilon_0$ . В треке такая энергия приходится на объем

$$\omega = \varepsilon_0 |O\Pi\Im = \varepsilon_0 \sigma| (dE| dR). \tag{3}$$

Вероятность образования  $F_2$ -центра равна вероятности того, что в окажется не менее одного центра, способного восстановиться  $A^G$   $F_2$ -центра:

$$1 - \exp\left[-\omega \left(N - n\right)\right], \tag{4}$$

так как распределение таких центров в треке является пуассоновским [8]. Тогда в начале облучения, когда концентрация восстановленных центров n=0,

$$\varepsilon = \varepsilon_0 / \left[ 1 - \exp\left( -\omega N \right) \right], \tag{5}$$

что хорошо согласуется с экспериментом для всех N (рис. 16). При больших N, когда  $\omega N \gg 1$  (т. е.  $O\Pi \ni < N \varepsilon_0$ ), восстановление происходит в результате многократного перекрывания треков. При малых N, когда  $\omega N \ll 1$  (т. е.  $O\Pi \ni > N \varepsilon_0$ ), на каждый восстановленный  $F_2$ -центр в треке приходится больше энергии, чем необходимо, т. е. энергия затрачивается неэффективно. Поэтому с уменьшением Nрастет  $\varepsilon$ . Оказалось, что "малыми" можно считать  $N < 2.10^{17}$  см<sup>-3</sup> (рис. 16). Из (4) следует, что каждая альфа-частица увеличивает среднестатистическую концентрацию восстановленных центров на величину

$$dn/d\nu = (\Omega/\omega) \{1 - \exp[-\omega (N - n)]\}.$$
 (6)

Интегрируя (б) при условии n=0 при  $\gamma=0$ , получаем для относительной концентрации восстановленных центров

$$n/N = 1 - (1/q) \ln \left[ (e^q - 1) e^{-x} + 1 \right], \tag{7}$$

где  $q \equiv \omega N$ ,  $x \equiv \Omega \nu$ . Формула (7) хорошо описывает дозную зависимость концентрации восстановленных центров для всех N (рис. 2, 3). В частности, при малых N<2.10<sup>17</sup> см<sup>-3</sup>, когда wN «1, выражение (7) упрощается и переходит в (2). В этом случае ход кривой восстановления практически не зависит от N и определяется только эффективным объемом трека 9 (рис. 2, 3). Объем трека определялся по формуле (2) из экспериментальных зависимостей относительной концент рации восстановленных F2-центров от концентрации треков (рис. 1а), методом наименьших квадратов. Абсолютные измерения тока ускоренных частиц производились цилиндром Фарадея с гальванометром. Энергия частиц определялась по ранее измеренной зависимости между пробегом и энергией [15]. Пробег определялся по толщине окрашенного слоя на микроскопе УИМ-21. Эксперимент выполнялся в приведенном выше порядке (пункты 1, 2, 3, 4). Схема облучения показана на рис. 4а. Для накопления F2-центров при Ткоми. (пункт 1) и разруше ния их при T=170°К (пункт 2) образцы облучались частицами малых

энергий, которые проникали в кристалл на небольшую глубину  $\Delta R$ . А восстановление при Т<sub>комп</sub>, производилось частицами большей энергии, которые проникали на глубину R. Восстановление происходит в слое  $\Delta R$ , в котором энергия частицы уменьшается от E до  $E-\Delta E$ . Накоплением  $F_2$ -центров в слое R можно пренебречь, так как эффективность этого процесса в 10<sup>3</sup> меньше, чем восстановления в слое  $\Delta R$ (см. выше). Разделив полученный объем трека на  $\Delta R$ , получаем эффективтивное сечение трека  $\sigma$ . Эффективный радиус трека определяется как  $V \overline{\sigma/\pi}$ .

Из зависимости © от N (рис. 16) по формулам (3), (4) получаем,







Рис. 4. а—Схема облучения образцов. б—Зависимость эффективного радиуса трека от энергии альфа-частиц.

<sup>ч</sup>то найденный изложенным способом эффективный радиус трека пред-<sup>ст</sup>авляет ширину радиального распределения ОПЭ в треке альфа-час-<sup>ти</sup>цы на уровне 6.10<sup>19</sup> эв/см<sup>3</sup>.

На таком уровне средний радиус равен (155±15) Å. На рис. 46 представлена зависимость эффективного радиуса трека альфа-частицы от ее энергии. С уменьшением энергии трек несколько уширяется.

Томский политехнический институт имени С. М. Кирова

Поступила 7. ІХ. 1970

#### ЛИТЕРАТУРА

1. E. C. H. Silk, R. S. Barnes, Phil. Mag, 4, 970 (1959).

- 2. S. T. Noggle, J. O. Stiegler, J. Appl. Phys., 31, 2199 (1960).
- <sup>3.</sup> T. K. Bierlein, B. Mastel, J. Appl. Phys., 31, 2315 (1960).
- <sup>4</sup>. R. L. Fleischer, P. B. Price, R. M. Walker, J. Ap. Ph., 36, 3645 (1965); Phys. Rev., 156, 353 (1967), Science, 149, 383 (1965).
- 5. М. И. Каганов, И. М. Лифшиц, Л. В. Танатаров, Атомная энергия, 6, 391 (1959).

- 6. T. G. Knorr, J. Appl. Phys., 34, 9, 2767, (1963); 35, 9, 2753 (1964).
- 7. Я. Е. Генузин, И. Г. Берзина, И. В. Воробьева, ФТТ, 9, 3350 (1967); 10, 1819 (1968).
- 8. Д. И. Вайсбурд, И. Я. Мелик-Гайказян, ДАН СССР, 165, 1029 (1965); 166, 391, (1966); ТЭХ, 1, 190 (1965).
- 9. Д. И. Вайсбурд, Изв. Томск. политехи. инс-та, 138, 13 (1965).
- Г. Бете, Ю. Ашкин, В кн. "Экспериментальная ядерная физика" под ред. Э. Сегре, т. 1, стр. 143, М. (1955).
- 11. С. В. Стародубцев, А. М. Романов, Прохождение заряженных частиц через ве щество, Ташкент, 1962.
- 12. Р. Штернхеймер, В. кн. "Принципы и методы регистрации элементарных частиц 9, М., 1963.
- Д. И. Вайсбурд, Л. А. Меликян, Тезисы докладов XVII научно-технической конференции профессорско-преподавательского состава ЕрПИ, стр. 35, Ереван, 1970.
- 14. В. И. Гольданский, А. В. Куценко, М. И. Подгорецкий, Статистика отсчетов при регистрации ядерных частиц, ГИФМЛ, М., 1959.
- 15. Д. И. Вайсбурд, Н. Л. Терентьев, В сб. "Радиационные нарушения в твердых телах и жидкостях", стр. 70, ФАН, Ташкент, 1967.
- 16. Д. И. Вайсбурд, А. Н. Кравец, Л. А. Меликян, С. М. Минаев, Изв. АН АрмССР, Физика. 5, 461 (1970).

## 4—25 ՄԷՎ ԷՆԵՐԳԻԱ ՈՒՆԵՑՈՂ α-ՄԱՍՆԻԿՆԵՐԻ ՀԵՏՔԵՐՈՒՄ ԷՆԵՐԳԻԱՅԻ ԾԱՎԱԼԱՅԻՆ ՓՈԽԱՆՑՄԱՆ ՌԱԳԻԱԼ ՔԱՇԽՄԱՆ ԼԱՅՆՈՒԹՅՈՒՆԸ NaCl-Ի ՄՈՆՈԲՅՈՒՐԵՂՆԵՐՈՒՄ

#### Գ. Ի. ՎԱՅՍԲՈՒՐԳ, Ա. Ա. ՎՈՐՈՐՅՈՎ, Ա. Ի. ԿՈՄՈՎ, Լ. Ա. ՄԵԼԻՔՅԱՆ

Հոդվածում բերված են պայմաններ, երբ Հառագայիման ժամանակ ռադիացիոն դեֆեկաների ձևափոխումը կարելի է օգտագործել պինդ մարմիններում մասնիկների հետբերի էֆեկտիվ լայնական չափսերի որոշման համար։ Հեղինակները օգտագործել են NaCl-ի բյուրեղները ալֆամասնիկներով կրկնակի Հառագայիման ժամանակ տեղի ունեցող F<sub>2</sub>-կենտրոնների վերականգնմա<sup>ն</sup> ռեակցիան։

## RADIAL DISTRIBUTION WIDTH OF VOLUME ENERGY TRANSFER IN (4-25) MEV ¢-PARTICLE TRACKS IN NaCl MONOCRYSTALS

#### D. I. VAISBURD, A. A. VOROBIOV, A. I. KOMOF, L. A. MELIKIAN

The conditions are found for which the transformation of the radiation-induced defects is used for the determination of effective crosswise particle track dimensions in rigid bodies. The  $F_2$ -centres restoration reaction is found to be approapriate in a series of z-bombardments of NaGl crystals. The experiments on the Tomsk ciclotrone for the determination of the effective z-track radii gave the value of  $(155\pm15)$  Å. The track radius as determined by this technique is shown to be the radial distribution width of volumetric energy transfer in z-particle track in NaCl on the  $6.10^{19}$  ev/cm<sup>3</sup> level.