О ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ДЕФОРМАЦИИ СРЕДЫ В ПЕРИОД ПОДГОТОВКИ СИЛЬНОГО ЗЕМЛЕТРЯСЕНИЯ

© 2005 г. Э. Е. Хачиян, А. З. Саргсян

Институт геологических наук НАН РА 375019, Ереван, пр Маршала Баграмяна, 24a, Республика Армения Е-mail. edkhach(aysci am Поступила в редакцию 31 08 2005 г.

Приводится методика определения потенциальной энергии деформированной среды вокрут будущего очага накопленной за весь период подготовки землетрясения В качестве исходных параметров принимается длина разрыва на поверхности Земли после землетрясения L. глубина очага землетрясения h и относительная подвижка блоков по линии простирания разрыва и. Дается сравнительный анализ полученных результатов для 44 сильных землетрясений с результатами известного метода определения энергии сейсмических волн по магнитуде землетрясения.

По современным представлениям, землетрясение является следствием разрыва среды из-за соприкасания двух геологических блоков (плит) с шероховатыми краями при длительном несогласованном медленном движении в противоположных направлениях. До землетрясения в некоторой области земной коры возникают непрерывно растущие механические напряжения, обусловленные деформированием среды (пород, окружающих очаг) соприкасания определенных размеров в ту или другую сторону от будущей линии разрыва, и, следовательно, накапливается определенное количество энергии. Эта энергия и есть потенциальная энергия среды или энергия деформации. Она фактически представляет собой всю (полную) энергию, накопленную в среде до начала землетрясения в обеих сторонах от фактического разрыва. Эта полная энергия после высвобождения в результате землетрясения разделяется на энергию (кинетическую) сейсмических волн и на тепловую энергию трения по разрыву или дробления вмещающих пород (Брун, 1981).

Известен ряд эмпирических формул для определения величины энергии сейсмических волн. В настоящее время наиболее распространенной

является следующая формула:

$$\lg E_S = 11.8 + 1.5 M_S, \ k = \lg E_S$$
 (1)

где E_s — энергия сейсмических волн в эргах, M_s — магнитуда землетрясения, k — энергетический класс землетрясения при выражении энергии E_s в джоулях.

По количественным отношениям величин энергии сейсмических волн к тепловой энергии трения по разрыву в сейсмологии еще нет обоснованных

представлений

По мнению ряда специалистов, во время землетрясения значительная часть упругой потенциальной энергии переходит в энергию сейсмических волн. Здесь многое зависит от коэффициента трения скольжения. Отношение двух видов энергии для разных землетрясений в принципе должно быть разным Это отношение сильно зависит от механизма вспарывания пород и ориентации плоскости разрыва. Ряд специалистов (Джеффрис, Амбрезис, Маккензи, Брун) считают, что если для

сильных землетрясений напряжение трения превышает определенную величину, то по плоскостям разрыва должно происходить плавление. Но упоминания о таких явлениях в литературе очень редки.

В общем случае полная потенциальная энергия, накопленная в среде, выражается следующим образом (Тимошенко, 1979; Брун, 1981):

$$E_{d} = \frac{1}{2} \int_{V} (\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + \sigma_{zz} \varepsilon_{z} + \sigma_{zy} \varepsilon_{yz} + \sigma_{zz} \varepsilon_{z} + \sigma_{zz}$$

где σ_{ij} , τ_{ij} и ϵ_{ii} , γ_{ij} — тензоры соответственно напряжения (нормального и касательного) и деформации, V — общий объем напряженно-дефор-

мированной среды

Поставим следующую задачу Как определить полную потенциальную энергию (2) после землетрясения, имея его последствия на поверхности Земли: длина разрыва L, глубина разлома h (глубина очага) и относительная подвижка по линии простирания разрыва ū (рис.16). На рисунке показано схематическое распределение напряженного состояния среды до и после образования разрыва среды и касательных напряжений у разрыва в перпендикулярном разлому направлении, где τ_{τ} — предельное касательное напряжение разрушения пород, обычно доходящее от 50 до 150 кг/см².

Естественно, в первом приближении, предполагать, что напряженно-деформированное состояние среды в обеих областях влево и вправо от будущего разрыва имеет одинаковый характер Наиболее существенным параметром этих областей является глубина проникновения Н (в перпендикулярном к разрыву направлении) ощутимых касательных напряжений и относительных деформаций и в параллельном и антипараллельном направлениях по простиранию разлома

Будем считать, что напряженно-деформированное состояние вокруг будущего разлома на поверхности Земли имеет вид, показанный на рис. Ів заштрихованной областью, ограниченной некоторой замкнутой кривой С. Таким образом считаем, что вне области С напряжения и де-

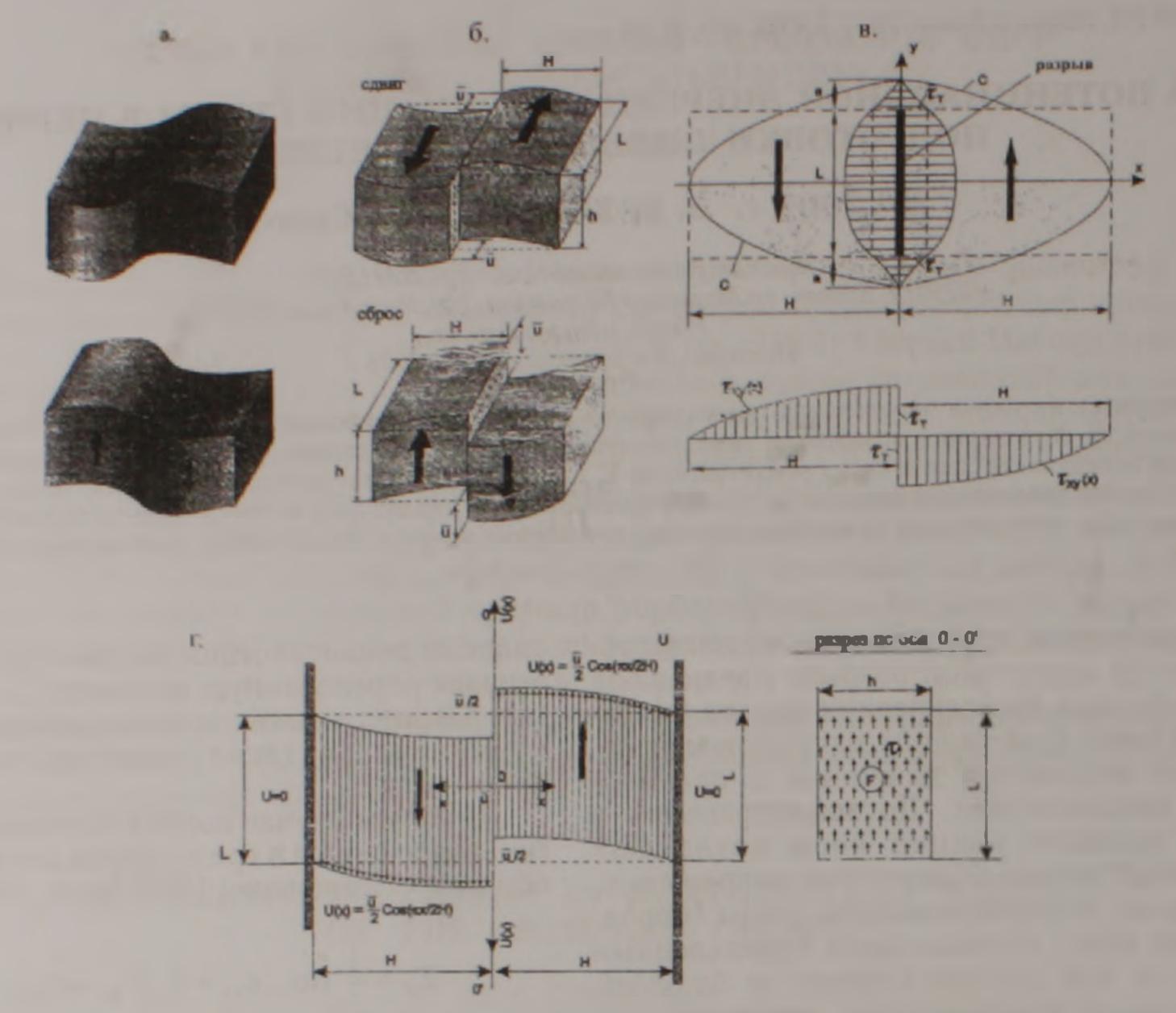


Рис I а — схематическое изображение напряженного состояния среды до образования разрыва, б — после образования разрыва среды, в — распределение сдвиговых напряжений (т, - предельное сопротивление пород), г - деформационная схема блоков в момент разрыва (после разрыва) Стрелками показаны направления медленных движений блоков

формации среды значительно малы и поэтому при определении общей потенциальной энергии ими можно пренебречь. Из рисунка видно, что область ощутимых напряжений и деформаций, ограниченную кривой С, можно заменить эквивалентной прямоугольной областью со сторонами 2H и L, показанными пунктирными линиями. Иными словами будем считать, что до начала землетрясения напряженно-деформированное состояние среды было распределено в двух прямоугольных параллелепипедах со сторонами L. Н и h, где h - глубина плоскости разрыва (глубина очага землетрясения), L - длина ожидаемого разрыва на поверхности Земли, Н - расстояние от разлома, дальше которого среду можно считать не напряженной от подготавливаемого землетрясения. Предположим, что в последней стадии подготовки землетрясения и после его свершения эти два параллелепипеда имели относительную деформацию до разрыва или подвижку после разрыва, равную и Относительные подвижки по длине разрыва обычно имеют неравномерное распределение. Поэтому, целесообразно в качестве величины подвижки для всей длины разлома L принимать некоторое среднее значение и Для ряда сильных землетрясений определение и было произведено в работе ДЛ Веллса и К.Н.Коппершмита (Wells, Coppersmith, 1994), по мнению которых, именно по величине средней подвижки й имеет место постоянный относительный сдвиг по всей ширине и глубине

h спаренных плоскостей разрыва.

Границы областей деформирования вокруг разрыва. Теперь рассмотрим вопрос определения пределов областей ощутимых деформаций в процессе подготовки землетрясения до самой последней стадии, после чего происходит разрыв. Впервые измерение таких деформаций с помощью геодезической триангуляции, произведенной до и после землетрясения, было получено Ридом для Калифорнийского землетрясения 1906г.

Много таких графических зависимостей для десятка японских и американских землетрясений гриведено в работе по прогнозированию земле-

трясений Т.Рикитаке (1979).

Для трех землетрясений такие зависимости, заимствованные из вышеупомянутой работы, показаны на рис. 2. Они дают возможность иметь определенное суждение о степени количественного убывания величины деформации по мере удаления от линии разрыва в перпендикулярном к нему направлении. На основании этих и других аналогичных результатов, приведенных в той же книге, предлагается следующая аналитическая зависимость (Хачиян, 2001) для расстояния глубины ощутимых деформаций Н (в метрах) от среднего относительного перемещения (подвижки) на разрыве и (в метрах):

$$H = (5\overline{u} + 15) \cdot 10^3$$
. (3)
Согласно (3), если допустим, что относительная

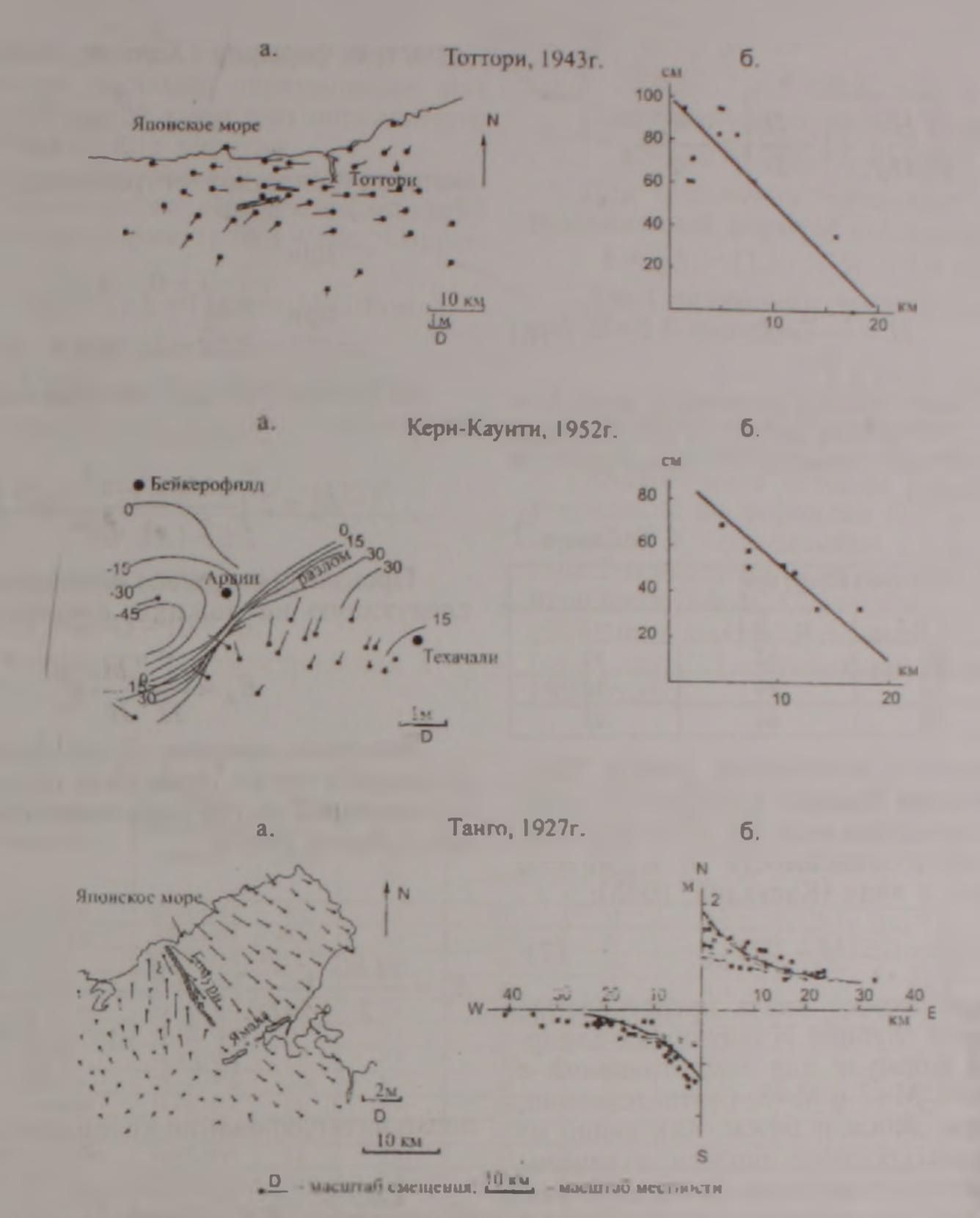


Рис 2 Горизонтальные смещения пунктов триангуляции при землетрясениях (а) и убывание горизонтальных смещений параллельных разрыву, по мере удаления от него (б) (Рикитаке, 1979)

средняя подвижка блоков равна $\bar{u} = 1.м$, то на расстоянин от разлома в ту и другую сторону по всей длине разлома L, то есть вне площади $L \cdot 2H$, перемещение среды до образования разлома (равно как и после образования разлома-землетрясения) считается равным нулю, а при $\bar{u} = 2M$ H=25 км. Соотношение (3) применимо только для сильных землетрясений, при которых на поверхности Земли образовался разрыв с относительной подвижкой не менее 10см. Естественно предположить, что предлагаемая зависимость (3) для отдельных землетрясений может привести к результатам, существенно отличающимся от регистрированных реальных результатов. Полезную роль в корректировке таких зависимостей может оказать решение модельных задач методами теории упругости В книге К Касахара (1985) на основании решения задач теории упругости для модели вертикального разлома со смещением по простиранию, представляющей собой бесконечно длинную полосу, пересекающую поверхность упругого полупространства, находящегося в условиях однородного сдвига (решение Л.Кнопова), приводится зависимость перемещения и на поверхности Земли в направлении простирания разлома от координаты х в перпендикулярном направлении в виде:

$$u(x) = \frac{u_{\text{max}}}{2} \left[\sqrt{(x/D)^2 + 1 - x/D} \right],$$
 (4)

где — тов разлома, D — вертикальная протяженность разлома (глубина очага h). Максимальная подвижка связана с другими параметрами следующим образом (Касахара, 1985):

$$u_{\text{max}} = \frac{2\Delta\sigma D}{G}, \quad \Delta\sigma = \frac{1}{2}\frac{Gu_{\text{max}}}{D}, \quad (5)$$

где до означает сброс напряжений при образо-

вании разрыва, G - модуль сдвига.

Убывающая зависимость (4) позволяет оценить величину проникновения ощутимых деформаций H. Так, если ограничиваться пространством, для которого перемещения меньше $\alpha u_{max}(0<\alpha<0.2)$ считаются фактически отсутствующими, то из (4)

получим:

$$\frac{u_{\max}}{2} \left[\sqrt{\left(\frac{H}{D}\right)^2 + 1 - \frac{H}{D}} \right] = \frac{\alpha u_{\max}}{2},$$

откуда

$$H = \frac{1 - \alpha^2}{2\alpha} D, \qquad (6)$$

При α =0.2 (для средней подвижки α \approx 0.1) и глубине очага D=h=10км, для H по (6) получим H=24км. Для разных значений α и h значения H приведены в табл.1.

Таблица 1

Значения Н(км) при								
h (KM)	$\alpha = 0.1$	$\alpha = 0.15$	$\alpha = 0.2$					
10	49	32	24					
15	74	49	36					
20	98	64	48					

В приложении к упомянутой работе Касахара для территории Японии приводится также формула для определения радиуса области деформирования $r(\kappa M)$ в зависимости от магнитуды M землетрясения в виде (Касахара, 1985):

$$\lg r = 0.51M - 2.27\,,\tag{7}$$

по которой также можно иметь представление о вышеупомянутой глубине Н опутимых деформаций. По этой формуле для землетрясений с магнитудами M=6, M=7 и M=8, соответственно, получим $r=6\kappa m$, $20\kappa m$ и $64\kappa m$ Как видно из приведенных трех способов оценки величины Н, результаты могут отличаться не более 2 раз, что можно считать приемлемым по аналогии с такими оценками при установлении величин других сейсмологических параметров: магнитуды, интенсивности, энергии очага и др

Теперь, имея значения \overline{u} средней подвижки, длину разрыва L, его глубину h и протяженность ощутимых деформаций H, вычислим потенциальную энергию по формуле (2). Если принять, что область подверглась чистому сдвигу, то будем иметь:

$$\tau_{xy} = \sigma_{xz} = 0, \quad \tau_{yz} = \tau_{xz} = 0,$$

$$\gamma_{xy} = \frac{\partial u}{\partial x}, \quad \tau_{yz} = \tau_{xz} = 0,$$

$$\tau(x) = G \frac{\partial u}{\partial x}, \quad dV = Lh dx \quad 0 \le x \le H.$$
(8)

Следовательно, для потенциальной энергии будем иметь:

$$E_{u} = 2\frac{1}{2} \int_{0}^{u} \tau(x) \frac{\partial u}{\partial x} Lh dx = \frac{2LhG}{2} \int_{0}^{u} \left(\frac{\partial u}{\partial x}\right)^{2} dx.$$
 (9)

В качестве зависимости и(х) примем более

простую формулу (Хачиян, 2001):

$$u(x) = \frac{\overline{u}}{2} \cos \frac{\pi x}{2\pi} \tag{10}$$

которая удовлетворяет граничным условиям задачи (рис.lr)

при
$$x = 0$$
 $u = \frac{\overline{u}}{2}$, при $x = H$ $u = 0$. (11)

С учетом (10) для потенциальной энергии E_{a} получим:

$$E_{d} = 2 \int_{0}^{H} \frac{LhG}{2} \frac{\overline{u}^{2}}{4} \frac{\pi^{2}}{4H^{2}} \sin^{2} \frac{\pi x}{2H} dx.$$

Произведя операцию интегрирования, получим следующую несложную формулу:

$$E_d = \frac{\pi^2}{32} \frac{LhG}{H} \bar{u}^2$$
 (12)

Значение энергии E_a по формуле (9) было вычислено также, принимая функцию убывания перемещений u(x) из выражения (4). В этом случае для E_a будем иметь:

$$E_{d} = \frac{2LhG}{2} \int_{0}^{H} \frac{\overline{u}^{2}}{4D^{2}} \left[\frac{\frac{x^{2}}{D^{2}}}{\left(\frac{x}{D}\right)^{2} + 1} - \frac{2x}{D\sqrt{\left(\frac{x}{D}\right)^{2} + 1}} + 1 \right] dx,$$

после интегрирования которого получим:

$$E_d = \frac{LhG}{4} \frac{\overline{u}^2}{D^2} \left[2H - Darctg \frac{H}{D} - 2D \left(\sqrt{\frac{H^2}{D^2} + 1} - 1 \right) \right].$$

Как показали вычисления, выражение в квадратных скобках при условии (6) между H и D, независимо от α , равно 0.43D. Таким образом для E_d имеем:

$$E_d = \frac{0.1075}{D} LhG\bar{u}^2$$
 (12a)

Сравнение этого значения со значением E_1 по основной формуле (12) показывает, что при $\alpha = 0.17$ (H=2.86D) они полностью совпадают. При других значениях α (0< α <0.2) различие между значениями E_1 по формулам (12) и (12a) не превышает 10-15%.

При самой простой прямолинейной зависимости функции перемещения в виде:

$$u(x) = \overline{u}/2 - \overline{u}x/2H$$

для потенциальной энергии E, по формуле (9) получим:

$$E_d = \frac{LhG\bar{u}^2}{4H} \,, \tag{126}$$

что отличается от E_i по формуле (12) всего на

15%. Таким образом, при заданном \bar{u} и H характер убывающей функции перемещения u(x) не играет существенной роли при определении величины потенциальной энергии.

Воспользуясь формулой (12), вычислим значение E_a для Спитакского землетрясения 1988 года по следующим параметрам (Wells, Copper-

smith, 1994):

L=38
$$\kappa M$$
 = 38×10 5 cM ,h = 11 κM = 11×10 5 cM ,
 u_{max} = 2 M = 200 cM , \bar{u} = 1.22 M = 122 cM ,
H= 10 3 × (5×1.22+15) = 21.1 κM = 21.1×10 5 cM ,
 G =5×10 11 ∂uH / cM 2 ,

$$E_{d} = \frac{9.87 \cdot 38 \cdot 10^{5} \cdot 11 \cdot 10^{5} \cdot 5 \cdot 10^{11} \cdot (122)^{2}}{32 \cdot 21.1 \cdot 10^{5}} =$$

$$= 454726 \cdot 10^{16} \partial u \mu \cdot c \mu,$$

$$E_{d} = 0.45 \times 10^{22} \text{ spr.}$$

Энергетический класс землетрясения к бу-

дет:

$$k = \lg E_d - 7.$$

Подставляя значение E_x получим: $k = \lg 0.45 + 22 - 7 = -0.34 + 15 = 14.66$.

Для сравнения вычислим величину k по традиционной формуле (1), представив ее в виде:

$$k = \lg E_s = 11.8 + 1.5 M_s - 7 = 1.5 M_s + 4.8.$$
 (13)

Для Спитакского землетрясения с магниту-дой М=68 получим:

$$k = 1.5 \cdot 6.8 + 4.8 = 15.$$

Как видим, разница величин энергетических классов по формуле (12) и (13) несущественна

Аналогичным образом для 44 сильных землетрясений по формулам (12) и (13) вычислены значения k, приведенные в табл.2. Все данные табл.2 заимствованы из статьи Д.Веллса и К Коппершмита (Wells, Coppersmith, 1994), в которой обобщены макросейсмические параметры очаговых зон 244 сильных землетрясений за 1853-1993 годы

Таблица 2

N	Страна	Место земле-	Дата землетря- сения	Тип раз- рыва	Магни- туда земл-я, М _s	Протяжен- ность разрыва L (км)	Глуби- на раз- рыва h (км)	Макси- мальная подвижка и _{тах} (м)	Средняя подвижка <i>ū</i> (м)		Энергетический класс земл-я k	
	Страна										по формуле (12)	
1.	США	Fort Tejon	09.01.1857	RL	8.3	297	12	9.4	6.4	50.84	16.68	(13)
2.	США	Owens Valley	26.03.1872	RL-N	8.0	108	15	11	5.0	45	16.30	17.25
3.	Япония	Nobi	27.10.1891	LL	8.0	80	15	8.0	5.04	40.25	16.06	
4.	Япония	Rikuu	31.08.1896	R	7.2	40	21	4.4	2.59	27.95	15.49	16.8
5.	США	San Francisco	13.01.1906	RL	7.8	432	12	6.1	3.3	31.5	16.44	15.6
6.	США	Pleasant Valley	03.10.1915	N	7.6	62	15	5.8	2.0	25		16.5
7.	Китай	Kansy	16.12.1920	LL	8.5	220	20	10.0	7.25		15.36	16.2
K.	Япония	North Izu	25.11.1930	LL-R	7.3	35	12	3.8	2.9	51.25	16.84	17.55
9.	Китай	Kehetuohai	10.08.1931	RL	7.9	180	20			29.5	15.26	15.75
10.	Турция	Erzihcan	26.12.1939	RL	7.8	360	20	7.5	7.38	51.9	16.76	16.65
11.	США	Imperial Valley	19.05.1940	RL	7.2				1.85	24.25	16.19	16.5
12.	Китай	Damxung	18.11.1951	RL	8.0	60 .	11	5.9	1.5	22.5	15.01	15.6
13.	США	Dixie Valley	16.12.1954	RL-R	6.8	200		12.0	8.0	65	16.55	16.8
14.	Турция					45	14	3.8	2.1	25.5	15.22	15.0
15.	Монголия	Abant Gobi Altoi	26.05.1957	RL	7.0	40	8	1.65	0.55	17.75	13.92	15.3
_	США	Gobi-Altai	04.12.1957	LL	7.9	300	20	9.6	6.54	47.7	16.92	16.65
17.		Hebgen Lake	18.08.1959	N	7.6	45	17	6.1	2.14	25.7	15.32	16.2
_	Иран	Dasht-e-Bayaz	31.08.1968	LL	7.1	110	20	5.2	2.3	26.5	15.83	15.45
18.	Турция	Gediz	28.03.1970	N	7.1	63	17	2.8	0.86	19.3	14.80	15.45
19.	США	San Fernando	09.02.1971	R-LL	6.5	17	14	2.5	1.5	22.5	14.56	13.75
20.	Китай	Luhuo	06.02.1973	LL	7.3	110	13	3.6	1.3	21.5	15.24	15.75
21.	Гватемала	Motagua	04.02.1976	LL	7.5	257	13	3.4	2.6	28.0	16.09	16.05
22.	Турция	Caldiran	24.11.1976	RL	7.3	90	18	3.5	2.05	25.25	15.62	15.75
23.	Иран	Pob-Tangol	19.12.1977	RL	5.8	14	12	0.3	0.12	15.6	12.38	13.5
24.	Греция	Thezzaloniki	20.06.1978	N	6.4	28	14	0.22	0.08	15.4	12.40	14.4
_	Иран	Tabas-e-Golshan	16.09.1978	R	7.5	74	22	3.0	1.5	22.5	15.39	16.05
26.	США	Homestead Valley	15.03.1979	RL	5.6	6	4	0.1	0.05	15.25	10.78	13.2
_	Австралия	Cadoux	02.06.1979	R	6.1	16	6	1.5	0.5	17.5	13.32	13.95
28,	США	El Centro	15.10.1979	RL	6.7	51	12	0.8	0.18	15.9	13.28	14.85
19.	Иран	Koli	27.11.1979	LL-R	7.1	75	22	3.9	1.2	21.0	15.24	15.45
0.	Алжир	El Asman	10.10.1980	R	7.3	55	15	6.5	1.54	22.7	15.12	15.75
1.	Италия	South Apennines	23.11.1980	N	6.9	60	15	1.15	0,64	18.2	14.49	15.15
2.	Греция	Corinth	25.02.1981	N	6.4	19	16	1.5	0.6	18.0	13.97	14.4
3.	Греция	Corinth	04.03.1981	N	6.4	26	18	1.1	0.6	18.0	14.16	14.4
4.	США	Borah Peak	28.10.1983	N-LL	7.3	33	20	2.7	0.8	19.0	14.53	15.75
5.	Алжир	Constantine	27.10.1985	LL	5.9	21	13	0.12	0.1	15.5	12.43	13.65
6.	Австралия	Marryat Creek	30.03.1986	R-LL	5.8	13	3	1.3	0.5	17.5	12.93	13.5
7.	Греция	Kalamata	13.09.1986	N	5.8	15	14	0.18	0.15	15.75	12.66	13.5
8.	Новая Зеландия	Edgecumbe	02.03.1987	N	6.6	32	14	2.9	1.7	23.5	14.93	14.7
9.	США	Superstition Hills	24.11.1987	RL	6.6	30	11	0.92	0.54	17.5	13.92	14.7
0.	Австралия	Tennant Greek	22.01.1988	R	6.3	13	9	1.3	0.63	18.15	13.59	14.25
	Китай	Lancand Gengma	06.11.1988	RL	7.3	80	20	1.5	0.7	18.5	14.81	15.75
2.	Армения	Spitak	07.12.1988	R-RL	6.8	38	11	2.0	1.22	21.1	14.65	15.0
_	Канада		25.12.1989	R	6.3	10	5	2.0	0.8	19.0	13.41	14.25
	США	Ungava	28.06.1992	RL	7.6	62	12	6.0	2.95	29.75	15.52	16.2

Примечание:

RL — правосторонний сдвиг; Ll. — левосторонний сдвиг. R - взброс; N — сброс Истинное значение энергии землетрясения E=10^k в джоулях или E=10^k в эргах.

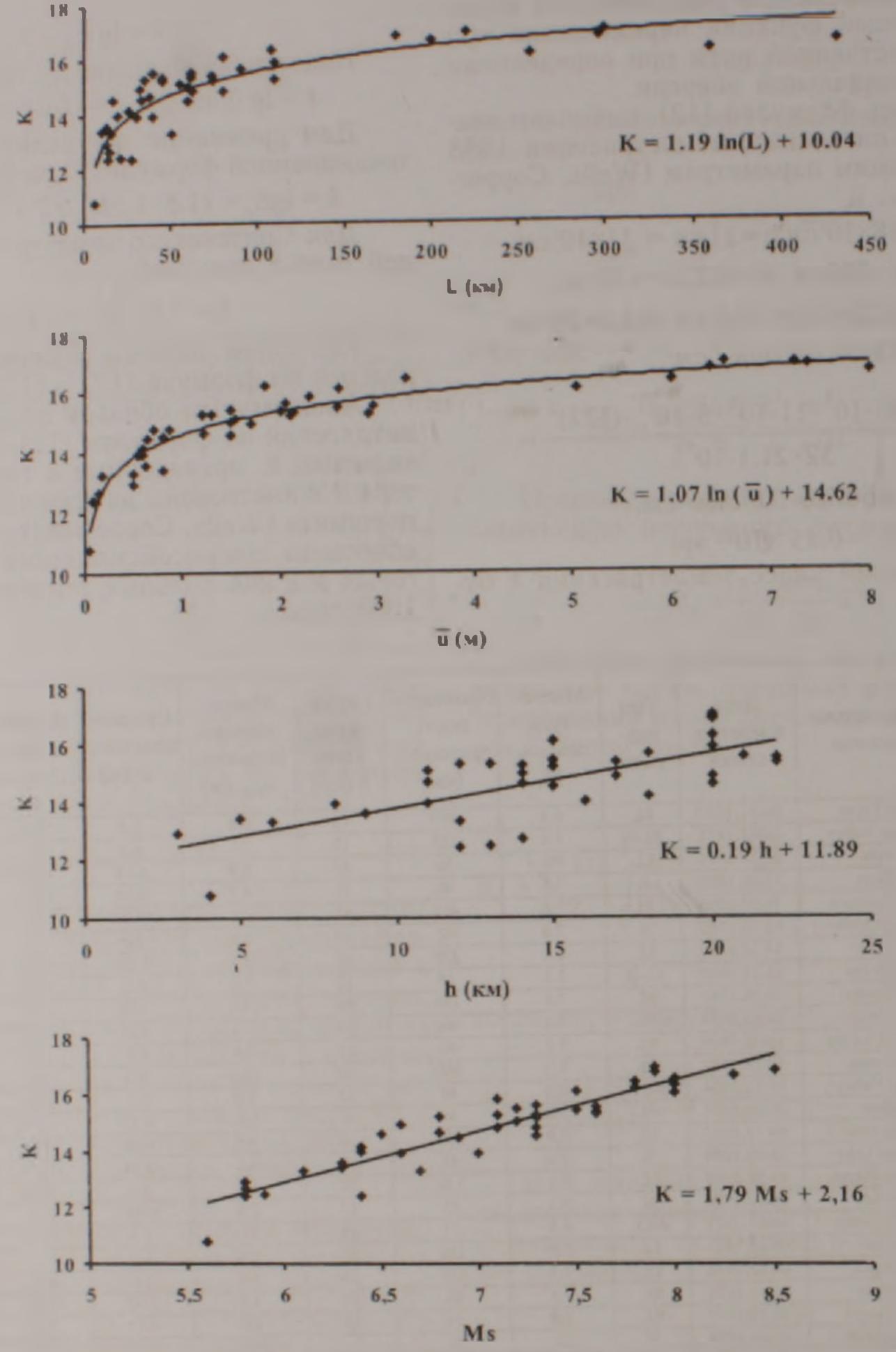
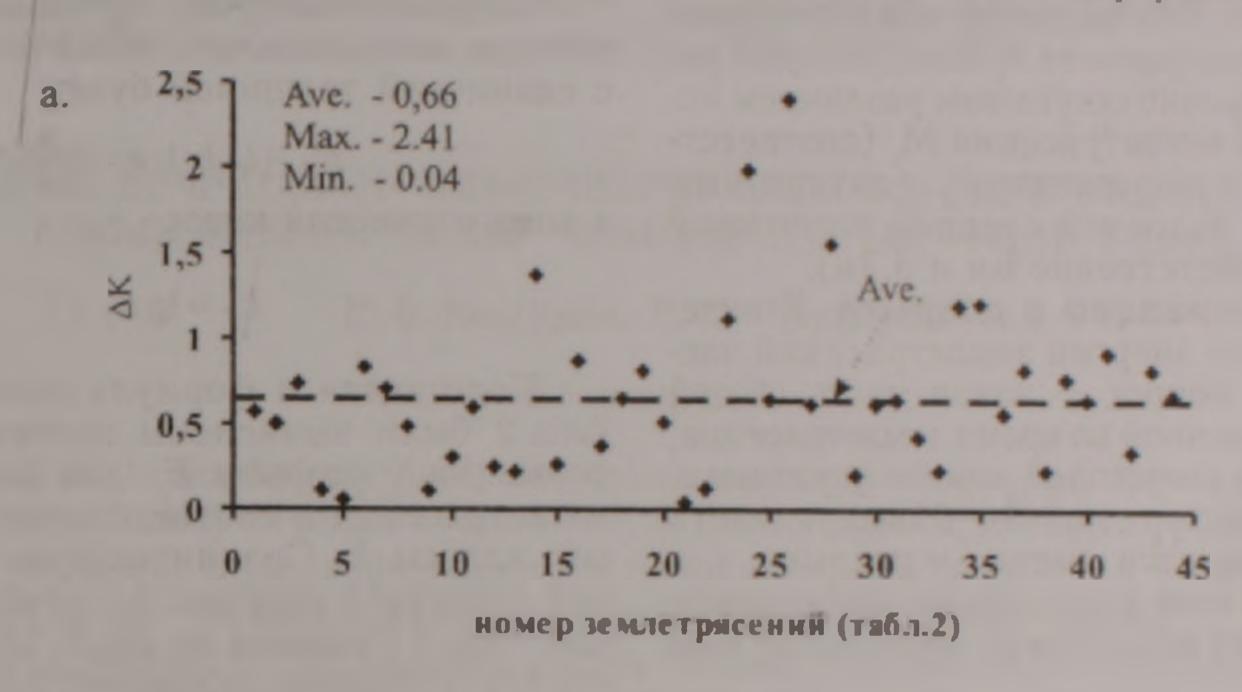


Рис 3 Зависимости между энергетическим классом землетрясений \mathbf{K} и протяженностью разрыва \mathbf{L} , относительной подвижкой \overline{u} глубиной разрыва \mathbf{h} , магнитудой \mathbf{M}_s согласно формуле (12) и данным табл 2

Мы использовалн только те землетрясения, для которых в статье имелись все три параметра (L,h,\overline{u}) , позволяющие провести вычисление энергии по формуле (12). Основное заключение из полученных результатов состоит в том, что величины энергии, вычисленные по предлагаемой формуле (12), в основном подчиняются общеизвестным закономерностям, согласно которым величина высвобожденной энергии растет с ростом протяженности, образовавшейся на поверхности L, глубины очага h и относительной подвижки спаренных блоков \overline{u} . Эти зависимости графически изображены на рис.3. Соответствующие им формулы имеют вид (E. — в джоулях, L и h в κm , \overline{u} — в m):

$$\begin{split} \lg E_d &= 1.19 \ln L + 10.04, \\ \lg E_d &= 1.07 \ln \overline{u} + 14.62, \\ \lg E_d &= 0.19 h + 11.89, \\ \lg E_d &= 1.79 M_S + 2.16. \end{split}$$

Из последней графики, приведенной на рис 3 видно, что значения энергетических классов рас смотренных землетрясений, вычисленные попредлагаемым формулам (12) и (12a), и соответст вующие им магнитуды M_s связаны линейной за висимостью:


$$k = 1.79M + 2.16,$$

которая свидетельствует о том, что и по предлагаемому способу определения энергии, как и по традиционному, имеет место линейная зависимость энергии от магнитуды землетрясения Среднее отклонение двух формул не превышает 0 46

Как видно из табл. 2, энергетические классы большинства землетрясений, за исключением 3-5 землетрясений с относительной подвижкой менее чем $0.2\,$ м, вычисленные по формулам $(12)\,$ и (13), имеют одинаковый порядок Среднее их отклонение составляет $0.66\,$ (рис 4a). Как видно из рисунка, небольшое отклонение, как и следовало ожидать, имеет место для слабых землетрясений со средней подвижкой \overline{u} < $0.20\,$ M; при их исключении из расчетов среднее отклонение составит около 0.5, т.е. не превысит одной единицы энергетического класса k.

Так как обе формулы являются приближенными и полуэмпирическими, такое различие можно считать естественным Например, известно что при установлении величины магнитуды M, возможная величина ошибки может в среднем достигать ± 0.5 . Это соответственно приведет к ошибке при определении k по формуле (13) до такой же величины ± 0.5 . С другой стороны, при выводе формулы (12) была принята во внимание только одна компонента подвижки по разрыву. Однако из табл 2 видно, что большинство землетрясений имело более сложную кинематику подвижки, поэтому вычисленные по формуле (12) значения энергии для таких землетрясений будут наименьшими.

Выше было отмечено, что глубину проник- новения ощутимых деформаций Н можно опре-

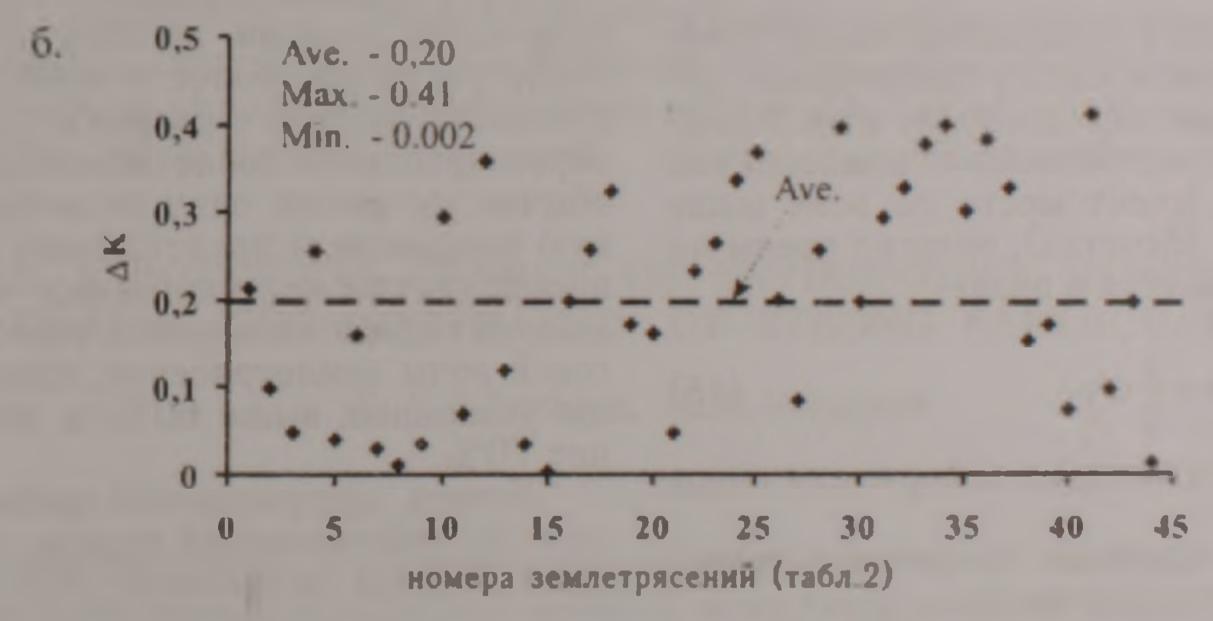


Рис 4 а — разность энергетических классов землетрясений $\Delta K = E_{\rm c} - E_{\rm c}$ рассчитанных по магнитуде землетрясения (13) и по потенциальной энергии (12a); б — разность энергетических классов землетрясений $\Delta K = E_{\rm c} - E_{\rm c}$ рассчитанных по формуле (12) при величине H по формулам (3) и (6) при $\alpha = 0.2$.

делить и по формуле (6) через глубину очага h. Используя значения h, приведенные в табл. 2, для всех 44 землетрясений были определены новые значения H и, подставляя их значения g (12), были вычислены соответствующие значения g (8 эргах) и значения g Для коэффициента g (8 эргах) и значения g Для коэффициента g (8 эргах) и значения g (3) и (6), показана на рис. 46. Как видим, среднее отклонение энергетических классов не превышает 0.2.

В заключение остановимся еще на одном сравнительном анализе. В книге К.Касахара отмечается, что, имея значения сброса напряжений

 $\Delta \tau$, по известной длине разлома можно оценить величину энергии деформации E в ней не приводится формула, по которой можно вычислить E, однако в ее приложении для 6 землетрясений из 43 наряду с параметрами очагов землетрясений приводятся также значения их энергии по сейсмическим волнам E_s и изменение энергии деформаций при образовании разлома. Для трех из рассмотренных нами землетрясений NN5, 8, 11 (табл.2) эти параметры и соответствующие энергетические классы k и k, вычисленные по E и E по предлагаемым формулам (12) и (13) и по данным Касахары, приведены в табл.3.

	Землетрясение		M,	L, KM	h, ĸw	U _{max} , M	и ,м	Энергетический класс		
NN								по магнитуде	по потенциальной энергии к	
5	Сан-Франциско 18.04.1906	a	8 25	430	15	-	5-7	17.3	17.47	
		В	7.8	432	12	61	3.3	16.5	16.44	
8	Северный Идзу 25.11.1930	а	7.1	20	11	-	3.0	15.3	15.47	
		В	7.3	35	12	3.8	2.9	15.75	15.26	
	Империал Вэлли 19.05.1940	a	7.1	70	11	-	2.0	150	15.17	
11		В	7.2	60	11	5.9	1.5	15.6	15.01	

а - по данным К.Касахара (1985),

в - по данным Веллса и Коппершмита (Wells, Coppersmith, 1994) и предлагаемым формулам (12) и (13).

Значения и у Касахара отсутствуют. Истинное значение энергии землетрясения E=10^k в джоулях или E=10^{k+7} в эргах

Как видно из таблицы, полученные результаты по двум землетрясениям N8 и N11 имеют хорошую сходимость. Что касается землетрясения N5, то различие при расчете k, между двумя результатами обусловлено ощутимым различием исходной магнитуды землетрясения M_{\downarrow} (соответственно 8 25 и 7 8), а при расчете k_{\downarrow} — двукратным различием между исходной средней подвижкой \bar{u} у разрыва (соответственно 6м и 3.3м).

Энергия деформации у разрыва В литературе о количестве энергии землетрясений часто дискутируется вопрос — какая часть общей энергии, высвобожденной во время землетрясения, сосредотачивается в очаговой зоне — у разрыва. Естественно предполагать, что большая часть энергии высвобождается именно у разрыва, т.е. именно в очаговой зоне касательные напряжения повсюду превышают допустимые предельные значения.

В книге К Касахара приводится оценка энергии деформации земной коры в критических условиях В простейшем случае, когда поле деформаций представлено единственной компонентой сдвига (как это имеет место во всех выше изложенных наших расчетах), энергия среды на единицу объема задается в виде:

$$e = \frac{1}{2} G \gamma_T^2, \tag{15}$$

где үт — предельная сдвиговая деформация пород коры.

По различным оценкам предельная деформация ут изменяется в пределах

$$\gamma_T = (1 \div 2)10^{-4}$$
.

Считается, что земная кора до этого уровня деформируется упруго, но никогда не переходит за этот предел без разрушения. По мнению ряда специалистов, это значение значительно ниже по сравнению с данными лабораторных экспериментов, дающих значение $\gamma_T = 10^3$. Противоречие объясняется тем, что реально кора содержит множество трещин и ослаблений, которые уменьшают макроскопическую прочность пород земной коры. Как образно отмечает К. Касахара, пюбая цепь не прочнее своего самого слабого звена"

Принимая $G = 5 \times 10^{11} \partial u H / c M^2$, $\gamma_T = 1.1 \times 10^4$, по формуле (15), Касахара получил:

$$e \equiv 3000 \text{ spc/cm}^3$$

Следовательно, вся потенциальная энергия, которая накапливалась около плоскости разрыва с единичной толщиной будет:

$$E_f = L \cdot h \cdot 1 \cdot e = 3000 \, Lh \,$$
эрг/см³, а энергетический класс (16)

$$k_f = \lg E_f - 7$$

Подставляя в формулу значения L и h, из табл. 2 были вычислены значения энергии деформации у разрыва E, для рассмотренных 44 землетрясений и соответствующие энергетические классы к. Сравнительная оценка отношений энергии у разрыва к и всей энергии среды k по табл. 2 показана на рис. 5. Из рисунка видно, что k/k в среднем составляет 0.63, т.е. из общего количества энергии, накопленной в среде перед землетрясением, более чем 60% накапливается у области будущего разрыва (разлома). Так как образовавшиеся после землетрясения разрывы обычно не имеют одну геометрически правильную плоскость, а представляют собой некоторое пространство разрозненных сегментов, то в действительности энергия, освобожденная у очаговой зоны землетрясения, будет намного больше указанных выше 60% и, возможно, достигнет 70%.

Кстати, афтершоковый процесс, начинающийся в постсейсмический период, обусловлен наличием в среде остаточной 30% энергии дефор-

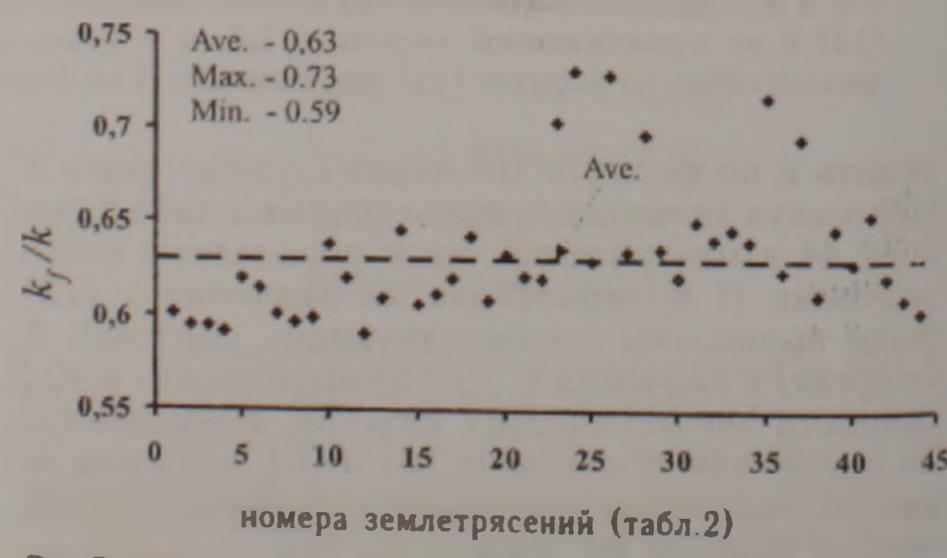


Рис.5. Отношения значений энергетических классов землетрясений у разрыва **К**, к классу общей энергии **К** всей деформированной среды

мации. Поле накопления деформации обычно имеет очень сложную структуру, связанную с неоднородным распределением прочностных и плотностных характеристик пород, наличием трещин и разрывов от прошлых землетрясений. Поэтому основной толчок будет служить спусковым механизмом для последующих афтершоков (в ослабленных в прочностном отношении структурах) до нового равновесного состояния всей деформированной в предсейсмический период среды. Естественно ожидать, что очаги афтершоков, в основном, должны располагаться на линии главного разрыва и вокруг него, где изначально имеют место концентрации напряжении При этом большое количество афтершоков косвенно будет свидетельствовать о большом количестве участков пород с ослаблением различной степени (прочностных неоднородностей среды) вокруг главного разрыва.

ЛИТЕРАТУРА

Брун Дж.Н. Физика сильных движений, вызванных землетрясениями. В кн.: "Сейсмический риск и инженерные решения". М.: Недра, 1981, с. 129-161

Касахара К Механика землетрясений М: "Мир", 1985. 264c.

Рикитаке Т. Предсказание землегрясений М. "Мир", 1979, 388с.

Тимошенко С.П., Гудьер Дж. Геория упругости. М: "Наука", 1979, 560с.

Хачиян Э.Е. Об одном подходе к определению величины энергии землетрясения по макросейсмическим параметрам очага землетрясения ДНАН РА, 2001 т.101, N1, с.66-75.

Wells D.L. and Coppersmith K.I. New Empirical Relationship among Magnitude, Rupture Lendth, Rupture Width, Rupture Area, and Surface Displecement. Bulletin the Seismological Society of America, vol.84, N4, pp.974-1002, August, 1994.

ՈՒԺԵՂ ԵՐԿՐԱՇԱՐԺԻ ՆԱԽԱՊԱՏՐԱՍՏՄԱՆ ՓՈՒԼՈՒՄ ՄԻՋԱՎԱՅՐԻ ՆՎՍՄՍ ՎԵՍՎՔԴԵՆԵ ՀԱԿԵՐԵՐԵՐԵՐ ՎՏԾԱՐ ՆՈՎԵՄՍԴՈԺԵՐ

է. Ե. Խաչիյան, Ա. Ձ. Սարգսյան

Ushnynis

Քերվում են ուժեղ երկրաշարժի նախապատրաստման փուլում միջավայրի դեֆոր-մացիայի պատճառով ապագա օջախի շուրջը կուտակված պոտենցիալ էներգիայի հաշվարկման եղանակ։ Որպես հաշվարկման պարամետրներ ընդունվում են երկրաշարժի հետևանքով երկրի մակերևույթին առաջացած խզվածքի երկարությունը L, օջախի խորությունը h և խզվածքի ուղղությամբ երկու հատվածամասերի հարաբերական տեղաշարժի միջին մեծությունը u 44 երկրաշարժերի համար առաջարկված եղանակով ստացված պոտենցիալ էներգիաների մեծությունները համեմատված են երկրաշարժի մագնիտուդի օգնությամբ սեյսմիկ ալիքների էներգիայի որոշման հայտնի եղանակով հաշվարկված մեծությունների հետ։

ABOUT A POTENTIAL ENERGY OF ENVIRONMENT DEFORMATION DURING THE PREPARATION OF STRONG EARTHQUAKE

E. Y. Khachian, A. Z. Sargsyan

Abstract

A method to determine the potential energy of deformed environment around a future source, accumulated during the whole preparation period of strong earthquake, is presented. The following parameters are taken as the initial ones: the fault length on Earth surface L after an earthquake, the depth of seismic source h and the relative average slip of blocks along the fault strike line \bar{u} . The comparative analysis of the obtained results with the results from known method to determine seismic waves' energy by earthquake magnitude is given for 44 strong earthquakes.