К ТЕОРИИ СТАТИЧЕСКОЙ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ ДЛИННЫХ ДИОДОВ, РАБОТАЮЩИХ В РЕЖИМЕ ДВОЙНОЙ ИНЪЕКЦИИ. ЧАСТЬ II

г. м. авакьянц, ш. каниязов

Численно анализируются распределение напряженности электрического поля и статические вольт-амперные характеристики сверхдлинных диодов, изготовленных из компенсированного полупроводника. Определяется влияние незаполненных компенсирующих акцепторов на свойства диода.

Введение

В работе [1] показано, что незаполненные электронами глубоколежащие акцепторы в полупроводнике *n*-типа могут привести к появлению падающего участка на вольт-амперной характеристике (ВАХ) диода даже в случае, когда объемный заряд не учитывается. В настоящей заметке будем интересоваться именно этим механизмом отрицательного сопротивления (ОС). Поэтому мы выбираем параметры $p = \frac{N_n}{\alpha}$ и $n = \frac{n_1 N_d}{\alpha^2} \left(\alpha = \frac{D}{u e_p \tau_p} \right)$ так, чтобы влияние объемного заряда на статические свойства диода было бы несущественным, а значительное влияние оказали бы незаполненные акцепторные уровни.

В первой части работы [2] исследовались статические свойства диода, когда ток ограничивается объемным зарядом.

В уравнении (4) [2] член со второй производной и отрицательный член в круглой скобке появляются в результате учета объемного заряда. Чтобы эти члены были меньше других членов, должны выполняться

$$\eta^2 \frac{d^2 \eta}{dt^2} \ll n \eta^2 \frac{d\eta}{dt}, \frac{d\eta}{dt}$$
 (1)

(2)

Обращаясь к (1), на основе итерационного метода анализа можно установить при каких значениях p и n уравнение (4) в [2] имеет решение, удовлетворяющее (1). Однако условие (1) не имеет места во всей протяженности базы, так как распределение поля проходит через максимум. Тогда выбирая p и n так, чтобы максимум поля при любых значениях тока находился вблизи второго контакта, можно достичь того, чтобы член со второй производной в уравнении (4) в [2] не являлся определяющим. Оказывается для этого достаточно, чтобы

$$4p < n$$
.

В [1] установлено, что вольт-амперная характеристика диода при (2) имеет участок отрицательного сопротивления, причем ток и напряжение срыва определяются формулами (в наших обозначениях) Вольт-амперная характеристика длинных диодов

$$\frac{J_0}{J_m} = \frac{p}{2\ln \frac{p^2}{d}}, \quad J_m = 2eu_n \,\alpha \frac{V_{\min}}{d}, \quad (3)$$

$$\frac{V_{\max}}{V_{\min}} = \sqrt{\frac{3}{4} \frac{p^2}{n \ln \frac{p^2}{n}}}, \quad V_{\min} = \frac{d^2}{2u_p \tau_p}.$$
 (4)

Таким образом, если концентрация незаполненных центров кроме условия (2) удовлетворяет неравенству

$$\frac{3}{4} \frac{p^2}{n} \frac{1}{\ln \frac{p^2}{n}} > 1,$$
(5)

то их наличие в п-полупроводнике приведет к появлению ОС на ВАХ.

Вольт-амперные характеристики

а). Напряжение и ток срыва

Задавая различные значения p и n, удовлетворяющие условиям (2) и (5), численно^{*} определяем ВАХ. При этом применяем метод, развитый в [2]. Задавая η_{max} , решаем (4) в [2] в фазовом пространстве, потом из граничных условий (5) определяем соответствующий ему ток. Падение напряжения вычисляем по формуле (10) (уравнения (4), (5), (10) см. в [2]).

Из вольт-амперной характеристики, определенной численным методом, следует, что характеристика имеет падающий участок, переходящий в вертикальный при больших токах. Отношение максимального напряжения к минимальному является функцией p и n. Обозначив эту функцию через $\frac{V_{max}}{V_{min}}$ (p, n), приведем некоторые ее численные значения:

$$\frac{V_{\text{max}}}{V_{\text{min}}} (5 \cdot 10^2, 2 \cdot 10^3) = 3,8 (4,4), \ \frac{V_{\text{max}}}{V_{\text{min}}} (10^3, 4 \cdot 10^3) = 5,2 (5,8),$$

$$\frac{V_{\text{max}}}{V_{\text{min}}} (10^3, 10^4) = 3,55 (4,03), \qquad (6)$$

$$\frac{V_{\text{max}}}{V_{\text{min}}} (10^2, 4 \cdot 10^2) = 2,1 (2,4), \ \frac{V_{\text{max}}}{V_{\text{min}}} (10^2, 10^3) = 1,6 (1,8),$$

$$\frac{V_{\text{max}}}{V_{\text{min}}} (10^3, 5 \cdot 10^4) = 1,58 (1,65).$$

Числа в скобках есть величины, вычисленные по (4). Из (6) видно, что они отличаются на ~10% от тех, что были определены чис-* Вычислительная работа была выполнена в ВЦ АН АрмССР и ЕрГУ на ЭВМ "Раздан-2".

389

Г. М. Авакьянц, Ш. Каниязов

ленно. Уточнение (4) на основе численного решения показывает, что перед корнем квадратным появляется коэффициент, слабо зависящий от *p* и *n* и равный по величине примерно 0,86.

Из (3) видно, что ток поворотной точки тоже зависит от p и n. Обозначив этот ток через $\frac{J_0}{J_m}$ (p, n), приведем его значения, определенные численно и по (3):

$$\frac{J_0}{J_m} (5 \cdot 10^2, 2 \cdot 10^3) = 59,01 (51.75), \frac{J_0}{J_m} (10^3, 4 \cdot 10^3) = 95,5 (90,6),$$
$$\frac{J_0}{J_m} (10^3, 10^4) = 110 (109),$$
$$\frac{J_0}{J_m} (10^2, 4 \cdot 10^2) = 16 (15,5), \quad \frac{J_0}{J_m} (10^2, 10^3) = 25 (22),$$
$$\frac{J_0}{J_m} (10^3, 5 \cdot 10^4) = 170 (167). \tag{7}$$

Отсюда можно заметить, что ток срыва, вычисленный по (3) (числа в скобках в (7)), с точностью 90% совпадает с определенным численно. Нетрудно заметить, что $\frac{J_0}{J_m}$ почти пропорционально растет с ростом p, тогда как при $p \ll 100$ и $n \ll 40$ (см. в [2]) почти не зависит от p.

Воспользовавшись обозначением $\eta_{\max} = \frac{eu_n \alpha E_{\max}}{J}$, определение $\frac{J}{eu_n E_{\max}}$ при токе срыва показывает, что падающий участок начинается тогда, когда еще имеет место $\frac{J}{eu_n E_{\max}} < N_n$. Это означает, что концентрация электронов в максимуме поля (около срыва ВАХ) по порядку величины еще остается меньше, чем концентрация незаполненных акцепторов.

Определение минимального напряжения по развитым в [2] методам показывает, что вертикальному участку соответствует напряжение $V_{\min} = \frac{d^2}{2u_n \tau_n}$, которое не зависит от *p* и *n*.

Отметим, что при значениях *р* и *n*, удовлетворяющих (2) и (5), вычислять напряжение и ток срыва по интерполяционным формулам (11) и (12) в [2] нельзя. Во-первых, если вычислять по тем же формулам, то при рассмотренных нами *р* и *n* получаются величины, отличающиеся на >50% от предельного значения $\frac{V_{\text{max}}}{V_{\text{min}}}$. Во-вторых, ха- V_{max} /0

рактер зависимости $\frac{V_{\text{max}}}{V_{\text{min}}}$ и $\frac{J_0}{J_m}$ от *р* и *п* сильно отличается от (11) и

(12) в [2]. Особенно это относится к $\frac{\int_0}{\int_m}$. Как известно из (12) в [2], ток срыва почти не зависит от *p*, тогда как при *p* и *n*, удовлетворяющих (2) и (5), он почти пропорционально зависит от *p*.

б). Характеристики, предшествующие напряжению срыва

На основе соотношения между током и напряжением, установленным численно, выявим некоторые закономерности для отдельных участков вольт-амперной характеристики.

При малых токах характеристика подчиняется закону Ома. Введя безразмерную проводимость $\sigma_{0M}(p, n) = \frac{\Delta J/J_m}{\Delta \frac{V}{V_{min}}}$, определим зависи-

мость $\sigma_{0M}(p, n)$ от p и n. Оказалось, что σ_{0M} при рассмотренных значениях p и n определяется формулой $\sigma_{0M}(p, n) = 0,575 \frac{n}{p}$. Следовательно, при малых токах имеет место

$$\frac{J}{J_{\rm m}} = 0,575 \frac{n}{p} \frac{V}{V_{\rm min}} \,. \tag{8}$$

Обозначив коэффициент пропорциональности между $\frac{J}{J_m}$ и $\left(\frac{V}{V_{\min}}\right)^2$ через σ_k , установим зависимость последнего от *p* и *n*. Полученное нами значение σ_k при всех *p* и *n* подчиняется формуле $\sigma_k = k_1 \frac{n}{p}$, причем коэффициент k_1 очень слабо зависит от тока и *p*, *n*. Поэтому, усреднив значение k_1 , получаем $k_1 \approx 0,58$. Тогда закон $J \sim V^2$ определяется формулой

$$\frac{J}{J_{\rm m}} = 0.58 \frac{n}{p} \left(\frac{V}{V_{\rm min}}\right)^2. \tag{9}$$

Принимая точку пересечения двух интерполяционных формул (8) и (9) как границу между линейной и квадратичной зависимостью тока от напряжения, можно убедиться в том, что эта граница слабо зависит от p и n. Верхняя же граница закона $J \sim V^2$ по напряжению в рассмотренных случаях почти доходит до напряжения срыва, тогда как при относительно малых p и n (p < 100, n < 40) эта граница находится на расстоянии меньшем 0,6 V_{max} . Интервал токов, где наблюдается $J \sim V^2$ при больших p и n, будет порядка, $1 \div 1,5$.

в). Отрицательное сопротивление

При всех рассмотренных *р* и *п* наблюдается падающий участок, переходящий в вертикальный участок. Две из таких характеристик определенные при

В отличие от рассмотренных в [2] случаях максимальное значение отрицательного сопротивления при больших p(p>100) и n(n>4p) бу-

ак p(p>100) и n(n>4p) будет больше, чем его значение при p < 100 и n < 40. Например, при $p = 10^3$ и $n = 10^4$ ток и напряжение срыва будут соответственно 110 J_m и 3,55 V_{\min} , а потом, так как ток возрастает в 6—7 раз, напряжение уже уменьшится до напряжения "вертикали".

Вольт-амперная характеристика при больших токах, соответствующих предвертикальному участку, включая и участок "вертикали", с большой точностью описывается формулой

$$\frac{V}{V_{\min}} = \frac{2}{x_0^2} (e^{x_0} - 1 - x_0), \quad (10)$$

Рис. 1. Статические вольт-амперные характеристики 1-p=10³; n=10⁴; 2-p=10³, n=4.10³.

где $x_0 = \frac{N_n}{\alpha} \frac{J_m}{J}$. Исходя из численного соотношения между током и напряжением, можно показать, что формула (10) имеет место при больших

токах, начиная с точки перегиба кривой J = f(V), если "2" заменить на " $2\left(1 - \frac{1}{2} \cdot \frac{J_0}{J_m}\right)$ ", где J_0 — ток срыва.

Таким образом, мы видим, что полный ход ВАХ начинается с участка закона Ома, после которого следует $J \sim V^2$ почти до напряжения срыва. После закона $J \sim V^2$ до точки перегиба ВАХ в области ОС имеет место более сложная зависимость тока от напряжения. В этой переходной области распределение точек характеристики подчиняется функции с "параболической" зависимостью.

Следует отметить, что ВАХ, определенная решением (1) (см. [2]) без отрицательного члена в круглой скобке, почти не отличается от характеристики, определенной с учетом этого члена в (1). Это связано с тем, что выбор параметров p и n, удовлетворяющих условиям (3) и (5), приводит к тому, что члены, учитывающие объемный заряд в (1), становятся много меньше других членов и они на характеристику влиять почти не будут.

Распределение поля

Определим распределение поля по базе диода для токов, соответствующих областям закона Ома, $J \sim V^2$ и области отрицательного сопротивления характеристики. На рис. 2 приведено распределение поля по базе диода при значениях тока 3,1 J_m , 7,4 J_m , 12,2 J_m , 28,5 J_m и 43,4 J_m . Из этого рисунка видно, что при малых токах, соответствующих участку закона Ома, напряженность электрического поля распределена почти равномерно (кривые 1,2). С ростом тока происходит заметное отклонение от равномерного распределения поля (кривые 3, 4, 5) и при больших токах, соответствующих участку $J \sim V^2$, максимум поля еще находится вблизи второго тылового контакта, а в области базы, примыкающей к $p^+ - n$ -переходу, величины поля намного меньше максимальной (E_{max}). В области положительного сопротивления E_{max} возрастает с ростом тока, а после переключения в падающем участке рост E_{max} по току сменяется уменьшением

Рис. 2. Распределение напряженности электрического поля в толще диода при

$$p=10^{3}, n=4.10^{3}, 1-\frac{J}{J_{m}}=3, 1,$$

$$2-\frac{J}{|J_{m}}=7,4, 3-\frac{J}{J_{m}}=12,2,$$

$$4-\frac{J}{J_{m}}=28,5, 5-\frac{J}{J_{m}}=43,4.$$

$$p=10^{3} \text{ m } n=4.10^{3}, \ 1-\frac{J}{Jm}=895,$$
$$2-\frac{J}{Jm}=585, \ 3-\frac{J}{Jm}=330.$$

(рис. 3). На рис. З приведены распределения поля при токах, соответствующих участку отрицательного сопротивления. Откуда ясно, что максимум поля находится вблизи второго контакта, причем в большей части базы со стороны контакта p^+n -величины поля намного меньше его максимального значения. Это означает, что с ростом уровня инъекции дырок из p^+n -перехода происходит значительная модуляция сопротивления, главным образом, в первой половине базы. В свою очередь инъекция электронов из nn^+ -перехода в полупроводник приведет к уменьшению напряженности электрического поля около второго тылового контакта.

ЛИТЕРАТУРА

1. Г. М. Авакянц, Известия АН АрмССР, Физика, 1, 4, 248 (1966) 2. Г. М. Авакьянц, Ш. Каниязов, Известия АН АрмССР Физика, 2, 5, 291 (1967).

ԿՐԿՆԱԿԻ ԻՆՑԵԿՑԻԱՅԻ ՌԵԺԻՄՈՎ ԱՇԽԱՏՈՂ ԵՐԿԱՐ ԴԻՈԴՆԵՐԻ ՍՏԱՏԻԿ ՎՈԼՏ–ԱՄՊԵՐԱՅԻՆ ԲՆՈՒԹԱԳՐԻ ՏԵՍՈՒԹՅԱՆ ՎԵՐԱԲԵՐՅԱԼ

Գ. Մ. ԱՎԱԳՏԱՆՑ, Շ. ԿԱՆԻՑԱՉՈՎ

Թվայնորեն բննարկվում են՝ էլեկտրական դաշտի լարվածության բաշխումը և կոմպենսացված բաղայով երկար դեոդների ստատիկ վոլտ-ամպերային բնութադրերը, Որոշվում է մինչև ինյեկցիայի սկիղբը չլրացված կոմպենսացնող ակցեպտորների ազդեցությունը դեոդի Հատկու– Բյունների վրա։

ON THE THEORY OF STATIC CURRENT-VOLTAGE CHARACTERISTIC OF LONG DIODES WORKING IN DOUBLE INJECTION MODE. PART. II

G. M. AVAKYANTS, SH. KANYAZOV

The electrical field tension distribution and the static current-voltage characteristics of the compensated base long diodes are analysed numerically. The influence of the compensating[acceptors, which are not filled before the injection, on the diode properties is determined.