ИССЛЕДОВАНИЕ МОЛЕКУЛЯРНОЙ РЕЛАКСАЦИИ В ГИДРОХЛОРИРОВАННОМ НАТУРАЛЬНОМ КАУЧУКЕ

Ю. К. КАБАЛЯН, Е. А. АМАТУНИ, Л. А. ПЕТРОСЯН, И. С. БОШНЯКОВ и Л. Г. МЕЛКОНЯН

На примере гидрохлорированного натурального каучука (ГХНК) изучено влияние химического состава и структуры мовомерного звена на протекающие процессы молекулярной релаксации в полимерах.

Показано, что присоединение атома хлора и метильной группы к основной углеродной цепи полимера приводит к смещению областей обнаружения дипольно-групповой и дипольно-сегментальной релаксации в сторону положительных температур, при этом возрастают также энергии активации соответствующих релаксационных процессов.

Известно [1], что молекулярная подвижность в полимерах как в стеклообразном, так и в высоковластическом состояниях определяется его химическим составом, структурой мономерного звена, способом их сочленения и т. д.

В предыдущих работах [2-4] нами было показано, что увеличение количества атомов хлора на монозвено приводит к изменению всех релаксационных параметров полидиенов.

Одновременно известно, что введение атома хлора в макромолекулу натурального каучука (гидрохлорирование) придает полимеру ряд специфических свойств, и это дает возможность еще больше расширить область его применения.

В настоящей работе приведены результаты исследования молекулярной релаксации в гидрохлорированном натуральном каучуке (ГХНК), структурная формула которого, согласно [5], следующая:

$$\begin{bmatrix} H & H & H \\ -C & -C & -C & -C \\ H & H & H \end{bmatrix}_{a}.$$

Изучаемый полимер (ГХНК) отличается от полихлоропрена (ПХП) отсутствием двойных связей в основной цепи и наличием метильной группы (—СН₃), непосредственно соединенной с основной цепью (табл. 1).

От гутаперчи (транс-полиизопрен) ГХНК отличается наличием атома клора, присоединенного к основной цепи, и отсутствием также двойных связей (табл. 1). Сравнение ГХНК с ПХП и гутаперчей дает возможность проследить за влиянием как химического состава, так и структуры мономерного звена на протекание релаксационных процесов и в конечном итоге на молекулярную подвижность.

Экспериментальная часть

Гидрохлорированный НК получали пропусканием газообразного клористого водорода через раствор натурального каучука. Процесс останавливали при присоединении $\sim 30-31^{\circ}/_{\circ}$ хлора. Однако нельзя быть уверенным, что гидрохлорированный НК не включает незначительные циклические участки или двойные связи, так как количество хлора, найденное аналитически, всегда ниже ($\sim 34^{\circ}/_{\circ}$) теоретически рассчитанного значения.

Полученный полимер дважды растворялся в хлористом метилене и осаждался этиловым спиртом, после чего высушивался до полного удаления растворителя (10^{-2} рт. ст. и $\div 50^{\circ}$). Очищенный таким образом полимер снова растворяли в хлористом метилене (3° /₀) и отливали пленки толщиною $50 \div 100$ микрон на поверхности ртути.

Очищенный таким образом гидрохлорид НК имел следующие показатели $d_{\perp}^{20}-1,16~2p/c$ m^3 и $n_{\rm D}^{20}-1,4840$.

Методика и приборы для измерения диэлектрических характеристик (ϵ' и tg δ) описаны в работе [2].

Результаты и их обсуждение

На рис. 1 и 2 приведены частотные зависимости ϵ' и $\epsilon''=\epsilon'\cdot tg$ δ для гидрохлорида НК в широком температурном интервале (—65÷ + 70°).

В области низких температур $(-40 \div +5^\circ)$ (рис. 1) в ГХНК наблюдается прохождение коэффициента потерь ϵ'' через максимум и

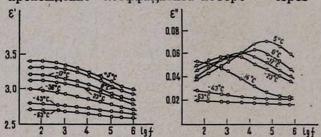


Рис. 1. Зависимость диэлектрической проницаемости (ϵ') и коэффициента потерь (ϵ'') ГХНК от частоты при различных температурах (низкотемпературная релаксация).

падение диэлектрической проницаемости в'. Такое поведение величин в" и в' в ГХНК ниже температуры стеклования свидетельствует о наличии движения отдельных групп атомов. Кинетическими элементами такого рода в ГХНК являются, по всей вероятности, диполи С—С1 с некоторыми частями основной цепи, которые совершают тепловые колебания относительно некоторых фиксированных положений равновесия.

При изучении дивлектрической релаксации в нормальных клор-производных полиалкилметакрилатов в стеклообразном состоянии Мижайлов и Борисова показали [6], что замещение водорода главной це-

пи группой CH_3 или атомом хлора увеличивает времена реликсации кинетической единицы, смещая область $\mathrm{tg}\ \delta_{\mathrm{M}}$ в сторону высоких температур.

Аналогичные результаты наблюдаются также при сравнении ди-

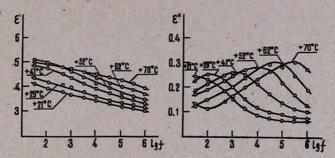


Рис. 2. Зависимость є' и є" ГХНК от частоты при различных температурах (высокотемпературная релаксация).

польно-групповой релаксации в ГХНК и в полихлоропрене [2]. Стерические препятствия, создаваемые метильной группой, а также равноценным по объему атомом хлора в ГХНК, приводят к увеличению времени релаксации кинетических единиц и смещению дипольно-групповой релаксации в область высоких температур.

Как видно из рис. 1, в ГХНК с ростом температуры наблюдается смещение максимума коэффициента потерь ($\epsilon_{\rm M}$) в сторону высоких частот с его одновременным ростом.

В области высоких температур (рис. 2) в ГХНК наблюдается дипольно-сегментальная релаксация, при которой в опять проходит через максимум, а в падает с частотой.

Однако ϵ_{M} дипольно-сегментальной релаксации ГХНК в отличие от полихлоропрена [2] с ростом температуры в рассматриваемом частотном интервале несколько растет. Со стороны низких частот при высоких температурах также наблюдается увеличение ϵ'' за счет роста ионной проводимости.

В табл. 1 приведены для сравнения температурные области обнаружения дипольно-сегментальных потерь $(t_{\partial cn})$ ГХНК, полихлоропрена [2] и натуральной гуттаперчи [7]—в изученном частотном интервале.

Если замена метильной группы у двойной связи атомом хлора (гуттаперча-полихлоропрен) очень незначительно смещает область дипольно-сегментальной релаксации (табл. 1), то в ГХНК эта область сильно смещена в сторону положительных температур. Метильная группа и атом хлора непосредственно связанные с атомом углерода основной цепи макромолекулы ГХНК приводят к увеличению как межмолекулярных взаимодействий, так и стерических препятствий, результатом которой и является смещение области дипольно-сегментальной релаксации в сторону положительных температур. Таким образом, в ряду гуттаперча—полихлоропрен—гидрохлорид НК происходит умень-

		Таблица 1	
Полимеры	Структура монозвена	°C	T'g °C
1. Гуттаперча	CH ₃ H H -C- C= C-C- H H H	-50÷ +30	-70*
2. Полихлоропрен	H H H -C-C=C-C- H HI H	-40÷ +10	-40
3. Гидрохлорид НК	CH ₃ H H H -C-C-C-C-H H H CI	-25÷ +70	+12

* Значение T_p определено дилатометрически.

шение кинетической гибкости и смещение области высококовластического состояния в сторону положительных температур.

Наличие атома хлора в ГХНК одновременно приводит к увеличению дивлектрической проницаемости и тангенса угла дивлектрических потерь. Так, например, ε' для натурального каучука при f=10 кгу равен 2,5, а tg δ — 0,006 [8], тогда как для гидрохлорида НК имеем соответственно 4,0 и 0,075.

Экспериментальные данные температурной зависимости ($lg f_{\rm M}$) частоты, при которой имеем максимальное значение ϵ'' дипольно-групповой релаксации ГХНК, ложатся на прямую (рис. 3).

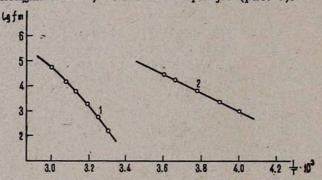


Рис. 3. Зависимость $\lg f_{\rm M}$ от $\frac{1}{T}$ дипольно-сегментальных (1) и дипольно-групповых (2) потерь ГХНК.

Однако для дипольно-сегментального процесса зависимость $\lg f_{\rm M} - \varphi \left(\frac{1}{T} \right)$ (рис. 3) не прямолинейна, наклон ее с повышением температуры уменьшается. Из зависимости $\lg f_{\rm M} - \varphi \left(\frac{1}{T} \right)$ были определены значения теплоты активации (Δ H) для ГХНК согласно соотно-

ш шениям теории абсолютных скоростей реакций Эйринга [9]. В табл. 2 п приведены значения ΔH для ГХНК дипольно-групповой и при $+30^\circ$, для дипольно-сегментальной релаксаций. В табл. 2 для сравнения приведены также значения ΔH полихлоропрена [2]. Экстраполяция зависимости $\lg f_{\rm M} - \varphi\left(\frac{1}{T}\right)$ к $\lg f_{\rm M} = 0$ при дипольно-сегментальной релак-

Таблица 2

Полимер	∆Н _{дгп} ккал/моль	∆Н _{деп} ккал/жоль
гхнк	14,0	46,0
пхп	12,0	41,0 (при-29°)

сации дает возможность определить температуру, при которой начинается сегментальная подвижность (T_g') .

Данные таблицы 1 и 2 показывают, что в полидиенах (ПХП) присоединение к основной углеродной цепи метильной группы, (ГХНК) приводит к росту кинетической внергии, необходимой для начала сегментальной подвижности, т. е. к возрастанию дивлектрической температуры стеклования.

Проведенные исследования молекулярной релаксации в ГХНК показали, что гидрохлорирование натурального каучука хлористым водородом по двойным углеродным связям основной цепи приводит к смещению высоковластического состояния получаемого полимера в область положительных температур. Такой результат свидетельствует о том, что молекулярная подвижность полимера обусловлена как заторможенностью вращения метильных групп и атомов хлора, так и их взаимодействием. При этом определяющее влияние имеет также отсутствие в основной цепи двойных связей.

ВНИИПолимер

Поступила 31.V.1968

A H T E P A T Y P A

- 1. Г. П. Михайлов, Т. И. Борисова, Успехи физ. наук, 83, 61 (1964).
- 2. Ю. К. Кабалян, Р. В. Багдасарян, Л. Г. Мелконян, Арм. хим. ж., 19, 909 (1955)...
- 3. Ю. К. Кабалян, Л. Г. Мелконян, Ученые зап. ЕГУ, № 2, 26 (1967).
- И. К. Кабалян, А. С. Мартарян, И. С. Бошняков и Л. Г. Мелконян, Изв. АН. АрмССР, Физика 3, № 2 (1968).
- 5. G. W. Bunn, E. V. Garner, J. Chem. Soc., 654 (1942).
- 6. Г. П. Михайлов, Т. И. Борисова, Высокомол, соед. 6, 1785 (1964).
- 7. Г. П. Михайлов, Б. И. Сажин, Высокомол, соед., 1. 9 (1959)
- 3. Г. П. Михайлов, Б. И. Сажин, Высокомол. соед., 1, 29 (1959).
- 9. С. Глестон, К. Лейдер, Г. Эйринг, Теория эбсолютных скоростей реакций. ИИЛ... М., 1948.

ՄՈԼԵԿՈՒԼՅԱՐ ՌԵԼԱԿՍԱՑԻԱՑԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ՀԻԴՐՈՔԼՈՐԱՑՎԱԾ ԲՆԱԿԱՆ ԿԱՈՒՉՈՒԿՈՒՄ

Ցու. Կ. ԿԱԲԱԼՑԱՆ, Ե. Ա. ԱՄԱՏՈՒՆԻ, Լ. Ա. ՊԵՏՐՈՍՑԱՆ, Ի. Ս. ԲՈՇՆՑԱԿՈՎ, Լ. Գ. ՄԵԼՔՈՆՑԱՆ

Հիդրոթլորացված բնական կաուչուկի օրինակով ուսումնասիրված է քիմիական կազմի և "մոնոմերային շղթայի կառուցվածքի ազդեցությունը պոլիմերներում մոլեկուլյար ռելակսացիա--ների վրա։

Ցույց է արված, որ քլորի ատոմի և մեβիլային խմբի միացումը պոլիմերի գլխավոր շղթային բերում է դիպոլ-խմբային և դիպոլ սեղմենտային ռելակսացիաների ջերմաստիճանային տիրույթների տեղափոխմանը։ Միաժամանակ մեծանում են համապատասխան ռելակսացիոն պրոցեսների ակտիվացման էներգիաները։

STUDY OF MOLECULAR RELAXATION IN HYDROCHLORINATED NATURAL RUBBER

J. K. KABALIAN, E. A. AMATUNI, L. A. PETROSSIAN, I. S. BOSHNIAKOV and L. G. MELKONIAN

The effect of polarity and steric factor on the processes of molecular relaxation in a polymer was studied on the example of hydrochlorinated natural rubber.

It was shown that the addition of a chlorine atom to a polydiene monomer unit caused the displacement of dipole-group and dipole-segmental relaxations to the positive temperatures. Simultaneously the activation energies of coresponding relaxation processes increase.