выбор оптимальной системы разработки маломощных рудных тел в условиях меградзорского золоторудного месторождения

© 2001 г. Ю. А. Агабалян*, А. Г. Оганесян**, А. М. Наджарян**

*Государственная комиссия по запасам полезных ископаемых РА 375009 Ереван, ул Корюна, 14, Республика Армения E-mail georisk@pnas.sci.am * * Институт геологических наук НАН РА 375019 Ереван, пр. Маршала Баграмяна, 24а, Республика Армения Поступила в редакцию 16 12 1999 г.

Рассматриваются вопросы выбора оптимальной системы подземной разработки маломощных (10-1.5 м) рудных тел в сложных горно-геологических условиях, представленных высокоценной рудой В результате разработана система с магазинированием руды с отбойкой руды шпурами из восстающих с последующей закладкой выработанного пространства Обоснована экономическая целесообразность применения предлагаемой технологии добычи руды для разработки маломощных рудных тел на примере Второго рудного тела Меградзорского золоторудного месторождения и доказана возможность получения высокого экономического эффекта.

В республике из разведанных и эксплуатируемых золоторудных месторождений особое место занимает Меградзорское, которое характеризуется довольно высокой ценностью руды.

На месторождении выявлено более 30 рудных зон и жил. В настоящее время промышленное значение имеют 9 рудных тел, из которых наиболее крупными являются Первое, Второе, Пятое, Слепое и Девятое.

По горно-геологическим и горнотехническим условиям эксплуатации месторождение относится к весьма сложным, что ограничивает отбор технически применимых систем разработки. Причем, одни из них характеризуются высокими затратами на добычу, а другие - повышенными

потерями и разубоживанием.

До настоящего времени на руднике применялась система подэтажного обрушения с торцовым выпуском руды (с высотой подэтажа, примерно равной двойной высоте обрушаемого слоя) Эта система характезируется сравнительно небольшими затратами (особенно при обрушении "ленты"), но очень высоким разубоживанием и потерями руды при добыче, что связано как с ее конструктивными особенностями, так и с малой мощностью рудных тел и незначительной высотой подэтажа. Плановые значения разубоживания (40%) и потерь (8%), с учетом отмеченных обстоятельств, явно занижены: фактические показатели, по нашим оценкам, достигают соответственно 50-60% и 25-30%. Кроме того, недостатком применяемого варианта системы является большой объем подготовительно-нарезных работ. При обрушении вмещающих пород и земной поверхности в очистное пространство проникают воды, что снижает устойчивость боковых пород, ухудшает условия труда, повышает потери золота в результате уноса рудной мелочи с водой.

С целью повышения экономической эффективности работы рудника нами создана новая система разработки с нисходящей слоевой выемкой руды с железобетонным ограждающим межслоевым перекрытием [5], выбор которой для разработки первого рудного тела обоснован в

работе [1].

Дано также технологическое решение для отработки Слепого рудного тела, которое в основном характеризуется наклонным залеганием (40-45°, редко больше) и достаточно устойчивым висячим боком. Сущность технологического

решения заключается в следующем.

Очистную выемку в блоке осуществляют горизонтальными слоями в нисходящем порядке. С целью уменьшения высоты обнажения висячего бока, отбойку руды ведут с оставлением у почвы отрабатываемого слоя со стороны висячего бока временного целика треугольной формы в поперечном сечении, который отрабатывают при выемке нижерасположенного слоя. Для ограждения и поддержания очистного пространства в заходке устанавливают органную крепь.

Что касается эксплуатации второго рудного тела, которое отличается наиболее сложными условиями разработки, то здесь оптимальное технологическое решение пока отсутствует. Этой важной и актуальной задаче и посвящена нас-

тоящая статья.

Второе рудное тело характеризуется следующими горно-геологическими и горнотехническими условиями разработки: мощность составляет в среднем по рудному телу 1.1 м, с незначительными колебаниями, угол падения рудного тела изменяется в пределах 60-70°; руда слабая, неустойчивая, склонна к слеживанию; вмещающие породы вне рудоносной зоны средней устойчивости и устойчивые, у контактов с рудным телом трещиноваты, неустойчивые; контакты руды с вмещающими породами в основном четкие, но извилистые, как по простиранию, так и по падению рудного тела. По простиранию интервалы с промышленным оруденением чередуются с безрудными интервалами, в результате чего выделяются богатые рудные столбы длиной 50-150 м и более, расстояние между которыми составляют 10 и более метров Внутри рудных столбов оруденение неравномерное: богатые руды чередуются с явно убогими.

Анализ данных горно-геологических и горнотехнических условий позволяет отобрать по техническим возможностям нижеследующие системы разработки.

I. Система с магазинированием с отбойкой руды шпурами из восстающих с последующей

закладкой выработанного пространства.

II. Система с усиленной распорной крепью с потолкоуступным забоем и последующей закладкой выработанного пространства.

III. Система с нисходящей слоевой выемкой руды с железобетонным ограждающим меж-

слоевым перекрытием.

Остановимся подробно на системе разработки с магазинированием руды с отбойкой шпурами из восстающих и последующей закладкой выработанного пространства. Сущность системы заключается в следующем (рис.1).

Блок высотой 40 м и длиной по простиранию рудного тела 30 м подготавливается рудными откаточным 1, вентиляционным 2 штреками и фланговым восстающим 3, проведенным на полную

высоту этажа.

Очистные работы начинают после наращивания восстающих 4, расположенных друг от друга на расстоянии 5 м. Днища коротких магазинов оборудованы погрузочными люками 5 для выпуска руды из очистного пространства 6.

Откаточный и вентиляционный штреки крепят спаренными крепежными рамами, установленными в разбежку через 2.5 м, а восстающие с размерами в проходке 2.5х1,5 м - тремя сплошными венцами 7, чередующимися с креплением на бабках 8. Для бурения руды в

коротких блоках в крепи оставляют окна 9 Диаметр крепежного леса - 20 см Восстающие имеют два отделения - рудосвалочное 10 и ходовое 11, что обусловлено необходимостью одновременного ведения очистных и нарезных (наращивание восстающих) работ

Выемку руды ведут сплошным забоем по восстанию с отбойкой руды горизонтальными слоями. Обуривание слоя руды из опережающих восстающих производится с помощью легких перфораторов. Горизонтальные шпуры 12 глубиной 2.2 м предусматривается располагать в шахматном порядке с расстоянием между шпурами по восстанию 1.2 м. Одновременному взрыванию подлежат не более трех шпуров Перед взрыванием окна обшиваются досками. Затем взрывается комплект шпуров и производится частичный выпуск отбитой руды 13 с таким расчетом, чтобы между кровлей очистного забоя и поверхностью замагазинированной руды оставалось свободное пространство высотой около 1.0 м.

После завершения очистной выемки начинается интенсивный выпуск замагазинированной руды из коротких блоков, а затем сразу из вентиляционного штрека подается сухая закладка 14, с целью предотвращения обрушения вмещающих пород и земной поверхности.

В результате технико-экономических расчетов по этой системе разработки ожидаются ни-

жеследующие показатели:

1) производительность труда забойного рабочего - 2.2 м3/смену:

2) расход крепежного леса — $0.06 \, \text{м}^3/\text{м}^3$; 3) расход BB — $1.0 \, \kappa z/\text{м}^3$;

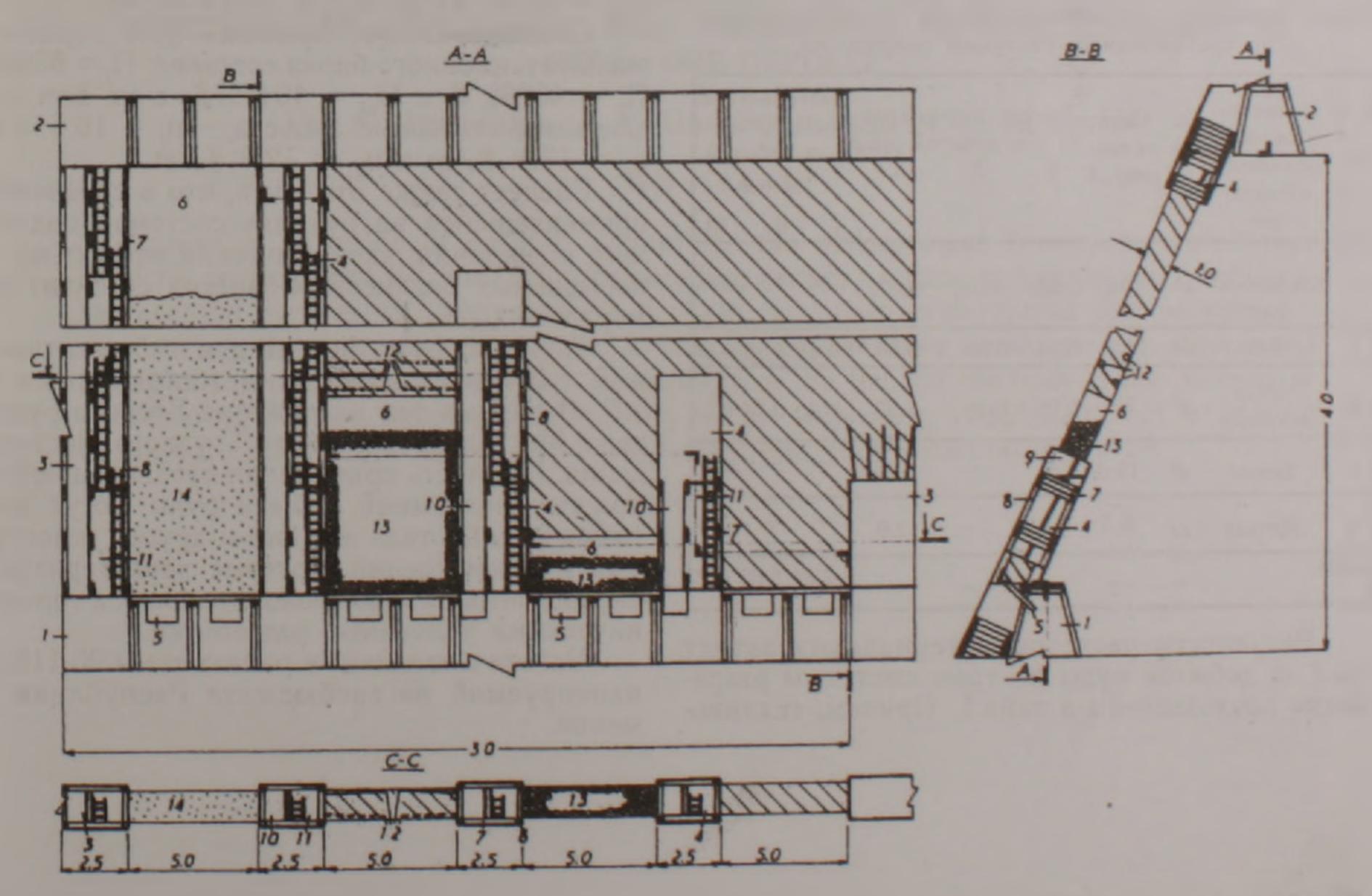


Рис I Система с магазинированием с отбойкой руды шпурами из восстающей с последующей закладкой выработанного пространства

4) потери руды - 5.0%;

5) разубоживание руды - 15.0%.

В итоге, имея три конкурентоспособные системы для разработки Второго рудного тела, с помощью экономического сравнения произ-

ведем выбор оптимальной.

В качестве критерия оптимальности принята прибыль по отработке блока, так как сравниваемые системы разработки в принципе не отличаются суммой капитальных затрат. В противном случае критерием оптимальности становится сверхнормативная прибыль. Об этом достаточно подробно изложено в работах [2 и 3]. Целевая функция имеет следующий вид:

$$(H_{\parallel}-C_{\parallel})Q_{6}K_{\parallel}/K_{\parallel} \rightarrow \max, \qquad (1)$$

где И — извлекаемая ценность 1 m руды, \$ / m; С — полная себестоимость добычи и переработки 1 m руды, \$ / m;

— балансовые запасы руды в блоке, т; К — коэффициент извлечения руды из недр; К — коэффициент изменения качества руды. Количество балансовых запасов руды в блоке составляет 3816 т (горизонтальная

мощность рудного тела m = 1.2 м, высота блока H = 40 м, длина блока L = 30 м, объемная масса

руды $Y_p = 2.65 m / M^3$).

При прочих равных условиях сравниваемые технологии добычи руды отличаются друг от друга качественными показателями извлечения из недр (K_{kl}=0.85, K_{kll}=0.90, K_{kll}=0.80) и материально-трудовыми затратами; значение K_{kl} по сравниваемым системам практически одинаковое и составляет 0.95.

Таблица 1

Расчет суммы материальных затрат на 1m добытой руды по сравниваемым системам разработки

nn		изм.	за еди-	на I	од мате п добыт П	_	Материальные затраты на l m добытой руды, \$		
	лов						1	II	Ш
1_	Крепежный лес	ΑC ³	80,0	0 023	0 06	0 001	1.84	4.8 0	300
2.	BB	кг	1.0	0.38	0 26	0 94	0.38	0 26	0.94
3.	Сухая закладка	M	2.0	0 20	0 38	0.22	0.40	0.76	0 44
4.	Бетон	M	15.0	-	-	0 045	-	-	0 67
5	Металл	кг	0,3	-	-	20	-	-	0 60
Boer	10	-	-	-	-	-	2 62	5 82	27

Результаты расчетов материальных затрат на 1 m добытой руды по трем системам разработки представлены в табл. 1. Причем, техникоэкономические показатели II системы взяты из практических данных [4], а по III системе разра-

ботки - обоснованы в работе [1].

Из рассматриваемых систем разработок наибольшей трудоемкостью отличается II система, где она составляет 0.60 смен/m. Второе место занимает I технология добычи руды со значением трудоемкости 0.17 смен/m, а III система – 0.15 смен/m. Тогда, при сменной зарплате 10\$, трудовые затраты составят: I система – 1.7 \$/m, II система – 6.0 \$/m и III система – 1.5 \$/m

Принимая прочие затраты на добычу 1 *т* руды в размере 30 \$, а себестоимость перевозки и обогащения 1 *т* руды — 12 \$ и суммируя перечисленные статьи затрат, получим полные себестоимости добычи и переработки 1 *т* руды по каждой системе разработки: С =46.32 \$/*т*, С =53.82 \$ / *t* С =46.23 \$ /

Теперь рассмотрим входящую в целевую функцию (1) величину извлекаемой ценности (И) 1 т руды по каждой системе разработки Она определяется следующей общеизвестной

формулой:

$$U = (C_{\phi}K - \tau) \coprod_{S} C / (C - \tau),$$
 (2)

где C_{Φ} — фактическое содержание золота в массиве рудного тела, C_{Φ} = 10 z/m;

т - содержание золота в отвальных хвостах,

 $\tau = 1 c/m$;

 $C_{i} = \frac{1}{50} \frac{1}{e^{2}m}$; содержание золота в концентрате,

" Ц - цена I г золота в концентрате,

 $L = 8 \$ / \epsilon$.

Подставляя все необходимые значения в формулу (2), определим искомую величину по трем технологиям добычи руды: И = 61.22 \$/m,

 $H = 65.31 \ \$/m, \ H = 57.14 \ \$/m.$

Следовательно, прибыль при отработке эксплуатационного блока составит: $\Pi = 63548$ \$, $\Pi_{\Pi} = 46282$ \$ и $\Pi_{\Pi} = 49439$ \$, а на 1 m погашаемых балансовых запасов — $\Pi = 16.6$ \$/m, $\Pi_{\Pi} = 12.1$ \$/m и $\Pi_{\Pi} = 12.9$ \$/m.

Следует также отметить, что в сравнении с применявшейся на руднике системой подэтажного обрушения, экономический эффект на 1 m погашаемых балансовых запасов составит при-

мерно 10-15 \$.

Таким образом, произведен выбор оптимальней системы разработки маломощных (до 1.5 м) рудных тел на примере Второго рудного тела Меградзорского золоторудного месторождения. В область применения предложенной технологии подземной добычи руды могут войти также рудные тела данного и других золоторудных месторождений, которые характеризуются аналогичными горно-геологическими и горнотехническими условиями разработки.

Работа выполнена в рамках темы 96-119, финансируемой из госбюджета Республики Ар-

мения.

ЛИТЕРАТУРА

- 1. Агабалян Ю.А., Оганесян А.Г. Система разработки с нисходящей слосвой выемкой руды с железобетонным ограждающим межслосвым перекрытием. М.: Горный журнал, 1997, №10, с.48-50.
- 2. Агабалян Ю.А. Теория и практика оптимального освоения недр. М.: Недра, 1994, 176 с.
- 3. Агабалян Ю.А. Фактор времени и определение
- оптимальных параметров месторождений и рудников. Ереван: Айастан, 1990, 79 с.
- 4. Агошков М.И., Мухин М.Е., Назарчик А.Ф. и др. Системы разработки жильных месторождений М.: Госгортехиздат, 1960, 375 с.
- 5. Աղաբալյան Յուև, Ձաքարյան ԱՄ., Հովհաննիսյան ԱՀ., Նաջարյան ԱՄ.: «Հանքամարմինների վարընթաց շերտային հանվածքի ծածկ» գյուտի վերաբերյալ ՀՀ N355 արտոնագիր։

ՓՈՔՐ ՀՋՈՐՈՒԹՅԱՆ ՀԱՆՔԱՄԱՐՄԻՆՆԵՐԻ ՕՊՏԻՄԱԼ ՄՇԱԿՄԱՆ ՀԱՄԱԿԱՐԳԻ ԱՎՈՂԵՆՆՄՍԵՍԽ ՎՂԵՍ ԻՍԳՆՍՆ ՎՈՒՍՈ ՎՂՈԸՍՂՐԵՍ ՊՍՎՈՂՏԺՉ

Յու. Ա. Աղաբալյան, Ա. Հ. Հովհաննիսյան, Ա. Մ. Նաջարյան

Ushnynıs

Հոդվածում դիտարկվել են բարդ լեռնաերկրաբանական և լեռնատեխնիկական պայմաններով, բարձր արժողության Հանքաքարով ներկայացված փոքր Հզորության Հանքամարմինների ստորդետնյա մշակման օպտիմալ Համակարգի ընտրման Հարցերը։ Հետազոտման օբյեկտ է Հանդիսացել Սեդրաձորի ոսկու Հանքավայրի Երկրորդ Հանքամարմինը, որի լեռնաերկրաբանական և լեռնատեխնիկական պայմանների վերլուծության արդյունքում մշակվել և առաջարկվել է տեխնիկապես կիրառելի՝ Հանքաքարի պահեստավորմամբ (կարձ պահեստներ), վերընթացներից պայթանցչերով Հանքաքարի պոկմամբ և Հանութային տարածության հետագա լցումով տեխնոլոգիան:

Վերջինիս Հետ տեխնիկապես կիրառելի ևս երկու մչակման Համակարգերի Համեմատման միջոցով Հիմնավորվել է մինչև 1.5 մ Հզորության Հանքամարմինների չաՀագործման Համար առաջարկվող տեխնոլոգիայի կիրառման տնտեսական նպատակաՀարմարությունը և խոչորացված տեխնիկատնտեսական Հաչվարկներով ապացուցվել է բարձր տնտեսական արդյունքի ստացման Հնարավորությունը:

SELECTION OF OPTIMAL DEVELOPMENT SYSTEM FOR ORE BODIES OF LIMITED CAPACITY UNDER THE CONDITIONS OF THE MEHRADZOR GOLD ORE DEPOSIT

Yu. A. Agabalyan, A. G. Ohanesyan, and A. M. Najaryan

Abstract

Issues of selection of optimal system for the underground development of limited capacity ore bodies (1 0-1.5 m) are considered for complex mining and geological conditions, represented by ores of high value. As a result, a system is developed that provides for ore storing through ore-breaking with blast-holes from rise headings and consequent laying of the mined-out space. By the example of the Second ore body of the Mehradzor gold-bearing deposit, economic advisability of this technology is substantiated for mining of limited capacity ore bodies and its high cost-efficiency potential is proved.