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A NEW EQUATION OF MOTION FOR CLASSICAL
CHARGED PARTICLES

T. C. MO and C. H. PAPAS
California Institute of Technology, Pasadena, California 91109

We propose a new equation of motion for. classical chu}ged particles,
which is free from the well-known difficulties of Dirac’s equation, is intui-
tively sound, and predicts reasonable radiation damping.

1. Introduction

The equation of motion of a charged particle has been a subject of
interest for many years’. The equation now generally accepted was obtai=
ned by Dirac by decomposing the retarded self-field into a sum field
that renormalizes mass and a difference field that gives reaction®. An
explanation and re-derivation based on an absorber mechanism was
provided by Wheeler and Feynman?, However, as is well recognized,
Dirac’s equation has certain inherent difficulties. First, it involves the
derivative of the acceleration and hence needs one extra condition, in

. addition to the Newtonian initial conditions, to determine the motion.
Second, it gives runaway solutions which can be avoided only by arti-
ficially introducing a pre-acceleration. Third, in certain cases it imp-
lies that the external energy supplied to the particle goes only into
kinetic energy, and radiation is created from an acceleration energy
which is negative and unphysical. It is the purpose of this work to
obtain a new equation that is free from these difficulties and predicts
reasonable results. ;

2. The New Equation

By fo llowing the old idea of expressing reaction only by the kine-
matical quantities of the particle, it is not possible to construct an
equation that satisfactorily includes reaction. However, in classical elec-
trodynamics in an inertial frame* the only field that can accelerate a charged

particle and make it radiate is the external electromagnetic field /ex: ,
Accordingly, radiation reaction should be expressible by Fzx and the
p article kinematics. On the other hand, since a charge e at rest expe-
riences only an electric force e£ and in motion experiences an additio-
nal magnetic force ewvX B, which together make up e Fixr mw, it is
natural to assume that when accelerating a charge experiences still ano-
ther force e;F¥*, u, with e, a small constant (i. e., e; F*, v &eF¥, uy in

most physical cases) and w'=du’/ds. Here we use geometrized unit c=1,
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with signature 7., = (1, —1, —1, —1), {x% , *, 2| ={¢, x, gy, z}, s
the proper time, and u* the four-velocity.
Now, given the motion u* (s) of a charge the rate of radiated

energy momentum (—2¢%3) w,u*u* is obtained by integrating Poynting’s
vector on far-zone retarded sphere®. By using the radiation-neglected
equation mu’= eF¥., u; this rate can be expressed as (—2¢%/3m) F2%, wusu*
which is roughly the expression for radiation in terms of F*,. Equating
the inertia and radiation to the forces the charge sees through F»), we

have the new equation of motion

A\ Un u*—efﬂ‘:ur%el Fhow, (1)

mu* —

where the requirement that (1) be an identity after scalar multiplication
by u, implies e, = 2¢*/3m is indeed a small constant. For a system of

charges, in (1) for the i-th charge Fezi @) becdmes Z E 7)) where

F .y is the retarded field of the j-th charge.

The general properties of (1) are:

1) Mass conservation; scalar multiplication by u, gives an identity
and hence m is constant. 2) Self-evident radiation term, scalar multi~ °
plication by u, gives (—2¢%/3m) F?*, mxu.ut= (—2¢%/3)mrz"u* which always
represents radiation. This justifies the second term on the left of (1) as
radiation reaction with u* determined by (1). 3) Newtonian motion; no
more than the first derivative of velocity is involved and accordingly
motion is determined by the initial velocity and position and by Féz: -
4) No runaway solution (see below). 5) No pre-acceleration. 6) Addi-
tional effective external field; taking the radiation term to the right
side and combining_it with e, F¥*, u) one can think of the total accele-

ration-dependent external force as derived from an effective field

3
for = g— N o @)

ext
m

in addition to F*’, which the charge sees through the Lorentz force.

ext
3. Special Cases Compared with Dirac’s Equation

Now we shall examine the implications of (1) for certain basic
physical situations and compare the results with those® of the Dirac
equation

- < 2e2 .. - 'l
mu* =eF¥: u,+ 5 (u* + gu’u?). i (3)
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a) No external field, F¥;, =0; (1) directly gives u* = constant,
but for (3) this solution has to be ,physically* singled out from the
infinity of runaway solutions.

b) Constant vniform electric field, E= ;;E the new equation (1)
. gives u“— (cosh'r) , sinhm , 0, 0), where 7= C,+ eEs/m, for initial ve-

locity v= ex tanh C;; the Dirac equation (3) gives u* = (coshé, sinh %,
0, 0), where &)= K;+ K, exp (5/x) + eEs/m and == 2¢*/3m, which with

the physical requirement u*=0 when E =0 implies X, 2=0. Thus (1) yields
the same solution as (3), but (1) works all by itself. Also from (1)

the radiation (—2e*/3)muu* = (2e*E%3m?) u* is supplied by the external
force GIF:.:I u), but from (3) it is supplied by the negative acceleration
energy term (2e’/3)u!*

c) Incident rectangular pulse E— ;,,E for 0< s <s;; (1) gives
(cosh C,, sinh C;, 0, 0) s<0,
(cosh ¥, sinhd, 0, 0) 0< s <s,, (4)
(cosh®, sinh€, 0, 0) 5,<s,

"
U(N)

where ¢ =eEs/m + C; and { = eEs,/m + C;. But (3) with a/(c0)=0 gives
(cosha, sinh «, 0, 0) s<<O,
ufp) = (coshg, sinh 5, 0, 0) 0< s<s,, (5)
(cosh®, sinh &, 0, 0) s,<s,

where a= C; + (eEx/m)(1-—exp (—s,/7)) exp (s/7),

¢ = C,+(eEx/m)(1—exp [(s—s,)/z])+eEs/m. Thus (5) represents pre-
acceleration whereas (4) shows that the electron does not respond until
the pulse hits it. The limiting case of a delta pulse® is easily obtained
by letting s,—0 and keeping Es, constant. For this limit (4) gives sim-
ply a jump in velocity which is due only to idealizing the incident wa-
ve as a delta function, whereas (5) gives a purely pre-accelerational
motion.

d) Motion perpendicular to uniform magnetic field B =e, B; in this
case exact analytic solutions cannot be found for (1) and (3), but a per-
turbation method can be used to obtain and compare their total cor-
rectional forces which spiral the circular orbit inward as a result of
synchrotron radiation”. Now the first-order corrections,

2¢? 2Bl Tf P
== Fet+ Frag. g+ )= — s
({n) 3m 'ﬁ)( exr+ ext (D "a)) 3m: V1B |Y1—F uu)+

+(o e oA 5&)} “s (iiu-zi;_ 2 ot )E(f 6)
: m m 3\ o oo D1y
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are equal. Here mz(z;*:Eeﬂ"}g 0 and u‘; represent circular motion without
) ¢

radiation perturbation. The second-order corrections are

Tl e - ¢
ﬂ)E 'z—e— ':’;) (Fu’t::-!- etz u* )+ F};t(ua u* + u, u* ] =
m

(N3 (1) (1) (1) Mm@ @ @
2¢ . 4 'B° B eBs( 2p eBs
=25 Lttt b 0,0,s
3m o e (1—B)2 m {V —p* e ( ai F
eBs m eBs
= o ain—— )i v Al
cos = o= eBss n = } (7—a)
52—e[ul*+2u vt u*--w, u* u"]=2—e-su1 u o*
® 3| @ m'@a @O 3 Mm@
4 B B eBs{ 2012 7 m 2eBs
Al —_— i a
9 m* (1—B%2 m Y1 —F’\ 2eBs s m ‘(‘1)+
+ (0, 0, in@ aodn cos e_Bs_’ cos el + ™. sin eBs }, (7—b)
m eBs m m eBs m

Here the second-order total solution z‘z;:)= z{l")+ u(: which satisfies
)

ngzl)— eFext 1(12; + f'* 1s the same for (1) and (3). Comparing the differen-
cegof second-order forces A{‘ —f* and the first-order correction
(09) (N2)

force fi (1) to the main force mu' we get

Aft f mub.
(2) ) (¢))

o) [ ()| s> o

e S e R R B
(1—p)? ) (l—ﬁf)m(r, E

Here r, is the radius of the circular orbit for u(“) and r. is the classical
1

radius of the charged particle. Thus the new equation (1) predicts a

faster inward spiraling than does Dirac’s (3) by the deviation Af;/m 1:1'
)

compared to the main unperturbed orbit. For a typical electron synch-
rotron of 5 Bev, r; ~5 meters, r;=2-8X10—!% meters this deviation is
10-8 — far below the quantum fluctuation of synchrotron photon emission®.
However, for highly energetic charged particles in a very strong electro-
- magnetic field, as in astrophysical applications® where (1—p2)~!(e?*/meyc?) X
X (mcleB)—1=1 (e.g. b+2n=10 for electrons of energy 10" Bev in B=10¢
gauss) the deviation is large. In such strong fields the new equation
(1) predicts orbits quite different from Dirac’s (3).
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e) Motion in coulomb field E=(g/r®) e;; by perturbation method as
above the first-order corrections are

2m* pB° 1 :
Y { ’ : ) e — u.‘} 5
&rl) 3¢® (122 Vig o
2m* @7 3
7 0, —sin 2s, cos 2s, 0)— —
by 3¢ - wﬂ{ P e Vv z;;;] ©)
where € = — mf’/eq (1—B*). It follows that sz’l)has more backward tan-

gential correction that J\"l) and thus the Dirac orbit collapses faster than
the new orbit by

Af(fn (2¢%/3m) Frey u

1)

e P?

{ S (- S s e (10)
i 1 oy

ne mt(t” g 1—9)

There is no experimental data on this deviation.

f) Oscillating electric field’® E = e; E cos wt; for initial velocity
zero the new equation (1) gives exactly ;

u* = (] - e_E_ sin iut) )112 €£ sin ot, 0, 0) (11)

(N) mw mw

which shows no damping because of the continuous supply of energy
from the oscillating fields. Also the motion (11) is the same as that
obtained from the radiation-neglected Newton’s equation mu*—=eF™ u;
because in this special case the radiation (2e*£%/3m?) cos? ot u* is comp-
letely supplied by the additional external power-force e, Fi%im. This
result agrees with the usual Thomson scattering™ and says the latter
is exact up to the order of neglecting the magnetic force from the inci-
dent wave. For Dirac’s eq. (3), a perturbation force
3

Ko7 :
‘(f;:)_ e sin ot u (I?N) u(N)O 0) (12)

shifts the oscillation phase forward and decreases the amplitude'® which
deviates the motion from (lzl\‘; when 0t=1 (7~10-% sec for e~). But this

cannot be checked experimentally because such high energetic Compton
scattering must be treated quantum-electrodynamically.

4, Conclusion

The fact that (1) overcomes all former difficulties and predicts re-
sults not experimentally distinguishable from Dirac’s in laboratory cases
of basic importance, and the intuitive soundness of the new ideas on
which it is based lead us to suggest that the new equation (1) correct-
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ly accounts for radiation reaction in the motion of classical charged
particles and should replace the celebrated Dirac equation of motion (3).

The new equation can manifest itself by predicting different mo_
tion and radiation rate for high energetic charges in very strong elect.
romagnetic field, e. g., as in astrophysical cases for electrons with 107
Bev in 10° gauss that 5--2n=10. At present it seems not trivial to
find an action integral for (1). However, there is no rigorously wvalid
action integral™® that leads to (3).

Also it can be shown that for m=0 equation (1) gives u*=0 and

w,u* =0 independent of Fii. Thus a massless particle follows a null
geodesic and cannot interact with the electromagnetic field whether it
be charged or not. This might add a new degree of freedom to the
charge conservation law. The additional force (see (2)) appearing in (1)

alters the conventional interaction — /. AZx.. Thus this work is a first
step in including radiation reaction in curved spacetime™ and may pos-
sibly lead to changes in quantum theory.
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S. 8. Un, 2. 2. *UPLY,

Cwpddwlh HMpuhp Swjwuwpnddp (3) pp qpdwh oppy (1938 f.) Swhppuwhnul b Eyhljmpu-
Awghfowlpul qugmbpnol thgpufapusd Jwubphf swpddwh Swdwp Swhpubuiug LSufwaw gl s
Uwluh pug Swpnbf £, np bw mdify Sbnbguy whgwlhluyp Sumlnfmdibpp.

w) wupndiwlmd b wpugugdel wéwhgpup b, Sholuugbe, jupddwl Jpwl apogplwl §u-
Jwp wwlwhynul § pugfh Yynunabfy whqploljul wwlwibbphy Lo dhi (pwgmgfy e wl.

p) Naf epbpwpugugngs (ndnullibp, apnlighy huplbip b wqundby ol ghpospogugd ad
ququifpp dinghbymfs

q) Npny nbwygbpnd Swimawpnulp phpnod § bpwl, np wpomwehl (bbpghul  pff fenfou-
gl b hplbwply buibpgpugh, ol SwauquBaulp qulinud b | Swgp]  wpmgugdwh (hbp-
qhwyip, npp pwgwuwlel kL Sbobwpup goepl b $fpqplulut flunfg:

Ungbh wyppwimwbgned wnwgwplnad b (hgpunpfuwé  Jwubiplf jwpdduwh bop gpuowluh
Swiwopwpnul, npp wqum & fbpadfygm;  Fhpmfndilbphy L hwhpeogngulpmd b jubpod fun
wogndighbp Ywplap bpumbppd by nhuypbpp Swdwpr Phnnfunfy gunngmfodbbpp Swlk-
ghghnut bY wih Jingpl, np bnp Swwewpnulp hanklpn hbpoym| b blijwpmgpeul Swngofdwh
nhwlghwh bk quppa b ojuwppbline ppulhp Abwgwd Swfwuwpnulp:

HOBOE KAACCHYECKOE YPABHEHHUE ABHUXEHHWA
AAA 3APAXKEHHBIX YACTHUL

T. II. MO, 4. T. [TATIA3

Ypasmenme gsmxemns Jupaxa (3) co mpemenn ero manmcamms 3 1938 r. sBamerca
O6IIeUPHHEATHIM XASCCHYECKHM YPaBHOHNEM ZBHXEHHS SADAXEHHON WACTHQH B DAGKT po-
MArEHTHBIX TNOASX. XOPOIIO HSBECTHO, OZHARO, YTO OHO o6AajaeT CAeZYIOIHME HexeAra-
TEALEBIMH cBONCTBAME:

a) COZepXHT NPOHSBOAHYIO YCKOPEHHA H CACZOBATOABHO JAR OZHOSHAYHOIO ONPee _
AGHHS JBHMEHHN HYXJAETCH, AONOAHHTOABHO X HBIOTOHOBCREM HAYAALHBIM YCAOBHAM
B eme OXHOM YCAOBHE,

6) cozepmET ,CAMOYCROPARIOHECH" POmEHHs, KOTOPhIe MOryT GHTH HCKAIOWEHH ARIIb
BEEZEHHEM NOHATHA O CBOPXYCROPEHHH, .

B) B ONpeZeACHHHNX CAYNaiX ypaBHEHHe NPHBOZHT K TOMY, 4TO BHEIHAX DHEPrHN
LeAHEOM NEPEeXOZHT B REHETHYECKYIO SHEPrHIO JaCTHQb, MSAYYeHH® Xe NpPOHCXOZHT sa
CYeT SHEPrEH YCROPEHHM, KOTOPAA OTPHJATEAbHA H CAGZOBATEADHO He HMeeT (PHSHIECROro
CMBICAA.

B macrosme# pa6ore npezAaraeTcA HOBOE RAACCHYECKOE yPaBHEEHE JBHXEHHA JA S
sapsmeHHO& WACTH[H, ROTOpPoe CBOGOZHO OT BHMEYRASAHHHMX HEZOCTATKOB H NpejCRasH”
BaeT pASYMEHEHE DESYABTATH AAS BAXHHIX SRCHEPHMEHTAABHMX ciywaes. VETyETHEEMNE cO-
obpamenHs HaBOZAT Ha MBICABD, YTO HOBOE ypaBHEHHE KOPPEKTHO YUHTHIBAIT PEaRIHIO H3- -
AyUeHHA ® JOAXHO SaMEHHTh ycTapeBmee ypaBHeHHe gsExemas Jupaxa.



