Известия НАН РА, Науки о Земле, 2015, 68, № 3, 38-50

ГИДРОТЕРМАЛЬНЫЕ МЕТАСОМАТИТЫ АГАРАКСКОГО РУДНОГО ПОЛЯ

© 2015 г. М.А. Арутюнян

Институт геологических наук НАН РА,375019, Ереван, пр. Маршала Баграмяна 24а, Республика Армения E-mail: marah@geology.am Поступила в редакцию 30.06.2015г.

Проведенные на Агаракском рудном поле (Агаракское Cu-Mo м-ие) исследования позволили определить ареал распространения предрудных пропилитовых изменений, а также выделить особенности развития околорудных метасоматитов, представленных преимущественно кварц-серицитовыми породами. Изучение кристаллохимического и микрокомпонентного состава серицитов гидротермальных метасоматитов позволило проследить изменения их состава от ранних стадий минерализации (Cu-Mo), в которых они представленные Al-иллитами и реже Al-гидрослюдами, к поздним, где они представлены иллитами с высоким содержанием фенгита (Mg+Fe²⁺), а также фенгитовыми гидрослюдами. Парагенетическая последовательность изменения кристаллохимического состава серицитов указывает на тесную пространственно-временную связь филлизитовых и аргиллитовых изменений.

Цель работы. Несмотря на широкий спектр работ, посвященных геологическим условиям формирования Агаракского медно-молибденового месторождения, вопросы о соотношении масштаба предрудных пропилитовых изменений с собственно околорудными, а также о месте концентрированного рудоотделения в общей схеме метасоматического процесса и рудоносности отдельных метасоматических формаций, до сих пор являются актуальными. Последнее в значительной мере относится к комплексу филлизит-аргиллитовых изменений, характерных для медно-молибден-порфировых месторождений. Кристаллохимические и геохимические особенности состава серицитов разных формационных типов позволяют по изменению основных характеристик слюд проследить переход филлизитовых изменений в гидрослюдистые – аргиллитовые, уточнить место каолинизации в процессе рудообразования и дать оценку рудоносности аргиллитов.

Введение. Агаракское рудное поле с одноименным медно-молибденпорфировым месторождением и рудопроявлениями Карчеван, Курис находится в южном сегменте Памбак-Зангезурской металлогенической зоны, выделенной И.Г.Магакьяном, в осевой части наиболее опущенного блока Мегри-Тейской грабен-синклинали (Таян и др. 2007). Многочисленные исследования А.В.Кржечковского, Е.Г.Багратуни, В.Г.Грушевого, М.Ш.Русакова, Г.Н.Сластушевского, Н.А.Фокина, К.А.Карамяна, Н.А.Акопян, Г.О.Пиджяна, Г.Г.Шехяна, В.Е.Вартанесова, Р.Н.Таяна, Г.А.Мкртчяна и многих других, посвященные геологическому строению рудного поля, интрузивному магматизму, минеральному составу руд месторождения, распределению в них геохимических элементов, особенностям проявления рудной тектоники, строению рудного штокверка и многим другим вопросам, составляют основу представлений об условиях формирования месторождения. Метасоматическим изменениям пород, как предшествующих рудообразованию, так и сопутствующих ему, было уделено внимание со стороны Г.А.Казаряна, Н.С.Корчагиной (1974), Г.О.Пиджяна (1975), К.А.Карамяна (1970, 1978). Ими были выделены минеральные парагенезисы предрудных пропилитов и кварц-серицитовых изменений, сопутствующих сульфидной минерализации. Спорным оставался вопрос о месте каолинизации в рудном процессе, которую Г.А.Казарян относил к гипергенным процессам.

Геологическое строение Агаракского рудного поля. Рудное поле вытянуто в меридиональном направлении в интрузивных породах многофазного Мегринского плутона и имеет сложное тектоническое строение. Основная часть, включающая собственно месторождение и ряд рудоносных участков, заключена между двумя параллельными разломами, с противоположными азимутами падения; с запада ограничена одним из швов Таштунского разлома (одна из основных региональных структур Зангезурского рудного района) – Агаракским разломом с падением на восток под углом 55-600, с востока – Спетринским с падением на запад под углом 30-650 (рис. 1).

В геологическом строении рудного поля кроме интрузивных пород Мегринского плутона – сиеногранитов, кварцевых монцонитов, порфировидных лейкократовых гранодиоритов и гранитов принимают участие вулканогенные образования среднего эоцена, которые в виде останцев встречаются в сиеногранитах и монцонитах, а также терригенно-песчанистые образования среднего плиоцена.

Возраст сиеногранитов, кварцевых монцонитов, гранодиоритов по К-Аг определениям – 39,1 Ма, был отнесен к верхнему эоцену (Багдасарян и др., 1968, 1985); позднее был перепроверен изотопно-геохронологическими Rb-Sr (41,8 Ма) и U-Pb (44,01 Ма) датировками (Мелконян и др., 2010, 2011, 2014). Наиболее распространенные в рудном поле сиенограниты представлены апикальной фацией, на что указывают многочисленные меланократовые ксенолиты, которые, по-видимому, представляют остатки кровли эоценовых порфиритов, захваченных, но не ассимилированных сиеногранитами при их внедрении (Грушевой, 1941). Зоны распространения меланократовых ксенолитов размерами от 1-2см до 10-15см имеют вытянутость в северо-западном направлении (Грушевой, 1941; Казарян, Корчагина, 1974); отдельные формы ксенолитов создают впечатление крупных даек, прорывающих интрузивный массив (Карамян и др., 1970).

Рис.1 Схематическая геологическая карта Агаракского рудного поля и медно-молибденового месторождения (основа геологическая карта м-ба 1:5000, Карамян, Таян и др, 1987). Условные обозначения: 1- красные брекчии (средний плиоцен); 2 –базальтовый андезит (средний эоцен). Интрузивные породы среднего эоцена: 3- кварцевые монцониты; 4 – сиенограниты; 5 – порфировидные лейкократовые граниты, гранодиориты; 6- контур пропилитового изменения: 7-предрудные вторичные кварциты; 8-кварц-серицитгидрослюдистые изменения: 9-каолинизация; 10-разрывные нарушения; 11-контур промышленных руд; 12-номера образцов.

Порфировидные лейкократовые граниты и гранодиориты западного, лежачего борта Таштунского разлома, в юго-восточной части рудного поля представлены дайкообразным выходом по контакту сиеногранитов и монцонитов. Эндоконтактовые фации гранитоидов дайкообразного тела обнаруживают полное сходство со штоком лейкократовых гранодиоритпорфиров на севере (Таян, 2007), которые и являются основными рудовмещающими породами. В пределах месторождения лейкократовые гранодиоритпорфиры представлены разветвленной системой тел с общей вытянутостью в меридиональном направлении более чем на 1,5км, при мощности около 200м, с падением на запад под углом 55-70[°].

Рудный штокверк вытянут в меридиональном направлении до 2км. Время образования руд Агаракского месторождения, служившее предметом неоднократных дискуссий (Багдасарян и др., 1968, 1985; Гукасян, Меликсетян, 1968; Карамян и др.,1970; Фарамазян и др., 1974), рубидийстронциевыми определениями околорудных серицитов – 38,8±1,4Ма, а также рений-осмиевыми датировками молибденитов 43,9±2,5Ма лет (Мелконян и др., 2010, 2011, 2014), в настоящее время однозначно отнесено к среднеэоценовому.

Терригенно-песчанистые образования среднего плиоцена залегают на сиеногранитах; в основании они представлены песчаниками с прослоями глинистого материала и редкими пропластками угля, выше по разрезу – черными и красными брекчиями (Пиджян, 1975).

Агаракское медно-молибденовое месторождение. Ширина развития промышленной минерализации Центрального участка достигает 500м, при этом внешний контур медной минерализации на западном фланге и по удлинению штокверка значительно шире молибденового (Таян и др., 2007). Основная роль в формировании руд Агаракского месторождения принадлежит Спетринскому разлому, контролирующему на этом участке и становление лейкократовых гранодиорит-порфиров (Таян, Саркисян, 1988). В пострудное время по этой разрывной структуре происходят взбросовые перемещения с надвиганием рудовмещающих пород на терригеннопесчанистые отложения плиоцена (Карамян, и др., 1970). Формирование месторождения обусловлено развитием 8 стадий минерализации – кварцмагнетитовой, кварц-полевошпатовой, безрудной кварцевой, кварцмолибденитовой, кварц-халькопирит-молибденитовой, кварц-пиритовой, кварц-полиметаллической и карбонатной (Карамян др., 1970). Первые две маломощными прерывистыми прожилками; проявлены жильные образования безрудной кварцевой стадии, имеющие северо-восточное простирание, широко развиты на месторождении и в общей сети кварцевых жил и прожилков, образующих штокверк, составляют немалую часть. Мощность жил до 1,5-2м, протяженность до 25м. Среди кварц-сульфидных образований отмечаются системы прожилкования северо-восточного простирания с падением на северо-запад под крутыми углами и северозападного - с падением на северо-восток под пологими углами. Кварцсульфидные жилы прослеживаются на 20-25м при мощности до 20см. С глубиной на уровне горизонта 1120м интенсивность их проявления уменьшается (Таян и др. 1988, 2007).

Наложение поздних минеральных ассоциаций гидротермального изменения на ранние предрудных вторичных кварцитов способствовало образованию участков сплошного кварц-серицитового изменения; среди них отчетливо выделяются останцы биотитизированных и хлоритизированных порфиритов. В западном экзоконтакте гранодиорит-порфирового штока закартирована зона каолинизации северо-восточного простирания мощностью до 20м протяженностью в 100м (рис. 1), которая накладывается на сиенограниты и частично гранодиорит-порфиры, перекрывая зоны кварцсерицитовых изменений (Карамян, 1978; Таян и др., 1988, 2007).

По северо-западному флангу месторождения (уч. Курис) выделены зоны кварц-серицитовых изменений северо-восточного простирания протяженностью до 0,5км и мощностью до 2м с кварц-пиритовым прожилкованием. На юге от района с.Карчеван на север протягивается субмеридионально ориентированная зона кварц-серицитовых пород мощностью до 20м, параллельная основным разрывным структурам Агаракского рудного поля (рис. 1).

Предрудные пропилиты Агаракского рудного поля. Выделенные ранее минеральные ассоциации предрудных пропилитовых изменений эпидотхлоритовой (Пиджян, 1975) и биотитовой (Казарян и др., 1974; Карамян, 1978) фаций, по данным настоящих петрографических исследований распространены не только в сиеногранитах и гранитоидах (Казарян и др., 1974), но и кварцевых моцонитах и порфиритах рудного поля. Зона пропилитизированных пород вытянута в меридиональном направлении и при ширине 3,5км прослеживается от с.Курис на севере до с. Карчеван на юге.

Минеральные парагенезисы предрудной пропилитизации в основном представлены меланократовыми минералами – биотитом, эпидотом, хлоритом (серицит, кварц, альбит, кальцит составляют меньше 1%), которые замещая темноцветные минералы исходной породы, занимают 2-3% объема в сиеногранитах, до 12% – в монцонитах и наболее маштабно проявляются в останцах андезитовых базальтов в сиеногранитах. При повсеместном проявлении в породах рудного поля предрудной пропилитизации, наблюдается избирательное развитие биотитовых минеральных ассоциаций по ороговикованным вулканогенным ксенолитам в сиеногранитах (Казарян и др., 1974). В крупных останцах порфиритов содержание вторичного биотита достигает 35-55%, что отмечается непосредственно на северном фланге месторождения в блоке биотитизированных порфиритов (по состоянию карьера на 2014г). При переходе кварц-сульфидных прожилков из сиеногранитов в биотитизированные порфириты наблюдается хлоритизация биотита. Пропилитовые изменения эпидот-хлоритовой фации по западному флангу месторождения ограничиваются швами Таштунского разлома; минеральные ассоциации как биотитовой, так и эпидот-хлоритовой фации, установлены в кварцевых монцонитах и порфиритах восточного борта Спетринского разлома.

Зоны предрудных вторичных кварцитов (Карамян, 1978) монокварцевой и кварц-серицитовой фаций имеют северо-восточное простирание и тяготеют к Агаракской приразломной полосе. По своему минеральному парагенезису вторичные кварциты относятся к семейству глубинных галогенно-кислотных (Власов, Василевский, 1963). Наиболее протяженная зона вторичных кварцитов, прослеживающаяся на 200м, имеет мощность в 50м (рис.1).

Околорудные метасоматиты Среди гидротермальных метасоматитов на Агаракском месторождении были описаны полевошпатизированные, кварц-серицитовые и каолинизированные породы (Казарян, и др. 1974; Пиджян, 1975; Карамян 1978). Незначительные и разрозненные участки развития полевошпатовых пород площадью до нескольких квадратных метров, сопровождающие прожилки кварц-полевошпатовой стадии, отмечались К.А.Карамяном (1978) на верхних горизонтах Центрального участка месторождения; в ореоле прожилков кварц-халькопиритовой и кварц-пиритовой стадий описывались кварц-серицитовые, кварц-серицитхлоритовые, кварц-серицит-карбонатные и карбонат-каолинитовые породы (Карамян и др., 1970, 1978; Пиджян, 1975). Г.О.Пиджяном в зальбанде рудных прожилков отмечалась смена кварц-серицитовых изменений карбонат-каолинитовыми метасоматитами; указывалось, что кварц-карбонатная стадия сопровождалась интенсивной карбонатизацией и аргиллизацией. Сонахождение каолинизированных пород на ряде участков с халькозином зоны вторичного обогащения послужило основанием для отнесения их Г.А.Казаряном к супергенным процессам (Казарян и др., 1974).

Основная масса околорудных изменений, сопутствующих образованиям продуктивных стадий минерализации и, в том числе, пиритовой, представлена кварц-серицитовыми породами. Мощность зон кварц-серицитовых изменений при разной плотности развития серицита доходит до 2м. Они представлены породами микрогранобластовой структуры, сложенными кварцем, серицитом и акцессорными – пиритом, биотитом, хлоритом, рутилом.

В метасоматической колонке пород, сопровождающих образования кварц-молибденит-халькопиритовых стадий, кварц-серицитовые породы непосредственно околожильного пространства переходят в кварц-серицитбиотитовые (биотит в разной степени хлоритизирован), кварц-пиритовой – в кварц-серицит-хлоритовые, кварц-хлорит-серицит-каолинитовые. Выделены также хлорит-каолинит-карбонатные породы. Двуминеральный парагенезис карбонат-каолинитовых пород характерен для околожильного пространства кварц-карбонатных прожилков и отмечается на юго-западном фланге месторождения в зоне каолинизированных пород северовосточного простирания (рис.1).

Неоднократное проявление серицитовых изменений на месторождении, как в предрудных кварцитах, так и в ассоциации с кварц-сульфидными образованиями разных стадий, обусловило интерес к выявлению природы серицитов. Проведенные К.А.Карамяном и Р.Г.Мхитаряном (1980) ренгенометрические исследования слюд из кварц-серицитовых пород предрудных кварцитов, а также серицитолитов, сопровождающих образования кварц-сульфидных стадий, позволили определить их политипные модификации, которые для высокотемпературных образований представлены политипом 2М₁, для низкотемпературных – политипом 1М.

Исследования кристаллохимического состава серицитов, использованных ранее при определении политипии (Карамян и др., 1980), с авторскими дополнениями данных, показали, что слюды кварц-серицитовых пород, сопутствующие отложению меди и молибдена, представлены собственно иллитами, которые характеризуются высокой глиноземистостью (Al^{IV} – 0,40-0,44ф.е., Al^{IV} – 1,69-1,72ф.е.), причем характер распределения Al по тетраэдрической и октаэдрической позициям носит довольно стабильный характер (табл. 1). Содержание фенгитового минала Mg+Fe²⁺ колеблется в пределах 0,14-0,25, коэффициент железистости низкий: К_{Fe3+} = 0,02-0,05 (К_{Fe3+} = Fe³⁺/ Fe³⁺ + Al^{IV}). Среди летучих отмечается фтор. Гидратированность серицитов составляет в основном \approx 4,5мас.% (по потере суммарного веса породообразующих окислов), что характерно для истинных слюд (Омельяненко и др., 1983). Единичный образец (№ А-168) демонстрирует увеличение водной составляющей с переходом к Al-гидрослюдам при том же характерном для филлизитовых иллитов соотношении октаэдрического и тетраэдрического Al, наряду с низким содержанием фенгитового компонента – 0,24 и К_{Fe3+} = 0,03.

Серициты кварц-серицитовых пород, сопровождающих образования кварц-пиритовой стадии на месторождении, а также Карчеванского и Курисского участков (табл.1, №№ 22, 5/67, 67, 80), по кристаллохимическому составу отличаются от иллитов филлизитовых изменений характером распределения алюминия по тетраэдрической и октаэдрической позициям (Al^{1y} – 0,54-0,67ф.е, Al^{y1} – 1,21-1,50 ф.е.), а также высоким содержанием фенгитового минала – 0,42-0,80; К_{Fe³⁺} = 0,09-0,15. Следует отметить, что температурный интервал отложения руд кварц-пиритовой стадии на Агаракском месторождении, представлен высокими значениями – 350-375° С (Маданян, 1985), и низкая гидратированность серицита № 22 – 4,5мас.% политипной модификации 2M1, соответствует характерной для высокотемпературных серицитов (Карамян и др., 1980). Степень гидратации в остальных серицитах кварц-пиритовой стадии много больше 10мас.%, с переходом в гидрослюды (в составе слюд возможны смешаннослойные пакеты Na – смектита, что особенно вероятно для – об. № 8 Ks). Для них характерны также высокие значения общеслоевого заряда.

Таблица 1

	A-68	A691	A686	A701	A702	A168	c-22	*c-25	67Kr	57Kr	*80Ks
		q-мо	q-мо-	q-cpy	q-cpy	q-cpy	q-py	q-py	q-cpy-	q-py	q-py
			сру						ру		
SiO ₂	58,03	57,17	56,03	56,04	55,08	50,60	50,6	48,57	50,01	48,0	47,4
TiO ₂	0,21	0,22	0,21	0,60	0,54	0,28	0,72	0,41	0,33	0,24	0,40
Al ₂ O ₃	26,11	28,39	27,11	28,04	27,63	25,92	24,7	25,69	27,20	22,9	23,6
Fe ₂ O ₃	1,06	1,03	1,06	1,17	1,74	1,22	4,03	2,79	3,14	3,70	3,12
FeO	0,36	1,00	0,36	0,33	0,47	0,36	2,06	1,61	2,84	0,76	2,78
MnO	0.03	0,05	0,03	0,23	0,12	0,01	0,12	0,04	0,04	0,04	0,10
MgO	2,15	2,05	2,15	1,15	0,75	2,00	7,00	3,62	2,77	3,49	2,77
CaO	0,53	0,10	0,22	0,56	0,31	0,56	-	0,40	0,56	0,58	-
Na2O	0,30	0,40	0,30	0,57	0,50	0,25	0,30	0,35	0,35	0,40	1,00
K2O	6,10	6,11	6,70	7,00	7,20	5,00	7,40	7,30	6,20	7,80	4,0
H2O	0,04	0,03	0,15	0,04	0,06	0,01	0,05	0,36	0,20	0,08	0,25
Сумма	94,92	96,52	94,17	95,11	94,34	86,20	95,6	91,14	93,44	88,0	85,6

Кристаллохимический состав гидротермальных серицитов Агаракского рудного поля и месторождения

Cl	0,58	0,35	0,36	0,31	0,38	0,41	-	0,30	0,23	0,11	0,14
F	I	0,25	0,16	I	0,28	0,22	0,05	-	н.о	н.0	н.0
P ₂ O ₅	0,08	0,03	0,04	0,14	0,16	0,42	0,06	0,06	0,05	0,12	0,15
CO ₂	0,21	-	-	0,21	0,15	0,46	0,51	0,30	0,15	0,31	0,35
SO ₃	0,11	0,35	0,30	0,58	0,64	0,27	0,75	0,75	0,30	0,07	1,03
Si	3,72	3,60	3,62	3,60	3,60	3,56	3,33	3,37	3,34	3,46	3,46
Aliy	0,28	0,40	0,38	0,40	0,40	0,44	0,67	0,63	0,66	0,54	0,54
Al ^{yi}	1,69	1,71	1,69	1,72	1,72	1,71	1,21	1,47	1,50	1,39	1,46
Ti	0,01	0,01	0,01	0,03	0,02	0,01	0,03	0,02	0,01	0,01	0,02
Fe ³⁺	0,06	0,05	0,03	0,05	0,09	0,06	0,20	0,10	0,15	0,20	0,16
Fe ²⁺	0,02	0,05	0,02	0,02	0,03	0,03	0,11	0,09	0,15	0,05	0,15
Mn	-	I	-	0,01	0,02	-		Ι	I		-
Mg	0,21	0,20	0,21	0,12	0,11	0,21	0,69	0,37	0,27	0,37	0,30
Ca	0,04	0,01	0,01	0,04	0,02	0,04	-	0,02	0,04	0,05	0,05
Na	0,04	0,05	0,04	0,08	0,06	0,04	0,04	0,05	0,04	0,05	0,14
K	0,50	0,50	0,55	0,58	0,60	0,46	0,63	0,64	0,52	0,71	0,37
Na+K+Ca	0,55	0,56	0,60	0,70	0,68	0,54	0,67	0,71	0,60	0,81	0,61
KFe ³⁺	0,05	0,03	0,02	0,03	0,05	0,03	0,14	0,06	0,09	0,13	0,10
Mg+Fe ²⁺	0,23	0,25	0,23	0,14	0,14	0,24	0,80	0,46	0,42	0,42	0,45
IC	0,61	0,62	0,76	0,71	0,83	0,62	0,97	1,00	0,93	1,04	0,93
Политип	$2M_1$	$2M_1$	$2M_1$	$2M_1$	$2M_1$	$2M_{1+1}$	$2M_1$	-	-	1M	-
						Μ					

Примечание: серициты месторождения: № 68 предрудные кварциты западного фланга; №691 – кварц-молибденитовая стадия; №№ 686 – кварц-молибденит-халькопиритовая стадия; 701/1, 701/2, 168 – кварц-халькопиритовая стадия; № 22, 25 – кварц-пиритовая стадия. Зоны сульфидной минерализации: Карчеван – №№ 5/67 – кварц-пирит-халькопиритовые прожилки; 67– кварц-пиритовые прожилки; Курис – №80 – кварц-пиритовые прожилки.

Химическая лаборатория ИГН АН НАН РА. Аналитик Б.Г. Талиашвили.

* помечены авторские образцы; IC – значения общеслоевого заряда слюд.

Серицит кварц-серицитовых пород (табл.1, № А-68) предрудных кварцитов западного фланга Агаракского месторождения (рис. 1), характеризующийся высокой кремнеземистостью – 3,72 ф.е., и низкими значениями алюминия в тетраэдрической позиции – 0,28 ф.е., по своим параметрам соответствует высококремнистым серицитам, характерным для вторичных кварцитов (Арутюнян, 2013, 2014).

Отмечаемая К.А.Карамяном и Р.Г.Мхитаряном (1980) обогащенность серицитов рудогенными элементами Мо, Сu, Pb, Ag, Zn, Sb, Bi, потверждается и настоящими исследованиями (определение геохимичес-кого спектра элементов в серицитах проводилось полуколичественным термоэмиссионным методом, аналитик М.Мартиросян). Нельзя не отметить, что в серицитах разных генетических групп аккумуляция рудогенных элементов носит дифференцированный характер (табл.2). В наибольшей степени это характерно для серицитов филлизитовой группы, в которых

содержания Си достигают 0,40%, Мо – 0,04%. В фенгитовых иллитах и гидрослюдах отмечается накопление Со – 0,0011%, Ni – 0,002%, W – 0,05%, Ag – 0,0008%, и резкое снижение As, ниже предела чуствительности анализа.

Таблица 2

	Кларк	Кв.	Фил.	Арг.		Кларк	Кв.	Фил.	Арг.
		n =5	n =27	n =15			n =5	n =27	n =15
Li	0,0035	0,0024	0,001	0,002	V	0,0035	0,051	0,017	0,055
Be	0,0005	0,0005	0,0007	0,0003	Cr	0,0025	0,0013	0,0017	0,0016
Sc	0,0006	0,002	0,0095	0,0024	Со	0,0010	0,0004	0,0006	0,0011
Ga	0,0020	0,0027	0,0027	0,0027	Ni	0,0015	0,0006	0,0007	0,002
Ge	0,00015	0,0006	0,0006	0,0006	Cu	0,0020	0,08	0,40	0,1
Rb	0,0150	0,07	0,038	0,17	Zn	0,0060	0,025	0,025	0,021
Sr	0,0290	0,006	0,010	0,006	As	0,00015	0,01	0,014	-
Y	0,0031	0,0016	0,0011	0,0018	Mo	0,0001	0,01	0,04	0,025
Zr	0,0200	0,009	0,016	0,013	Ag	0,00005	0,0002	0,00024	0,0008
Nb	0,0020	0,001	0,0018	0,0017	Sn	0,0003	0,001	0,00085	0,0012
Ba	0,0750	0,076	0,080	0,063	W	0,00015	0,03	0,0085	0,05
La	0,0045	-	0,0047	0,0019	Tl	0,0001	0,0009	0,001	0,0009
Yb	0,00033	0,0004	0,0004	0,0011	Pb	0,0020	0,004	0,0036	0,007
					Bi	0,00004	-	0,0002	0,0006
					Sb	0,00002	0,006	0,009	_

Средние содержания петрогенных и рудогенных микроэлементов в серицитах

Примечание: для сравнения приведены кларки элементов в магматических породах кислого состава (Соловов, 1990). В группе аргиллитовых объединены фенгитовые иллиты (n =5) и гидрослюды.

Распределение петрогенных микроэлементов в серицитах определяется главным образом структурно-кристаллохимическими особенностями минерала, что обуславливает аккумуляцию типоморфных для белых слюд элементов – Sc, Ga, Ge, Rb, Ba, Yb (табл.2). Вместе с тем, типоморфные для слюд – Be, Li, Sr, Y и Zr (Павлишин, 1983) обнаруживают пониженные в сравнении с кларковыми значения, что, очевидно, обусловлено их исходно-низкими содержаниями в гранитоидах. Наиболее явственно это проявляется на примере Sr, низкие содержания которого в серицитах, скорее всего, лимитированы кислым составом плагиоклаза вмещающих пород.

Дискретные уровни концентрации как рудогенных, так и ряда петрогенных микроэлементов – Yb, Rb, La, в меньшей мере Sc, обнаруживаемые в серицитах разных генетических групп, скорее всего, указывают на существование геохимических барьеров. Этим, очевидно, обусловлено избирательное накопление Yb и Rb в аргиллитовых серицитах.

Обсуждение и выводы

Проведенные минералого-петрогрфические исследования в пределах Агаракского рудного поля и месторождения интересны в двух аспектах. Первый относится к оценке пространственного распределения предрудных пропилитов (биотитовой и эпидот-хлоритовой фаций), второй – к выяснению пространственно-временной связи филлизитов с аргиллизитами и месте каолинизации в процессе рудообразования.

Исследования касающиеся пространственного распределения предрудных пропилитовых изменений на месторождениях медно-молибденпорфирового типа обычно ограничиваются ореолом пропилитовых изменений, непосредственно примыкающих к рудному штокверку, и не дают представления о масштабах изменений, предшествующих собственно рудоотложению. Минеральные ассоциации биотитовой и эпидот-хлоритовой фаций пропилитов установлены не только в сиеногранитах между Агаракским и Спетринским разломами, но и в монцонитах и порфиритах восточного борта Спетринского разлома, прослеживаясь в меридиональном направлении с севера на юг на 10км, с оттеснением минеральных ассоциаций эпидот-хлоритовой фации на периферию.

Участки сплошного гидротермального изменения, образовавшиеся в результате слияния разнонаправленных зон, составляют 20-25% площади занятой минеральными ассоциациями предрудных пропилитов. Зоны предрудных кварцитов и жилы безрудного кварца (Карамян, 1978) отмечены преимущественно в приразломной зоне Агаракского разлома. Тем не менее, по суммарной массе кварца, вовлеченного в эндогенный процесс предрудного преобразования, руды Агаракского месторождения в сравнении с другими месторождениями медно-молибден-порфировой формации ЗРР не имеют равных.

Гидротермальные изменения, сопровождающие сульфидные образования, представлены однотипными кварц-серицитовыми породами, которые традиционно относят к филлизитам. Серициты кварц-серицитовых пород, сопровождающих процессы рудоотложения кварц-молибденитовой кварц-халькопиритовой стадий, представлены глиноземистыми иллитами со стабильным характером распределения алюминия по тетраэдрической и октаэдрической позициям (Al^{1y} - 0,40-0,44 ф.е., Al^{y1} - 1,69-1,72 ф.е.), с низкой степенью гидратации ≈ 4,5мас.%, содержанием фенгитового компонента до 0,24, с К_{Fe³⁺} до 0,05; единичный образец представлен Al гидрослюдой. Иллиты, сопровождающие образования кварц-пиритовой стадии, характеризуются высоким содержанием фенгитового компонента – 0,42-0,80; распределение Al по тетраэдрической и октаэдрической позициям обнаруживает больший разброс (Al^{1y} – 0,54-0,67ф.e, Al^{y1} – 1,21-1,50 ф.е.); К_{Fe³⁺} – 0,06-0,15, степень гидратации от 4,5мас.% и более. Наиболее показательны для этих серицитов высокие содержания фенгита наряду с характером распределения Al по октаэдрической и тетраэдрической позициям, а также устойчивое возрастание степени гидратации.

47

Анализ кристаллохимических и геохимических характеристик слюд гидротермалитов позволяет проследить парагенетически последовательное изменение состава серицитов от кварц-молибденитовой и кварц-молибденит-халькопиритовых стадий к кварц-пиритовой, что позволяет полагать тесную сопряженность во времени филлизитовых и гидрослюдистых изменений. Редуцированное проявление каолинизации в метасоматической колонке кварц-серицитовых пород кварц-пиритовой стадии в сочетании с "сухим" высокотемпературным фенгитовым серицитом политипа 2М1 дают основания предположить, что именно высокотемпературные условия формирования этой стадии способствовали отставанию во времени каолинизации в комплексе аргиллитовых изменений.

Несмотря на то, что с гидрослюдистыми изменениями связано формирование руд преимущественно кварц-пиритовой стадии, аккумуляция рудогенных элементов – Мо, Си не только в серицитах филлизитовых, но и (в меньшей степени) в аргиллитовых гидротермалитов, указывает на общую обогащенность рудогенными элементами гидротермальных растворов. Это позволяет рассматривать серициты в качестве усилителя гипогенного рассеяния вокруг сульфидных образований, а накопление Ag, V, Со, Ni, W в аргиллитовых слюдах позволяет использовать комплекс этих элементов при интерпретации рудничных геохимических ореолов.

ЛИТЕРАТУРА

- Арутюнян М.А. Кристаллохимические особенности серицитов гидротермальных метасоматитов Заргезурского рудного района. Изв. НАН РА, Науки о Земле, 2013, №2-3, с..87-81.
- Багдасарян Г.П., Гукасян Р.Х., Карамян К.А. Итоги абсолютного датирования ряда рудных формаций Армянской ССР. Изв. АН СССР, сер. геол., 1968, № 5, с.19-28.
- Багдасарян Г.П., Гукасян Р.Х. Геохронология магматических, метаморфических и рудных формаций Армянской ССР. Ереван, изд. АН Армянской ССР, 1985, 291с.
- **Грушевой В.Г.** Интрузивные породы юго-восточной части Армянской ССР. Сб. Интрузивы Закавказья. Вып.П., Тифлис, 1941.
- **Гукасян Р.Х., Меликсетян Б.М.** Об абсолютном возрасте и закономерностях формирования сложного Мегринского плутона. Изв. АН СССР, сер. геол., 1968, №5, с.19-28.
- Казарян А.Г., Корчагина Н.С. Сравнительная характеристика гидротермального метаморфизма на медно-молибденовых месторождениях Армянской ССР. Магматизм и металлогения Армянской ССР. Зап. Армянского отд. Всесоюзн. Минералогического общества.. Вып 7, Изд. Армянской ССР, 1974, с. 93-100.
- Карамян К.А., Джангирян Э.А., Маданян О.Г. Особенности строения, состава руд и характерные черты минерализации Агаракского медно-молибденового месторождения. Вопросы магматизма, рудообразования и минералогии Арм.ССР. Зап. Арм.отд.ВМО, вып.4, 1970, с.44-54.
- Карамян К.А. Геологическое строение, структура и условия образования медномолибденовых месторождений Зангезурского рудного района. Ереван: Изд.АН АрмССР, 1978, 179с.
- Карамян К.А., Степанян С.Н., Таян Р.Н., Джангирян Э. А. Особенности пострудной тектоники Агаракского рудного поля. Известия АН АрмССР, 1971, №1, с.55-61.
- Карамян К.А., Мхитарян Р.Г. Серициты метасоматических формаций Зангезурского рудного района. Известия АН Арм. ССР, Науки о Земле, 1980, № 6, с. 85-90.
- Маданян О.Г. Условия образования медно-молибденовых месторождений Южной Армении. Материалы YII Всесоюзного совещания "Термобарометрия и геохимия рудообразующих флюидов". Львов, 1985, с.156-160.

- Мелконян Р.Л., Гукасян Р.Х., Таян Р.Н., Хоренян Р.А., Овакимян С.Э. Этапы медномолибденового рудообразования Южной Армении по результатам изотопных датировок. Изв. НАН РА, Науки о Земле, 2010, №2, т.63, с. 21-32.
- **Мелконян Р.Л., Таян Р.Н., Моритц Р., Селби Д. Гукасян Р.Х., Овакимян С.Э.** Медномолибденовое оруденение Малого Кавказа – геодинамические и генетические особенности формирования. Материалы Всероссийской научной конференции, посвещенной 100-летию С.Н.Иванова. Тектоника, рудные месторождения и глубинное строение земной коры. Екатеринбург. 2011, с.167-170.
- Мелконян Р.Л., Мориц Р., Таян Р.Н., Селби Д., Гукасян Р.Х., Овакимян С.Э. Главнейшие медно-порфировые системы Малого Кавказа. Известия АН Арм. ССР, Науки о Земле, 2014, №, 1 с. 3-29.
- Омельяненко Б.И., Воловикова И.М., Дриц В.А., Звягин Б.Б., Андреева О.В., Сахаров Б.А. О содержании понятия "серицит". Изв. АН СССР, сер. геол., 1982, №2, с.69-87.
- **Павлишин В.И.** Типоморфизм кварца, слюд и полевых шпатов в эндогенных образованиях (на примере минеральных комплексов Украины). Киев: Наукова думка, 1983, 232с.
- Пиджян Г.О. Медно-молибденовая формация руд Армянской ССР. Ереван; изд. АН Армянской ССР, 1975, 311с.
- Соловов А.П., Архипов А.Я., Бугров В.А. и др. Справочник по геохимическим поискам полезных ископаемых. М.: Недра, 1990, 335с.
- Таян Р.Н., Саркисян С.П. Морфология рудного штокверка и особенности распределения медно-молибденового оруденения Агаракского месторождения. Ереван: Известия АН Арм.ССР, Науки о Земле, 1988, №3, с.15-22.
- Р.Н.Таян, С.П.Саркисян, А.Е.Оганесян. Геолого-структурные условия формирования Агаракского медно-молибденового месторождения (Ю. Армения). Изв. НАН РА, Науки о Земле, 2007, № 3, с.28-34.
- Фарамазян А.С., Калинин С.К., Егизбаева К.Е., Файн Э.Е. Об абсолютном возрасте медномолибденового оруденения Зангезура. Изв. НАН РА, Науки о Земле, 1974, №1, с. 43-53.
- Harutyunyan M. 2014. The hydrothermal sericites of copper- molybdenum porphyry oremagmatic systems of the Zangezur ore district (Southern Armenia, Lesser Caucasus). 12th Swiss Geoscience Meeting, 21-22 November 2014, Fribourg, Switzerland, abstract volume, p. 77-78. (http://www.geoscience-meeting.scnatweb.ch/sgm2014/

Рецензет К. Мурадян

ԱԳԱՐԱԿԻ ՀԱՆՔԱÚÆÜ ԴԱՇՏԻ ՀԻԴՐՈԹԵՐՄԱԼ ՄԵՏԱՍՈՄԱՏԻՏՆԵՐԸ

Մ.Ա. Հարությունյան

Ամփոփում

Հետազոտվել են Ագարակի հանքային դաշտի և պղինձ-մոլիբդենային հանքավայրի մինչհանքային պրոպիլիտային և մերձհանքային մետասոմատիտները։ Պրոպիլիտների բիոտիտային և էպիդոտքլորիտային ֆացիաների զուգորթունները տարածված են գոտիով, որն ունի հյուսիս-հարավ 10կմ ձգվածություն։

Սուլֆիդային գոյացություններին ուղեկցող փոփոխությունները ներկայացված են միատեսակ քվարց-սերիցիտային ապարներով։ Քվարցմոլիբդենիտային և քվարց-խալկոպիրիտային փուլերը ուղղեկցող քվարցսերիցիտային մետասոմատիտների սերիցիտը ներկայացված է Alիլլիտներով (A^{IV} – 0,40-0,44 բանաձևի միավոր, A^{IVI} – 1,69-1,72 բ.մ.), հիդրատացիայի ցածր աստիձանով՝ մոտ 4,5 զանգված %, ֆենգիտային բաղադրիչը մինչև 0,24, երկաթի գործակիցը մինչև 0,05։ Հազվադեպ այն ներկայացված է Al-հիդրոփայլարով, օկտաէդրիկ և տետրաէդրիկ Al-ի նույն հարաբերակցությամբ։ Քվարց-պիրիտային փուլը ուղեկցող քվարցսերիցիտային մետասոմատիտների փայլարները ներկայացված են իլլիտներով (Al^{IV} – 0,54-0,67բ.մ, Al^{VI} – 1,21-1,50 բ.մ.), ֆենգիտային բաղադրիչը – 0,42-0,80, երկաթի գործակիցը – 0,06-0,15, հիդրատացիայի աստիձանը 4,5 զանգված % ավել, ինչը բնորոշ է հիդրոփայլարային արգիլիտային փոփոխություններին։

THE HYDROTHERMAL METASOMATITES OF AGARAK ORE FIELD

M. A. Harutyunyan

Abstract

The pre-ore propylite and near-ore metasomatites of Agarak ore field and copper-molybdenum deposit have been examined. The connections of biotite and epidote-chloriticfacies are spread along the belt which has 10km extention from North to South.

The changes accompanying the sulfide formations are presented with similar quartz-sericite rocks. The quartz-sericitemetasomatites' sericite accompanying the quartz-molybdenum and quartz-chalcopyrite stages is presented with AL-ilites ($AI^{IV} - 0.40-0.44$ resolution unit, $AI^{VI} - 1.69-1.72$ resolution unit), with a low degree of hydration: about 4,5 mass %. The fengite component is up to 0,24 and the iron component is up to 0,05. Occassionally it is presented with AL-hydro-sheen, with the same correlation of octahedric and tetrahedric AL. The sheens of quartz-sericitemetasomatite accompanying the quartz-pyrite stage are presented with illites ($AI^{IV} - 0.54 - 0.67$ resolution unit, $AI^{VI} - 1.21-1.50$). The fengite component is 0,42-0,80, the iron coefficient is 0,06-0,15, and the hydration degree is 4,5 mass % more which is typical to hydro-sheen argillite changes.