ВРЕМЕННОЕ РАЗРЕШЕНИЕ СЦИНТИЛЛЯЦИОННОГО СЧЕТЧИКА БОЛЬШИХ РАЗМЕРОВ

л. С. БАГДАСАРЯН, Э. О. БАРСЕГЯН, А. А. ТАШЧЯН

Рассматривается вопрос о временных флуктуациях импульса в плоском ецинтилляционном счетчике больших размеров. Получено выражение для среднего времени \bar{t}_Q появления Q-го фотоэлектрона и дисперсии этого времени $D_{\bar{t}_Q}$, а также выражение для определения оптимальных размеров световода.

Сравниваются счетчики разных типов с точки зрения временных флуктуаций.

Теории временного разрешения сцинтилляционного счетчика посвящен ряд работ [1+7]. Получены разные выражения для среднего времени t_Q прибытия Q-го (порогового для электронной схемы) фотоэлектрона и дисперсия этого времени $D_{\bar{t}_Q}$. Однако вышеуказанные работы не затрагивают вопросов, связанных с размерами сцинтилляционного счетчика, вследствие чего имеющиеся в литературе выражения для определения t_Q и $D_{\bar{t}_Q}$ не могут быть непосредственно применены для случая сцинтилляторов более или менее значительных размеров.

Тем временем, во многих физических экспериментах необходимо проводить временные измерения с использованием плоских "быстрых" сцинтилляционных счетчиков больших размеров, что, естественно, приводит к необходимости исследования ограничения статистикой фотоэлектронов на временное разрешение в этом случае. Ниже получены выражения t_Q и D_{t_Q} для плоского сцинтилляционного счетчика больших размеров (с маленьким временем высвечивания), а также выражения для определения оптимальных размеров их световодов.

Вычисление \overline{t}_Q и $D_{\overline{t}_Q}$

Рассмотрим обычный сцинтилляционный счетчик (с маленьким временем высвечивания τ) (рис. 1а) с линейными размерами сцинтиллятора a, b и размером световода c. Толщина сцинтиллятора $d \ll a, b$. Диаметр фотокатода — Ф. Предположим, что световая вспышка, образовавшаяся в сцинтилляторе вследствие прохождения частицы, точечная и все время находится в плоскости, делящей толщину сцинтиллятора попалам. Учитывая быстродействие, а также сильные потери света в сцинтилляционном счетчике большого размера, в плоскости (ab) следует рассматривать только те световые лучи, которые попадают на фотокатод без каких-либо отражений от стенок сцинтиллятора и световода. Для вычисления t_Q и D_{t_Q} в нашем случае можно пользоваться подходом к задаче, развитым в [1, 6, 8]. Предположив, что вероятность образования одного фотоэлектрона p линейно зависит от времени (в вышеупомянутых работах $p = 1 - e^{-1/\tau}$, встречаются также

Рис.

Рис. 2.

и другие выражения [4, 5]), для среднего времени появления Q-го фотоэлектрона и дисперсии этого времени получим

$$\bar{t}_{Q} = \frac{\tau Q}{R+1}, \ D_{\bar{t}_{Q}} = \frac{\tau^{2} Q}{R+1} \left(\frac{Q+1}{R+2} - \frac{Q}{R+1} \right),$$
 (1)

где *R*—среднее число фотоэлектронов с учетом уменьшения его из-за поглощения фотонов, т—время высвечивания сцинтиллятора, *Q*—число фотоэлектронов, необходимое для срабатывания электронной схемы. В приложениях 1 и 2 приводятся выражения для вычисления *R* и т учитывающие размеры сцинтиллятора и световода.

Оптимальные размеры световода

В выражения для \bar{t}_Q и $D_{\bar{t}_Q}$ входит размер световода c (через R и τ). Учитывая то, что минимальное значение c приводит к желательному уменьшению \bar{t}_Q и $D_{\bar{t}_Q}$, возникает необходимость отдельно рассматривать вопрос о размере световода для определения его оптимальных размеров. Оптимальный размер световода c можно определить из соотношения, приведенного в приложении 3. Зависимость D_{to} от размеров сцинтиллятора a, b

На рис. З приводятся кривые, изображающие зависимость $D_{\tilde{t}_Q}$ от размеров сцинтиллятора, вычисленные по (1), (п1.1), (п2.1), (п.3.3) (см. приложения).

Вычисления проводились на ЭВМ "Раздан З" для двух типов.

Рис. 3. Зависимость $D_{t_Q}^-$ от размеров сцинтилляционного счетчика α , b; $\chi_{cu}0=,037$. $\chi_{cs}=0,004$. Кривые 1 и 2 соответственно для ФЭУ-72 (36) и ФЭУ-30.

ФЭУ (диаметр фотокатода 3,5 и 5 см) и для двух значений коэффициента поглощения света сцинтиллятора χ_{cu} . и световода χ_{cs} (χ_{cu} ; $\chi_{cs} = = 0,037$; 0,004). Кривые соответствуют случаю пластического сцинтиллятора ($\tau = 3$ нсек, $\tau_x = 0$, $\tau_p = 0$) толщиной 2 см и регистрации протонов энергией в 1 Бэв. Порог срабатывания электронной схемы Q=10. При других значениях толщины сцинтиллятора и энергии регистрируемой частицы нетрудно ввести соответствующие поправки с помощью (1) и (п1.1). Из этих кривых, например, следует, что ограничение, накладываемое статистикой фотоэлектронов на систему, измеряющую время пролета между двумя сцинтилляционными счетчиками на (ФЭУ-30) с размерами соответственно $25 \times 25 cm$ и 50×50 см при $\chi_{cn} = 0.037$, $\chi_{cn} = 0.004$, дает

$$D_{\bar{l}0} = 0,03 \ (нсек)^2$$

плюс временные флуктуации самого фотоумножителя. В таблице приводятся соответствующие оптимальные значения размеров световодов (c), вычисленные по (пЗ.З).

Таблица

Значения оптимального размера световода (с) в см, вычисленного по (пЗ.З) для разных значений a, b.

ф (см)	Zen/ ^{7.} €8	а, b (см)									
		10,30	20,20	10,50	20,40	25,25	25,50	40,40	50,50	25,100	50,100
5	0,037/0,037	8,8	2,9	16,0	8,4	3,4	9,6	4.4	4,8	22,2	13,4
	0,037/0,004	6,9	2,5	10,8	6,1	2,8	6,5	3,3	3,6	10,4	7,3
	0,004/0,004	12,8	4,6	25,9	14,0	5,9	17,4	9,2	11,4	43,8	32
3,5	0,037/0,037	9,8	3.5	17,8	9,4	4,0	10,8	5,2	5,9	24,7	15,3
	0,037/0,004	7,9	3,0	12,6	7,1	3,4	7,7	4,2	4,7	13,1	9,5
	0,004/0,004	14,6	5,3	29,1	15,6	6,6	19,2	10,4	12,8	49,2	35,2

Другие возможные конструкции

На рис. 16 показан сцинтилляционный счетчик, имеющий другую конструкцию световода (витой). Для того, чтобы сравнить конфигурации 1a с 16, необходимо сравнить как R (количество собираемого света), так и τ .

Нетрудно убедиться в том, что т в обоих случаях примерно одинаково (так как самый длинный путь фотонов к фотокатоду в обоих случаях ограничивается углом полного внутреннего отражения). Что касается количества собираемого света, то в случае 16 оно в $\frac{\pi/2 - \beta}{G}$ раз больше. Последнее обстоятельство приводит к увеличению R, следовательно, к уменьшению D_{iq} . Однако нужно иметь ввиду, что $R \sim d$, а толщина сцинтиллятора d в случае 16 ограничена условием $d = \frac{b'}{b} \phi = \frac{\phi^2}{b}$, где b' — ширина полосы световода. Такое ограничение (если не считать $d \ll a$, b) не имеет места в случае 1а. Учитывая это, в большинстве практических случаев преимущество 16 над 1а менее внушительно. Конструкция 1в с точки зрения D_{iq} принципиально не отличается от 16 (т и R в обоих случаях почти равны). Следовательно, эта конструкция не может дать заметного выигрыша

220

Временное разрешение сцинитилляционного счетчика

во временном разрешении сцинтилляционного счетчика по отношению к 16.

В случае необходимости собирания большего количества света можно увеличить число фотоэлектронных умножителей (рис. 1г, д). Однако, как показывает детальное рассмотрение вопроса, в подавляющем большинстве практических случаев, увеличение числа ФЭУ не приводит к желательному уменьшению дисперсии среднего времени появления Q-го фотоэлектрона всего счетчика в целом. В этом легко убедиться, представив последнее как сумму

$$D_{\overline{t}_Q}^{\mathrm{cu}} = n \, D_{\overline{t}_Q}^{\Phi} + D_{\overline{t}_Q}^{\mathrm{cu}} \,,$$

где $D_{t_Q}^{\Phi}$ — дисперсия, обусловленная ФЭУ, n — количество ФЭУ, $D_{t_Q}^{cn}$ — дисперсия (1), обусловленная сцинтиллятором.

Увеличение количества ФЭУ приводит к уменьшению $D_{t_Q}^{en}$ (через увеличение *R*). Однако, с другой стороны, оно приводит к увеличению члена [$n D_{t_Q}^{\Phi}$. Следовательно, использование двух и более ФЭУ допустимо только при условии

$$D_{i_Q}^{\Phi} \ll D_{i_Q}^{\mathrm{cu}}$$
.

Однако в большинстве практических случаев имеет место условие $D_{t_Q}^{\Phi} \sim D_{t_Q}^{cu}$ (напр., если учесть кривую, изображенную на рис. 3, и то, что в области 1÷200 фотовлектронов $D_{t_Q}^{\Phi} \sim 0,01+1$ (нсек)²). Кроме того, в случае использования двух и более ФЭУ уменьшение $D_{t_Q}^{cu}$ за счет дополнительной информации о местопрохождении частицы в счетчике (случай $\tau_x = 0$) уже невозможно. В этом случае на среднее время высвечивания τ постоянно прибавляется член $\tau_x = \frac{an}{2c}$. При увеличении числа ФЭУ не следует также забывать и о дополнительной электронной схеме, использование которой неизбежно. Это приводит к новому увеличению $D_{t_Q}^{cu}$ на 0,005÷0,01 (нсек)². Последнее обстоятельство может играть немаловажную роль в случае использования высококачественных сцинтилляторов и фотоумножителей.

Заключение

Дисперсию среднего времени появления Q-го фотовлектрона сцинтилляционного счетчика больших размеров можно представить в виде

$$D_{\bar{t}_Q}^{cq}(a, b, c, \phi, \gamma_1, \chi_2, \tau, R, Q) = n D_{\bar{t}_Q}^{\phi} + D_{\bar{t}_Q}^{cu}, \qquad (2)$$

где D_{to}^{cn} определяется выражениями (1), (п1.1), (п2.2).

221

Формула (2) дает возможность вычислить D_{IQ}^{eq} для разных типов сцинтилляционных счетчиков больших размеров и определить при этом наиболее оптимальные их размеры (сцинтиллятора и световода), количество ФЭУ, направление собирания света.

Ереванский физический институт

Поступила 18. VII 1969

Приложение 1

Среднее число фотоэлектронов в нашем случае

$$R = R_0 AG, \quad (\pi 1.1)$$

где R_0 — среднее число фотоэлектронов в единичном угле плоскости (a, b) без учета размеров и поглощения света в сцинтилляторе. A среднее поглощение. G — средний угол зрения фотокатода.

Обозначив расстояние световой вспышки от фотокатода в плоскости (a, b) через $r (r = \sqrt{x^2 + y^2})$ и предположив, что поглощение происходит по экспоненциальному закону с одинаковым средним χ для сцинтиллятора и световода, имеем

$$A = \frac{1}{(a+c)} \int_{c}^{a+c} \int_{0}^{b} e^{-x \sqrt{x^{2}+(y-b/y)^{2}}} dx dy.$$
(n1.2)

Средний угол зрения фотокатода в той же плоскости

$$G = \frac{1}{(a+c)b} \int_{c}^{c+t} \int_{0}^{y} \arccos \frac{\phi x}{\sqrt{x^{2} + \left(y - \frac{b-\phi}{2}\right)}} \sqrt{x^{2} + \left(y - \frac{b+\phi}{2}\right)^{2}} dy dx.$$
(n1.3)

Приложение 2

В сцинтилляторе большого размера происходит некоторое расстягивание τ_p светового импульса. В нашем случае $\tau_p = \frac{a+c}{V_c}$ (соsес β – 1), где β — угол полного внутреннего отражения, V_c — скорость света в сцинтилляторе. Обычно τ_p не велико и им можно пренебречь. Кроме этого, если место прохождения частицы в сцинтилляторе не фиксируется, следует учесть еще и разность времени τ_x , необходимую разным световым вспышкам для достижения фотокатода:

$$\pi_x = \frac{\sqrt{(a+c)^2 + (b/2)^2 + (a+c)}}{2 V_c} \cdot$$
 (n2. 1)

Таким образом, результирующее время высвечивания плоского большого сцинтиллятора можно представить как

$$\tau = V \overline{z^2 + z_p^2 + \overline{z}_x^2}, \qquad (n2.2)$$

Приложенье 3

Минимальное значение для с находим из условия $N_1 = N_2$, где N_1 ; N_3 — число фотонов, достигающих фотокатод соответственно из точки 1 и 2 (рис. 2). Учитывая поглощение света в сцинтилляторе и световоде,

$$N_{1} = \alpha_{1} N_{0} e^{-(\chi_{1}l' + \chi_{2}l')},$$

$$N_{2} = \alpha_{2} N_{0} e^{-\chi_{2}d'},$$
(n3.1)

где N_0 — число квантов, направляющихся из точки 1 в единице угла плоскости (a, b) к $_{15}^{\prime}$ фотокатоду, γ_1 ; γ_2 — коэффициенты поглощения света в сцинтилляторе и световоде. Из (п3.1) следует

$$\frac{\alpha_1}{\alpha_2} = e^{x_1 l' + x_2 (l' - d')} \cdot (\pi 3.2)$$

Из простых геометрических соотношений находятся $a_1, a_2, 'l, l'', d'$ и (п3.2) можно представить:

$$\frac{\phi (a + c)}{\sqrt{(a + c)^{2} + (\frac{b - \phi}{2})^{2}} \sqrt{(a + c)^{2} + (\frac{b + \phi}{2})^{2}}}}{\sqrt{(a + c)^{2} + (\frac{b - \phi}{2})^{2}} \sqrt{c^{2} + (\frac{b - \phi}{2})^{2}}} = \frac{c (\phi - x)}{\sqrt{c^{2} + (\frac{b - \phi}{2})^{2}} \sqrt{c^{2} + (\frac{b + \phi}{2} - X)^{2}}}}{\frac{c^{2} + (\frac{b - \phi}{2})^{2} + (1 - \frac{c}{a + c}) + \chi_{2} \left[c \frac{\sqrt{(a + c)^{2} + (b/2)^{2}}}{a + c} - B\right]}{\frac{c^{2} + (\frac{b - \phi}{2})^{2}}{2}},$$

$$B = \frac{\sqrt{c^{2} + (\frac{b - \phi}{2})^{2}} + \sqrt{c^{2} + (\frac{b + \phi}{2} - X)^{2}}}{2},$$

$$X = \frac{\left(\frac{b + \phi}{2}\right)\Delta c}{c + \Delta c},$$

где Δc — толщина стекла фотоумножителя. Поправка X появляется при учете толщины стекла фотоумножителя (рис. 26).

п3.3)

ЛИТЕРАТУРА

- 1. R. F. Post, L. T. Schiff, Phys. Rev., 80, 1113 (1950).
- 2. B. Sigfridson, NIM, 54, 13 (1967).
- 3. W. M. Currie, NIM, 13, 215 (1961).
- 4. E. Gatti, V. Svelto, NIM, 43, 2, 383 (1966).
- 5. F. T. Kuchnir, F. V. Lynch., IEEE, NS-15, 107 (1968).
- 6. В. В. Якушин, ПТЭ, № 3, 93 (1965).

7. Ю. К. Акимов, препринт ОИЯИ 13-3734 (1967).

ՄԵԾ, ՀԱՐԹ ՍՑԻՆՏԻԼԱՑԻՈՆ ՀԱՇՎԻՉԻ ԻՄՊՈՒԼՍԻ ԺԱՄԱՆԱԿԱՑԻՆ ՖԼՈՒԿՏՈՒԱՑԻԱՆԵՐԸ

L. U. PULAUULISUL, L. Z. PULUBABUL, U. Z. PUZ2BUL

Քննարկվում է մեծ չափեր ունեցող հարթ սցինտիլացիոն հաշվիչի իմպուլսի ֆլուկտուացիաների հետ կապված հարցերը։ Ստացված են մեծ չափեր ունեցող սցինտիլացիոն հաշվիչի Q-րդ ֆոտոէլեկտրոնին համապատասխանող միջին ժամանակի ու նրա դիսպերսիայի համար արտահայտություններ, իչնպես նաև արտահայտություն լուսատարի օպտիմալ չափսերի որոշման համար։

Համեմատվում են տարբեր կառուցվածը ունեցող հաշվիչներ ժամանակային ֆլուկտուացիաների տեսակետից։

PULSE TIME FLUCTUATION IN LARGE SCINTILLATION COUNTERS

L. S. BAGDASSARIAN, E. O. BARSEGIAN, A. A. TASHCHIAN

Time fluctuations in large fast scintillation counters are considered. Expressions for the trigger time of the Q-th photoelectron, \overline{t}_Q and its variance, D_{tQ} , are obtained. An expression for the optimal size of a light guide is also presented.

Time fluctuations for several types of counters are compared.