ГЕНЕРАЦИЯ НУКЛОННЫХ ИЗОБАР ПРИ ВЗАИМО-ДЕЙСТВИИ ПРОТОНОВ С ИМПУЛЬСОМ 24 Гэв/с С ЯДРАМИ ФОТОЭМУЛЬСИИ

д. А. ГАЛСТЯН

Изучена генерация изобар при P-N взаимодействии при 24 $\Gamma_{SB/C}$ методом ядерных фотоэмульсий в сильном магнитном поле. Наблюдено образование изобары 1,24 Γ_{SB/C^2} . Для N^* (1,24 Γ_{SB/C^2}) с $\gamma^* > 10 P$ и π -мезон в СШМ имеют симметрично-анизотропное угловое распределение, что согласуется со спином изобары 3/2. Угловое распределение продуктов распада медленнной изобары ($\gamma^* < 10$) асимметрично, протоны летят назад, а π -мезоны — вперед.

В последнее время вопрос о роли изобарного механизма в процессе генерации π -мезонов при взаимодействии π -мезонов и протонов с нуклонами и ядрами приобретает интерес. Как показывают многочисленные исследования, выполненные с помощью пузырьковой камеры и электроники, сечение генерации нуклонных изобар для (P-P) соударения с энергией от 6,0 до 30 Гэв/с и передаваемого импульса от 0,04 до 5,0 (Гэв/с)² составляет примерно 6⁰/₀ от сечения неупругого рассеяния $\sigma_{\mu\gamma} \simeq 30$ мбн [1]. Причем, с увеличением энергии налетающей частицы происходит возбуждение более тяжелых изобар. Изобара с массой 1238 Мэв/с² подавлена уже при энергии налетающей частицы $E \gtrsim 11$ Гэв [2].

Изучение взаимодействия протона с ядрами H_2 , Ве и Рb с импульсом 18.8 и 23.1 Гэв/с также указывает на немалую роль изобарного механизма в процессе генерации энергичных π -мезонов [3]. Авторы работы указывают на генерацию изобары с изоспином 1/2 и с массой 1518 и 1688 Мэв/с². Несмотря на это, имеются работы, выполненные с помощью водородной камеры, в которых наблюдается генерация легкой изобары в соударениях (P-P) с импульсом 10 Гэв/с [4] и 24 Гэв/с [5]. Данная работа является первой попыткой с помощью метода ядерных фотоэмульсий исследовать процесс генерации нуклонных изобар из взаимодействия (P-N).

Фотоэмульсионная стопка Ильфорд G-5 толщиной 600 мк облучалась протонами церновского синхротрона с импульсом 24 Гэв/с при наличии магнитного поля с напряженностью $H \simeq 180$ Кис. Поиск событий-взаимодействий—проводился просмотром вдоль следа первичного протона. Было выделено 180 взаимодействий, удовлетворяющих критериям $n_h \leqslant 3$, $n_g \leqslant 1$. Импульс и знак заряда вторичных частиц определялись по отклонению следа частицы в магнитном поле. Таким образом было обработано $\gtrsim 800_0^{\prime}$ следов вторичных частиц, поэтому при расчете различных физических величин поправки на геометриче-

ский фактор не вводились. Подробности методической части эксперимента можно найти в работе [6].

Для группы надежно идентифицированных частиц (протона и т-мезонов), летящих в переднюю полусферу в СЦМ сталкивающихся нукдонов проводился расчет эффективных масс. На рис. 1а и 16 приведе-

Рис. 1. Распределение эффективных масс комбинаций P с одним или несколькими π -мезонами для звезд с а) n < 5; 6) n < 5; в) распределение эффективых масс всевозможных комбинаций $P\pi$ из реакций $P+N \rightarrow N+N+\pi+\pi$ совместно с фазовыми кривыми.

ны эффективные массы частиц; $P\pi^+$ отмечены крестиками, $P2\pi - кру$ $жочками и <math>P3\pi - треугольниками для взаимодействий с малой <math>n \ll 5$ (рис. 1а) и большой n > 5 (рис. 16) множественностями, $n = n_s + n_g$. На рисунках наблюдаются максимумы при значениях $M_{P\pi}$ в интервале 1,1+1,3 Γ_{98}/c^2 , $M_{P\pi}$ в интервале 1,5-1,7 Γ_{98}/c^2 . Из 55 значений эффективных масс в 29 случаях P и π -мезон вылетают в виде узких струй с углом разлета $\leq 4,0^\circ$ в л.с.к., указанные значения отмечены на рисунке штрихами. На рис. 16 отложены 73 значения эффективных масс, полученных для звезд с большой множественностью, n > 5. Как видно, с увеличением множественности появляются большие значения $M_{вф\phi}$. Указанные события характеризуются также большие значением квадрата 4-х мерного передаваемого импульса. В данной работе события с большия значением $M_{в\phi\phi}$ не анализировались ввиду малой статистики. Изучение их представляет интерес с точки зрения генерации тяжелых изобар в высокоэнергичных взаимодействиях. Наличие изобар в высокоэнергичных взаимодействиях может быть обнаружено при сравнении распределения эффективных масс всевозможных комбинаций частиц, скажем $P\pi$, с фазовой кривой, рассчитанной для конкретной реакции. С этой целью для реакции $P + N \rightarrow$ $\rightarrow N + N + \pi + \pi$ проводился расчет эффективных масс комбинаций $P\pi$. На рис. 1в приводится распределение $M_{\rm sph}$ совместно с фазовой кривой, рассчитанной с учетом генерации одного π° , $N_{\pi^{\circ}} = 1,0$ или двух π° , $N_{\pi^{\circ}} = 2,0$. Фазовая кривая расходится с гистограммой: изобара 1,24 Гэв/с выделяется из взаимодействия. Распределение эффективных масс комбинаций частиц $P\pi\pi$ из той же реакции довольно широкое и $\simeq 70^{\circ}/_{\circ}$ значений лежат между 1,5—1,7 Гэв/с². Разделить изобары с массой 1,5 и 1,7 Гэв/с³ не удалось вследствие малой статистики.

Наконец, делалась попытка выделить пл-резонансные состояния из взаимодействия. В распределении по эффективным массам пл-частиц резонансные состояния не выделяются. Аналогичный результат получен при тех же первичных энергиях в экспериментах в водородной камере [5].

Для частиц $P\pi^+$, $P\pi^-$ с эффективной массой в интервале 1,13— 1,30 Гэв/с² строились распределения по γ^* —лоренц-фактору изобары в лабораторной системе координат, рис. 2а ($P\pi^+$) и 26 ($P\pi^-$). Распре-

Рис. 2. Распределение по γ^* -фактора изобары 1,24 Гзе/с²: а) для изобары $P\pi^+$ б) для изобары $P\pi^-$.

деление по множественностям взаимодействий, в которых происходит генерация быстрых ($\gamma^* > 10$) и медленных ($\gamma^* < 10$) изобар приводится на рис. 3. Как видно, быстрая изобара генерируется в малых звездах, средняя множественность $\langle n_{s} \rangle = 3,1\pm0,70$, а медленная изобара ра — в больших звездах, средняя множественность $\langle n_s \rangle = 5,5\pm1,20$ (указанные ошибки статистические).

По нашим данным [6] средний импульс протона уменьшается с увеличением множественности, в то время как средний импульс π-мезонов как положительных, так и отрицательных остается без изменения. Лоренц-фактор изобары определяется в основном лоренц-фактором протона.

Быстрая и медленная изобары с массой 1,24 Гэв/с² различаются не только множественностью взаимодействия, где они генерируются,

Рис. 3. Распределение по множественности взаимодействий, где происходит генерация изобары $1,24 \ \Gamma se/c^2$ $\gamma^* < 10$ и $\gamma < 10$.

Рис. 4. Угловое распределение вторичных протонов и π -мезонов в системе покоя изобар: а) для $\gamma^* > 10$; 6) для $4 < \gamma^* < 10$.

но еще и угловым распределением вторичных P и π-мезона в системе покоя изобары. На рис. 4а и 46³ отложены углы вылета протонов сплошная гистограмма и π-мезонов — пунктирная гистограмма в системе покоя изобары 1,24 $\Gamma s / c^2 c \gamma^* > 10$ (рис. 4a) и $\gamma^* < 10$ (рис. 4b). Из рис. 4а видно, что угловое распределение протонов и π-мезонов анизотропно, но симметрично относительно значения $\theta^* = \pi/2$, распределение согласуется с кривой, проведенной в предположении спина изобары 3/2. Для ориентированного спина 3/2 угловое распределение вторичных протона и π-мезона в системе покоя изобары имеет вид $1+3 \cos^2 \theta^*$. По рис. 46 угловое распределение частиц асимметрично и анизотропно, причем протоны летят назад, а π-мезоны — вперед в системе покоя изобары.

Изобары с эффективной массой в интервале 1,40–1,60 Γ эв/с² и 1,61–1,78 Γ эв/с² могут иметь каскадный распад $M^* \rightarrow (P\pi) + \pi_1$, причем эффективная масса комбинации ($P\pi^{\pm}$) попадает в интервал 1,13– 1,39 Γ эв/с². На существование таких распадов указывалось в докладе Гольдхабера [7]. Каскадность распада изобары может быть отражена в распределении по углу разлета вторичных π -мезона и протона, при⁻ чем угол $\hat{P}\pi$ от распада легкой изобары должен быть меньше, чем угол между протоном и первым π_1 -мезоном от распада $M^* \rightarrow (P\pi) + \pi_1$. Согласно кинематике соударения максимальный угол разлета вторич-

2 Известия АН АрмССР, Физика, № 6

ных π-мезонов и протона в лабораторной системе координат определяется массой изобары M* и ее импульсом P_I в Λ-системе.

$$\sin \theta^*_{\max 1, 2} = \frac{M^* P^*}{m_{1, 2} P_1},$$

где индексы 1, 2 относятся к частицам с массами m_1 , m_2 , P^* —импульс частиц в системе покоя изобары:

$$P^* = \frac{1}{2M^*} \sqrt{(M^{*2} - (m_1 + m_2)^2)(M^{*2} - (m_1 - m_2)^2)}.$$

При распаде изобар $M^* = 1,51 \ \Gamma_{\Im B}/c^2$ и 1,71 $\Gamma_{\Im B}/c^2$ на легкую изобару $M^* = 1,24 \ \Gamma_{\Im B}/c^2$ и π -мезон, угол вылета π -мезона будет равен 9° и 14° соответственно, а угол вылета π -мезона при последующем распаделегкой изобары — 7° и 7,5°.

На рис. 5а и 56 показаны распределения углов вылета для 26 *т*-мезонов из 13 событий ($P\pi^+\pi^-$) с $P_1 > 20$ Гэв/с. Из них в 4-х слу

Рис. 5. Распределение по углу разлета π-мезон-протон для $P\pi^+\pi^-$ с эффективной массой в интервале: a) 1,4—1,6 Гэв/с²; 6) 1,6—1,78 Гэв/с².

чаях угол вылета одного из π -мезонов оказался >8°. Углы [частиц в лабораторной системе координат измерялись с точностью $\simeq 0,5^{\circ}$. [Таким образом, по крайней мере примерно, в $30^{\circ}/_{\circ}$ случаев распад изобары происходит, по-видимому, по каскаду.

Экспериментальный материал, использованный в данной работе, был получен фотогруппой лаборатории Космических лучей ФИАН СССР при участии автора в просмотре и обработке звезд. Автор выражает благадарность Г. Б. Жданову и М. И. Третьяковой за разрешение публиковать полученные результаты, а также всем сотрудникам и лаборанткам, принимавшим участие в обработке материала. Интерпретация этого материала лежит целиком на ответственности автора.

В заключение хочется выразить благодарность В. М. Харитонову за внимание и помощь в работе.

Ереванский физический институт

Поступила 19.11.1969

ЛИТЕРАТУРА

- 1. E. W. Anderson, E. I. Blaser et. al., Phys. Rev. Lett. 16, 855 (1966).
- 2. G. Cocconi, E. Lellethun et. al., Phys. Lett., 8, 134 (1964).
- 3. D. Dekkers, I. A. Geibel et. al., Phys. Rev., 137, B962 (1965).
- 4. S. P. Almeida, H. W. Atherton et. al., Phys. Lett., 14, 240 (1965).
- 5. S. Nillson, F. Breivik et. al., Nuovo Cim., 43A, 716 (1966).
- 6. Д. А. Галстян, Г. Б. Жданов, М. И. Третьякова, М. Н. Щербакова, М. М. Чернявский, ЖЭТФ, 51, 417 (1966).
- 7. G. Goldhaber et. al., Труды Международной конференции по физике высоких энергий, Дубна, 1964.

ՆՈՒԿԼՈՆԱՅԻՆ ԻԶՈԲԱՐՆԵՐԻ ԳԵՆԵՐԱՑՈՒՄԸ 24 ԳԷվ/շ ԻՄՊՈՒԼՍ ՈՒՆԵՑՈՂ ՊՐՈՏՈՆՆԵՐԻ ԵՎ ՖՈՏՈԷՄՈՒԼՍԻԱՑԻ ՄԻՋՈՒԿՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ԺԱՄԱՆԱԿ

2. U. AULUSSUL

Пипийишериվше է իզորшривер цийершали (p-N) фарицаран Вийе сталийица и иска за право право с право

GENERATION OF THE NUCLEON ISOBAR IN INTERACTION OF 24 GEV/c MOMENTUM PROTONS WITH THE NUCLEUS OF PHOTOEMULSION

G. A. GALSTIAN

The isobar generation in p-N interaction with 24 Gev/c momentum was investigated by means of the nuclear photoemulsion method in a strong magnetic field. An isobar of 1.24 Gev/c²; was observed. The angular distribution of P and π -meson from N^* (1.24 Gev/c²) with $\gamma^* > 10$ in C.M.S. is symmetrical and anisotropical, which agrees with spin 3/2 for the isobar. The angular distributions of slow isobar ($\gamma^* < 10$) decay are asymmetrical, protons being ejected backward, but π -mesons forward.