О ВТОРИЧНЫХ ПРЕОБРАЗОВАНИЯХ ЩЕЛОЧНО-ЛАМПРОФИРОВЫХ ТУФОВ ДИАТРЕМ МЕЗОЗОЯ ВЕДИЙСКОЙ ОФИОЛИТОВОЙ ЗЭНЫ (АРМЕНИЯ)

© 2005 г. Л. Г. Саакян

Институт геологических наук НАН РА 375019, Ереван, пр Маршала Баграмяна, 24а, Республика Армения е-таіl: lilisah_sci@yahoo.com Поступила в редакцию 22 08 2005 г

В статье рассмотрены вторичные преобразования щелочно-лампрофировых туфов и породообразующего вулканического стекла в диатремах мезозоя Ведийской офиолитовой зоны. Выявлены хлоритизация монтмориллонитизация стекла, перекристаллизация карбонатного цемента туфов, соответствующих уровню начального эпигенеза переходом к глубинному с наложением низкотемпературного гидротермального преобразования (цеолитизация и др.).

Первые находки диатрем (трубок взрыва) щелочных лампрофиров в Армении относятся к выходам офиолитов в бассейне р.Веди — в ядре Ерахской и Манкукской антиклиналей. Туфы диатрем — главный тип пород выполнения, при-

надлежат щелочно-лампрофировой ветви клана лампрофиров; они преимущественно витрокластические, цемент туфов поровый и контактовый (до 30-35% породы), состав кальцитовый с примесью магния, марганца, железа, а также с содер-

Таблица / Химический состав хлоритов и хлоритизированного стекла из диатрем групп "Хосров" и "Ерах"

Окислы	1	2	3	4	5	6	7	8	9
УКИСЛЫ	2132	2132-1	2132-2	2132-12	K-87-1p*	K-87-1p	K-87-1p-12	K-87-1p-5	104
SiO ₂	34.83	48,05	40,65	39,40	50,8	48,06	50,35	51,50	55.70
TiO ₂	1,76	3,22	0,28	0,08	0,12	0,35	0,18	1,09	1,38
Al ₂ O ₃	13,24	14,00	15,80	15.28	18,64	18.24	17,30	18,20	22,50
FcO	3,43	9,25	19,77	19,55	10.02	10,8	10,70	11,30	3,66
MnO	0,07	0,03	0,72	0,74	0,02	0,07	0,1	0,12	0,00
MgO	6,17	19,6	20,69	24,52	18,36	20,04	17,81	13,10	4,67
CaO	22,95	2,44	1,47	0,42	1.42	0,84	0,96	0,96	3,13
Na ₂ O	3,55	2,05	0,52	0,01	0,19	0,19	0,00	0,18	8,13
K ₂ O	0,06	1,21	0,1	0,00	0,37	0,93	2,45	3,45	0,83
NiO	-		-	-	0,00	0,35	0,15	0.10	-
P ₂ O ₅	13,94	0.15	-	-	-	-	-	•	-
CoO		-	-	-	0,00	0,05	0,00	0,00	-
Cr ₂ O ₃	0,00	0,00	-	-	0,06	0,08	0,00	0.00	-
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
Окислы	10	11	12	13	14	15	16	17	18
	104-8	118	118-x2	139-1	139	Б-10	Б-10-9	69	147
SiO,	43,70	45,52	51,42	40,26	39,98	40,58	45,09	38,12	45,10
TiO ₂	1,75	1,23	0,48	0,66	4,66	0,09	0,11		2,43
Al ₂ O	20,30	15,40	15,87	14,74	14,02	20,03	20,43	17,42	13,09
FeO	14,5	12,83	12,20	19,69	15,05	28,39	23,74	27,67	11.95
MnO	0,19	0,14	0,1	0,27	0,34	0,56	0,00	0,32	0,02
Mg()	11,14	20,6	12,62	22,51	22,98	7,70	7,61	16,44	23,76
CaO	3,52	1,18	1,17	1,04	1.48	1,73	1,9	-	1,51
Na ₂ O	4,82	1,27	0,74	0,92	1,40	0,43	0,00	-	1,63
K ₂ O	0,08	1,83	5,40	0.00	0,09	0,45	0,7	•	0,51
NiO	-					0,02	0,07	•	
P2O5	-		-			-	-	-	
CoO	-	-	-	-		0,00	0,16	-	-
Cr ₂ O ₃	-	-	-	-	-	0,03	0,18	0,03	-
Сумма	100.00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

^{1-8 —} из диатремы "Хосров" 9-18 — из диатремы "Ерах" | Стекло в мезостазисе 2 Хлорит + альбит в мезостазисе 3 Хлорит в мезостазисе 4. Хлорит по фенокристу 5 Хлорит, псевдоморфоза 6 Хлоритизированное стекло (край стекла) 7 Хлоритизированное стекло, край стекла 8 Хлоритизированное стекло. 9. Хлорит + альбит в мезостазисе 10 Хлорит в мезостазисе 11. Хлорит. 12. К-смектит. 13. Хлорит по стеклу 14 Хлорит по стеклу 15 Хлорит (хлоритизированное стекло) 16 Хлоритизированное стекло 17 Хлорит 18 Хлорит по стеклу дайки

жанием Na-цеолитов и анальцима. Кристаллы в туфах составляют до 3-4% (Сатиан и др., 1997, 2005).

Минеральные новообразования туфов диатрем представлены хлоритом, монтмориллонитом, смектитом, цеолитами, палагонитом, карбонатом

и изредка альбитом

Хлоритизация. Отмечаются обособленные зерна хлорита и агрегаты хлорита по стеклу. Микрочешуйчатые, волокнистые и пластинчатые, по химическому составу они относятся к группе железисто—магнезиальных и магнезиальных хлоритов. Замещение в них Mg на Fe можно предполагать в любых пропорциях. Расчет по кислородному методу Барта показывает большой привнос магния и железа при хлоритизации стекла.

Отношение Fe:(Fe+Mg) меняется от 0,23 до 1. Судя по низкому суммарному содержанию Fe, хлориты не окисленные. По соотношению суммарного железа в формульной единице к количеству нонов Si на формульную единицу (Дир У А и др., 1966), хлориты туфов диатрем группы "Хосров" располагаются в поле клинохлора, пеннина, диабантита и изредка - в поле пикнохлорита, а хлориты туфов диатрем "Ерах" - в поле диабантит-пикнохлорит рипидолита (рис.1). На диаграмме Al-Fe-Mg (рис.2) составы хлоритов туфов диатрем группы "Хосров" располагаются преимущественно в поле собственно хлоритов. Повышенной магнезиальности хлоритов туфов диатрем группы "Хосров" в целом соответствует повышенная магнезиальность вулканического стекла, при том, что вариации состава стекла значительны в разных точках даже одного зерна (данные микрозондового анализа).

Очевидно, что разнообразие хлоритов предопределено неоднородностью состава стекла, особенно наличием глобулей (микроликватов) и за-

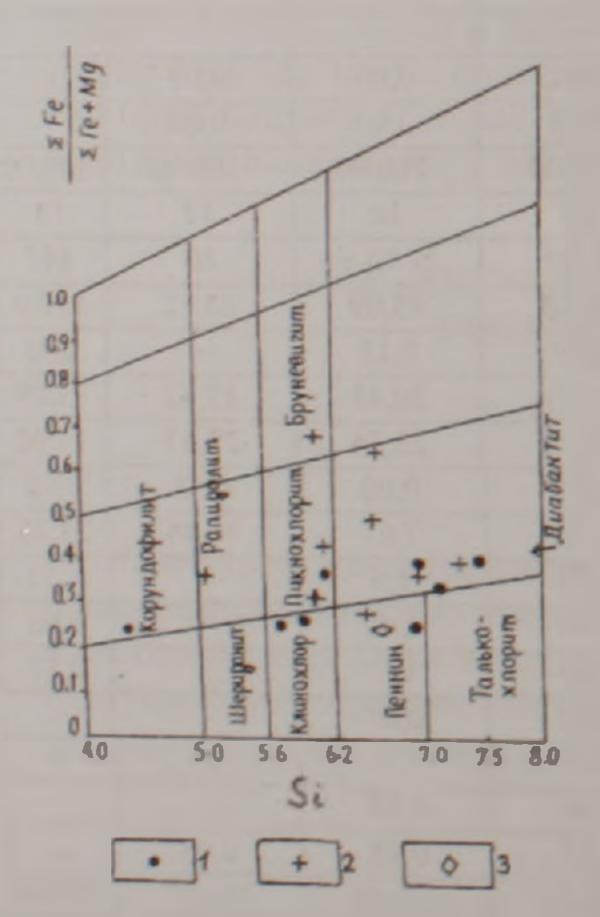


Рис I Составы хлоритов туфов и даек диатрем на диаграмме Fe/(Fe+Mg)-Si (в форм ед., расчет на 28 О)

I Хлорит туфов диатрем группы "Хосров". 2 Хлорит туфов диатремы "Ерах" 3 Хлорит дайки щелочных лампрофиров диатремы "Ерах"

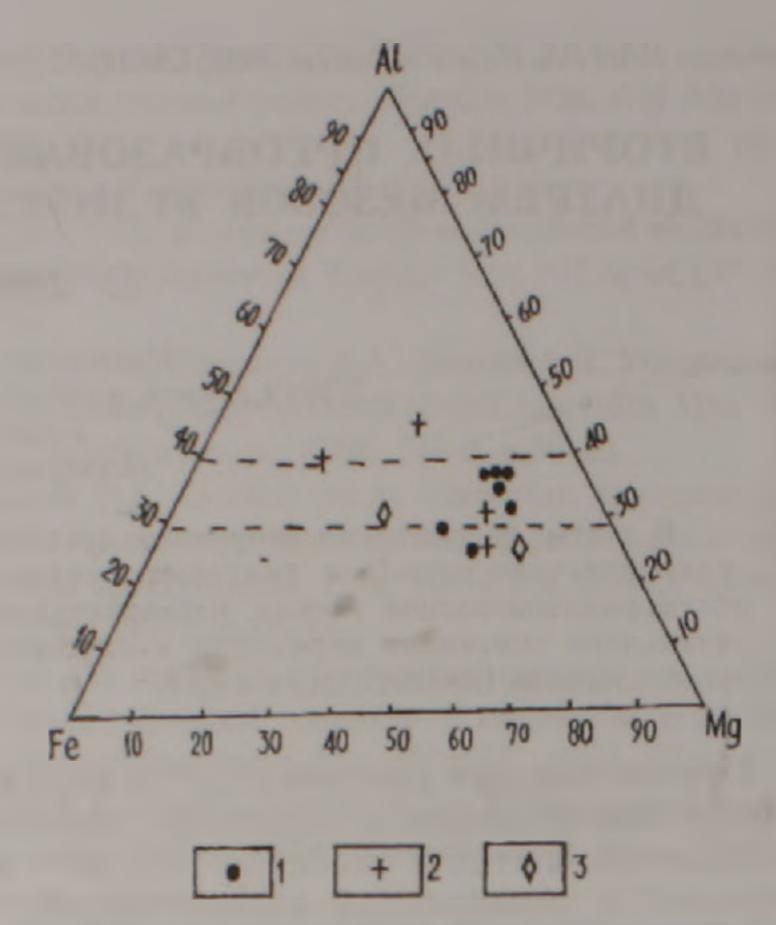


Рис.2 Составы хлоритов щелочно-лампрофировых туфов и даек диатрем на диаграмме Fe — Al — Mg (в атомн колич). 1. Хлорит туфов диатрем группы "Хосров". 2. Хлорит туфов диатремы "Ерах". 3. Хлорит дайки щелочных лампрофиров диатремы "Ерах".

Пунктирами очерчены границы полей хлоритов

чаточных центров раскристаллизации. Л П Плюсниной (ИЭМ, Москва) при микрозондовом анализе стекла установлено, что мелкие глобули (20-30мк) в стекле отличаются повышенным содержанием калия и наименее подвержены вторичным изменениям. Минеральный состав глобулей в стекле, по данным рентгенографии и ИК-спектрометрии, представлен зернами зелеными, округлыми, часто с коркой почти белого цвета минеральной смеси хлорита, магнезиального септохлорита и сильно неупорядоченного каолинита 1/n - 14,25 (100), 7,00 (100), 4,75 (100), 3,04 (100), 2,85 (10), (АІ =1,93, АІ^{гу}=1,03, АІ^{гу}=0,93 ф ед). Кроме них определяются выделения гематита с примесью карбоната.

Обращает внимание, что в одних и тех же образцах туфов наблюдаются обломки вулканического стекла хлоритизированные и свежие Очевидно, что при каждой последующей эксплозии происходит смешение ранних продуктов с новыми. Среди редких фенокристаллов отмечаются оливин и клинопироксены. По оливину раз-

виваются селадонит и иддингсит.

Анальцим. Выявляется в виде мелких ново-образований в мезостазисе совместно с хлори-

том, количество его незначительно.

Цеолиты. Отмечены по фрагментам вулканического стекла, нередко в виде цемента выполнения пор и пустот в туфах и мелких прожилков, в ассоциации с кальцитом и хлоритом Поисковой скважиной (глубина 40 м) на юго — восточном краю северного сектора диатремы "Ерах" выявлено преобладание в туфах анальцим—цеолитового цемента. Из лампрофировых туфов верховья р.Веди микрозондом определены Na — составы цеолитов (в %): SiO₂-58,65(51,71), TiO₃-0(1,05), Al₂O₃-26,17(28,36), FeO-0,18(1,82), MgO-

0 (0.54), MnO-0 (0,68), CaO-0,15 (1,12), Na,O-14,84

(14,20), K₂O-0,02 (0,53).

Глинизация. Охватывает преимущественно тонкую стекловатую пирокластику. Рентгеноструктурным анализатором (Дрон-2) удается выявить смектит-смешаннослойные образования: чередование монтмориллонитовых и хлоритовых прослоев (отражения d/n - 12,997 Å (I -25); 7 15 Å (I -10); 4,48 Å (I -100); 3,52 Å (I -70); 2,78 Å (I -20); 2,58-2,54 Е (J -30); 2,58 Å (I -20)); при этом мелкие глобули — К-щелочного стекла, как отмечалось, оказываются наименее измененными

Палагонитизация. Первая стадия преобразования стекла с последующим образованием по нему ряда последующих кристаллических фаз вторичных минералов — смектитов и др. Палагонитизированные глобули витрокластов изотропны, либо колломорфны с концентрически-

слоистой структурой.

Карбонатизация. Карбонат, крустификационной и радиально-лучистой структуры, содержит в повышенных количествах РЗЭ, Zг, что свидетельствует о его принадлежности магматогенному карбонату (ликвационному) — мелкие глобули, округлые обособления. Имеется карбонат, образованный за счет перекристаллизации седиментационного материала. Кальцитовый цемент с глубиною становится плотнее, порода меняет окраску до серо-голубой, что обусловлено меньшей окисленностью железа. В породе отмечаются и более поздние секущие прожилки, сложенные крупно-среднезернистым кальцитом

В химическом составе кальцитов обращают внимание повышенные содержания MgO, MnO,

Сг,О, ТіО, (табл.2).

В гологиалиновых туфах с карбонатным цементом значение ⁸⁷Sr/⁸⁶Sr определено в 0,70500. В этих образцах, после воздействия на породу 2N раствором HCl, отношение ⁸⁷Sr/⁸⁶Sr в нерастворимом остатке уменьшилось до 0,70424±0,00024. Можно предположить коровую контаминацию карбонатной компоненты

(Гукасян и др., 2005).

Помимо развития низкотемпературных гидротермальных изменений (Na — цеолиты) на юге диатремы "Ерах" вдоль широтного разлома картируется зона кварц-карбонатных жил суммарной мощностью до 1,5-4 м. с окисными марганцевыми минералами, представленными преимущественно пиролюзитом, реже манганитом, минералами группы псиломелана и примеси гаусманита. Марганцевые руды характеризуются повышенными содержаниями меди и кобальта. РЗЭ (Пароникян и др., 1990).

Известно, что степень вторичных изменений возрастает в интерстициальном стекле, а также с появлением открытой трещиноватости (Минеральные преобразования..., 1981). Вторичные преобразования раздробленного витрокластического материала диатрем происходят многостадийно и разнообразно, в больших масштабах, включая воздействие гидротермальных растворов.

Итак, минеральные новообразования по туфам диатрем отвечают уровню начального эпиге-

Таблица 2 Химический состав кальцитов из щелочно-лампрофировых туфов диатрем "Ерах" и группы "Хосров"

n/n	N образца	SiO ₂	TiO ₂	Al ₂ O ₃	MgO	FeO	CaO	MnO	Cr ₂ O ₃	NiO	Na ₂ O	K ₂ O	Сумма
1	Б-10	2,95	0,125	1.09	1.00	1,35	91,89	1.33	0,06	0,00	0.00	0,18	100,0
2	2132	0,00	0,40	0.00	0,00	0,04	96,01	1,04	2.35	0,00	0,15	0,00	100,0
3	K-87	0,53	0,014	0,19	1,44	1,26	96,05	0.23	0.17	0,98	0,00	0,00	100,8

Примечание анализы выполнены на микроанализаторе "Camebax" (ИЭМ РАН). 1. обр. — кальцит из диатремы "Ерах". 2, 3. обр - из диатрем группы "Хосров".

неза, отчасти переходом в зону глубинного эпигенеза с наличием гидротермальных изменений.

Эпигенетический уровень преобразования вещества диатрем указывает на незначительное литостатическое давление при перекрытии диатрем осадками сенона. Вероятно, конседиментационное, многократное выдвижение диатрем к поверхности, которое вызвано не столько увеличением объема при преобразованиях породообразующего стекла и других компонентов, сколько компрессией коры в обстановке "аккордеонной" тектоники. На это указывают асимметрия строения крыльев Ерахской антиклинали, вмещающей диатрему, резкое различие мощностей отложений сенона северного, более мощного, и южного крыльев (Сатиан и др., 2005).

В заключение выражаю глубокую благодарность М.А. Сатиану и ЖО Степанян за предоставленные анализы, а также за обсуждение статьи

и ценные замечания.

ЛИТЕРАТУРА

Гукасян Р.Х., Мнацаканян А.Х., Степанян Ж.О. О радиологическом возрасте днатрем. В кн: "Лампрофировые трубки взрыва мезозоя Ведийской зоны (Армения)". Ереван: Изд. "Наири", 2005, с.112-118.

Дир У.А., Хауи Р.А., Зусман Дж. Породообразующие минералы. М.: "Мир", 1966, т.3, 312 с.

Пароникян В.О., Сатиан М.А., Варданян А.В., Яшвили Л.П. О марганцевых рудах Ерахской антиклинали (Малый Кавказ). ДАН Армении, 1990, т.91, №1, с.215-218.

Сатиан М.А., Варданян А.В., Степанян Ж.О. Лампрофировые диатремы Вединской офиолитовой зоны (Армения). Изв. ВУЗ, "Геология и разведка", 1997, №3, с.14-21.

Сатиан М.А., Степанян Ж.О., Саакян Л.Г., Мнацаканян А.Х., Гукасян Р.Г. Лампрофировые трубки взрыва мезозоя Ведийской зоны (Армения). Ереван: Изд. "Наири", 2005, 148 с.

ՎԵԳՈՒ ՕՖԻՈԼԻԹԱՅԻՆ ԳՈՏՈՒ ՄԵՁՈՁՈՅԻ ԱԼԿԱԼԱ-ԼԱՄՊՐՈՖԻՐԱՅԻՆ ԴԻԱՏՐԵՄԱՆԵՐԻ ՏՈՒՖԵՐԻ ԵՐԿՐՈՐԴԱՅԻՆ ՓՈԽԱԿԵՐՊՈՒՄՆԵՐԸ (ՀԱՅԱՍՏԱՆ)

L. Հ. Սահակյան

Uúhnhniú

քննարկված է Վեդու օֆիոլիթային գոտու մեզոզոյան, ալկալա-լամալրոֆիրային դիաարեմաների տուֆերի, ինչպես նաև ապար կազմող հրաբխային ապակու երկրորդային փոխակերպումները։ Հայտնաբերվել են ապակու քլորիտացում, մոնտմորիլոնիտացում, տուֆերի կարբոնատային ցեմենտի վերաբյուրեղացում, որը համընկնում է սկզբնական էպիգենեզի փուլին՝ անցումով խորքայինի, ցածր ջերմաստիճանի հիդրոբերմալ փոփոխություններով։

ABOUT SECONDARY ALTERATIONS OF TUFFS OF MESOZOIC ALKALINE-LAMPROPHYRIC DIATREMES IN THE VEDI OPHIOLITE ZONE (ARMENIA)

L. H. Sahakyan

Abstract

The article considers secondary alterations of tuffs of Mesozoic alkaline-lamprophyric diatremes and rock-forming volcanic glass in the Vedi ophiolite zone. Established are chloritization, montmorillonitization of glass, tuffs carbonate cement re-crystallization running at the initial level of epigenesis with transition to the deep one through low-temperature hydrothermal changes (ceolitization, etc.).