краткие сообщения

ИССЛЕДОВАНИЕ ОПОЛЗНЕВОГО ТЕЛА "ДЖРВЕЖ" И ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСТОЙЧИВОСТИ СКЛОНА ПО КОМПЬЮТЕРНОЙ ПРОГРАММЕ РС STABL 5M

© 1998 г. Д. Г. Аракелян, Р.Б.Ядоян

Институт геологических наук НАН РА 375019 Ереван, пр. Маршала Баграмяна, 24-а, Республика Армения Поступила в редакцию 11.12.97.

К числу наиболее опасных экзогенно-геологических процессов относятся оползни. Последние на территории Республики Армения практически развиты повсеместно.

Оползневые склоны представляют собой сложные природные конструкции, состоящие из комплексов горных пород различного состава,

строения, состояния и свойств.

Возникновение оползневых процессов обуславливается как развитием деформаций (уплотнение, просадочность, набухаемость, ползучесть), так и изменениями поля напряжений склона, связанными с внешними природными и искусственными факторами.

Объектом нашего исследования послужил оползневой склон "Джрвеж" на 20 км автодороги Ереван-Масис (СВ с.Джрвеж, у бывших ферм). Площадь оползня — 18000 м², ширина 75 м, длина 250 м. Расстоя-

ние оползневого участка до водораздела 50 м.

Геологически строение склона представлено коренными породами — песчаниками, глинами, алевролитами, вулканическими образованиями (N_1-N_2-Q) и покровными отложениями — делювиальными и техногенными (плейстоцен-голоценового возраста).

Оползневое тело расположено в сейсмическом районе (9 баллов),

частота толчков 5-6 раз в год.

По механизму развития оползневого процесса изучаемый объект относится к оползню скольжения. Состав движущегося материала — в основном глинистые грунты. Поверхность скольжения гладко волнистая. Крутизна 15°, местами до 30°.

Исследование грунтов проводилось по профилю, проходящему вдоль

движения оползневого тела с ЮЗ на СВ в М 1:500.

Физико-механические свойства грунтов ненарушенной структуры определялись в лаборатории Института геологии НАН РА (табл. 1).

Для установления стабильности склона оползневого тела "Джрвеж"

была применена компьютерная программа РС STABL 5M [2].

Оползневое тело нами было условно разделено на 3 части - языко-

вую, среднюю и головную (самую активную).

Первым шагом для определения локальной оценки и прогноза устойчивости склона явилось построение чертежа сечения склона, на котором показаны профиль рельефа, границы с относительно однородными по литологии и свойствам породами (тип грунтов) и уровень грунтовых вод, показатели ряда физико-механических свойств пород (плотность грунта, плотность насыщения, сила сцепления, угол внутреннего трения, горизонтальный сейсмический коэффициент и плотность воды).

Таблица 1 Данные для расчета коэффициента устойчивости склона (K_y) по программе PC STABL 5M

№	Место нахождения	Состав грунта	Физико-механические свойства грунтов						Горизонт.	Коэффициент
			Мощ-	Плотность грунта, г/см ³	Плотность насыщения. г/см ³	Сцепление, кг/см ²	Угол внутр. трения, градус	Плотность воды, г/см ³		устойчивости склона, К _у
	языковой части оползня	1. Техногенно-обломочные грунты	5,0	2,5	0,5	0,2	22,0	1,1	0,150	
		2 Суглинистые грунты	8,0	2,7	0.4	0,4	16,0	1,0	0,150	0,835
		3. Глинисто-алевролитовая гипсоносная толща	>10,0	2,8	0,2	0,5	33,0	1,0	0,150	
	головной части оползня	1. Рыхлые соврем. образов. суглинистого состава	3,5	2,3	0,2	0,3	12,0	1,0	64	
		2 Измененные образов с прослоями супеси и алевролитов	3,0	2,5	0,4	0,4	23,0	1,0	_ " _	0,825
		3. Глины, алевролиты, гипсы	2,0	2,6	0,4	0.4	24,0	1,0	_ " _	
_	за пределами оползневого тела	I Делюв образов обломоч- ного и глинистого состава	3.0	2,7	0,3	0,4	28,0	1,0	_ " _	
		2. Валунно-галеч глинисто- щебнистые аллювиальные образования	>2.0	2,8	0,2	0,6	35,0	1,0	- " -	1,499

Исследование грунтов проводилось как в пределах оползневого тела

(по скважинам и обнажениям), так и за его пределами.

В качестве критерия оценки степени устойчивости склона был использован количественный показатель — коэффициент устойчивости К_у, представляющий собой отношение удерживающих сил к сдвигающим, к которым относятся гидростатические, гидродинамические и сейсмические силы.

Склон считается устойчивым, если Ку>1 [1,3].

Данные компьютерной обработки позволили прийти к выводу, что коэффициент устойчивости склона оползня "Джрвеж" в языковой и головной частях соответственно равен 0,835 и 0,825, тогда как за пределами оползневого тела K_y равен 1,499, т.е. оползневой склон неустойчив, что подтверждается состоянием застроек, расположенных на нем (деформация зданий и сооружений, а также смещение дороги). Поэтому необходимо проведение работ по закреплению склона с помощью грунтоармированной конструкции и дренирующих сооружений при постоянном наблюдении за состоянием оползня.

Работа выполнена в рамках темы 96-124, финансируемой из госбюд-

жета Республики Армения.

ЛИТЕРАТУРА

1. Клименко А.И., Пахомов С.И. Инженерно-геологические расчеты. Москва, Недра, 1991, с. 70-76

2. Программа PC STABL 5M. Анализ стабильности склонов. США, университет

Пердью, 1978, 25с.

3. **Тихвинский И.О.** Оценка и прогноз устойчивости оползневых склонов. Москва. Наука, 1988, с. 17-35