7. Чибухчян З. О. Интрузивные комплексы Арзаканского кристаллического массива. Ереван: Изд. АН АрмССР, 1985, 184 с.

8. Debon F. and Le Fort P. F. A chemical-mineralogical clasification of common

plutonic rocks and associtions. 1983.

9. Jensen L. S. A new cation plot for classifying subalkalic volcanic rocks. Ontario Dep. of Mines, Miscelaneous Paper, 66, 1976.

- 10. Irvine T N. and Baragar W. R. A. A guade to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, vol. 8, 1971, pp. 523—548.
- 14. Middlemost E. A. K. Magma and Magmatic rocks. Longman Group Limited, Essex, 1985.

Известия НАН РА, Науки о Земле, 1994, XLVII, № 3, 37-42

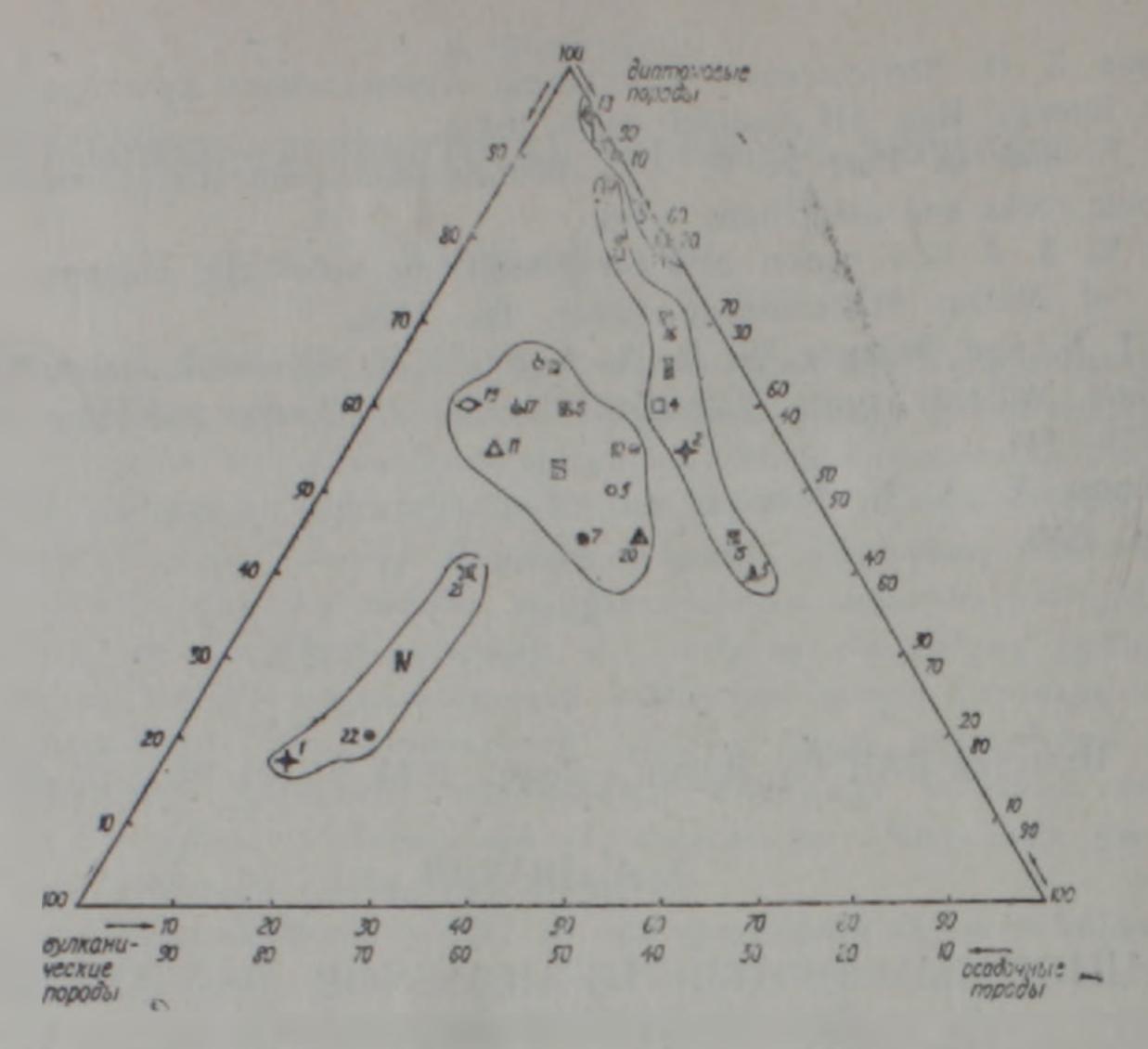
Т. А. АВАКЯН

формационные критерии поисков месторождений диатомитов армении

Рассмотрены главные типы суоформации вулканогенно-диатомитовой формации их роль при качественной характеристике месторождении диатомитов

Изучение плиоцен-четвертичной вулканогенно-диатомитовой формации Армении [2] позволило обособить в объеме формации следующие субформации (табл. 1). Каждая из них характеризуется своим парагенезисом, продуктивностью диатомового компонента и его качеством.

Как видно, состав субформации определяется соотношением эффузивного, вулканокластического, вулканотерригенного и терригенного материала, а также гидротермального, кремнистого и карбонатного вещества. Вариации содержаний диатомитового материала с лавами, пирокластами, вулканогенно-терригенными, а также собственно терригенными продуктами (рис. 1) обнаруживают прежде всего корреляцию с составом продуктов вулканизма [3].


В западной и северо-западной частях региона диатомиты ассоциируют с полями вулканитов андезито-базальтового, андезито-дацитового состава, в центральной части региона— с вулканитами андезито-базальтового, а также липаритового, в южной части— трахибазальтового, трахиандезитового, дацитового и липаритового состава (табл. 1).

Усредненные содержания пород вулканогенно-диатомитовой формации следующие: диатомиты — 30-50%, глинистый диатомит и диатомовая глина —40-65%, смешанные туфо-диатомовые породы —20-30%, пирокласты —15-35%, лавы —10-30%, вулканогенно-терригенные —25-35%, терригенные —20-35%.

Выделены следующие типы субформаций.

Эффузивно-диатомитовая субформация. Преобладают в разрезах лавы, которые с диатомитовыми отложениями (месторождениями) находятся в следующих взаимоотношениях: а) надлавовые отложения диатомитов — месторождения Джрадзорское, Парпийское, Гидевазское и др.; б) диатомитовые отложения размещены между лавами — Нурнусское, Шамбское, Арзнийское, Воротанское; в) диатомитовые отложения размещены под лавовой толщей — месторождения Карнутское, Шамбское, большинство месторождений Сисианской группы, Нурнусское, Арзнийское.

Наиболее качественными являются надлавовые диатомитовые отложения (Джрадзорское, Гидевазское, Парпийское и др. месторож-

+1 \$-2 43 47 01 85 67 00 +5 00 AN 57 65 58 7 7 55 1 65 6 5 423 N 3 420 023

Рис. 1. Среднее процентное соотношение днатомовых, осадочных и вулканических пород в диатомитовых месторождениях Армении. 1. Арзинйское. 2. Арзинйское (2). 3. Паракарское. 4. Воротанское. 5. Ленинаканское. 6. Мусаелянское. 7. Шамб-Дарабасское. 8. Джрадзорское. 9. Гидевазское. 10. Амулсарское 11. Шамбское. 12. Нурнусское. 13. Цовинарское. 14. Парпийское 15. Саалинское. 16. Дзорахпюрское. 17. Ангехакотское. 18. Гор-Айкское. 19. Борисовское. 20. Арцвакарское. 21. Какавахпюрское. 22 Ераносское. 23. Карнутское месторождения

дения), которые нами отнесены к собственно диатомитовой субформации в составе вулканогенно-диатомитовой формации. Мощность диатомитов небольшая — от 0,4 до 12 м.

Залегающие между лавовыми толщами (потоками) месторождения диатомитов низко-среднекачественные однако продуктивные пачки имеют значительную мощность — до нескольких десятков метров (Шамбское, Арзнийское и др.). Бронированные лавами диатомитовые отложения имеют более однородный литологический состав (Воротанское, Сисианский р-н, Арзнийское и др.), при среднем качестве сырья

н при мощности диатомитов до 30-35 м.

Вулканокластово-диатомитовая субформация. Имеет большое распространение преимущественно в Ахурянском и Сисианском бассейнах. В табл. 1 приводятся характерные парагенезы пород субформации. Диатомиты относятся в основном к средне-низкокачественным. В разрезе субформации сочетаются разнообразные типы вулканокластических пород — туфы, пемзо-пепловые образования базальтового, андезито-базальтового, дацитового и липаритового составов. В особенности много вулканокластики поступало в бассейн на юго-востоке региона в участках развития щелочного базальтового вулканизма. В отдельных частях бассейна присутствуют монтмориллонит-диатомовые глины. Мощность субформации значительна — 190 м, что предопределено прежде всего большим количеством поступающей вулканокластики, а также вулканомиктового материала. Интенсивность привноса вулканокластики предопределяет качество диатомитового сырья.

Эффузивно-вулканокластово-диатомитовая субформация представ-

Характеристика вулканогенно-диатомитовой формации верхнеплиоцен-четвертичного возраста территории Армении

Рор- la- lия	Субформация	Мощность в м	Парагенезы пород	Главные днатомито- носные бассейны	Представительные месторождения
Вулканогенно днатомитовая	Эффузивно-диатомитовая (чередование диатоми- тов и лавовых образо- ваний)		Лавы, линзы базальтовых, андезито- базальтовых пород, диатомиты и их глинистые разновидности, трепело- вые и опаковые глины, местами опал-халцедоновые гнезда и лин- зы	Воротан-Горисский	Аранийское, Гегамское, Сиси- анское, Воротанское, Нурнус- ское и др.
	Вулканокластово-диато- митовая	60—190	Туфы, пепло-пемзовые породы андезито-базальтового, базальтового, андезито-дацитового и липаритового состава. Часто наблюдаются пемзодиатомитовые, монтмориллонит-диатомитовые породы	Горисский	Сиснанское (Шамб-Урут), Мар- машенское, Ваграмабердское, Мусаелянское и др
	Эффузивно-вулканокла- стово-днатомитовая (натомитовая	350—400	Лавы андезит-базальтового, базальтового состава, диа томиты и их глинистые разновидности, туфы, пси ло-пемзовые породы андезит-базальтового, андезит-дацитового и липаритового состава. Местами наблюдаются трепелоподобные породы, опаковые прослойки, местами ракущечниковые известняки	Воротан-Горисский, Аху-рянский	Арзиниское, Сисианское, Дзор- ахиюрское, Нурнусское, Мар- машенское, Ваграмабердское, Мусаелянское и др.
	Кремнисто-диатомитовая (диатомиты начальной стадии раскристаллиза- ции кремнезема)		Чистые диатомиты, глинопесчани- стые, местами известковистые раз- новидности диатомитовых пород, опал-халцедоновые породы		Нурнусское, Дзоражпюрское, Арзнииское
	Травертиново- диатоми-	1—15	Травертины, известняки, известко- висто-диатомовые породы, глинопес- чанистые разновидности диатомито- вых пород	дан-Азатский	Агинское, Дзорахпюрское
	Собственно- диатомитовая	1,5—34	Чистые диатомиты, глинистые и ди- атомовые глины, песок, рыхлые песчаники, а также глины слабо песчанистые	Касах-Раздан-Азатский	Гиденазское, Джрадзорское, Цовинарское, Парпийское и лр.

ляет промежуточную разновидность вышеотмеченных двух субформаций и отмечена в пределах Арапийского, Сисианского, Нурнусского диатомитовых бассейнов. Ее мощность достигает 350—400 м (табл. 1).

Гидротермально-осадочная субформация. Представлена следую-

щими разновидностями.

Кремнисто-диатомитовая. Днатомиты этих разрезов высококачественные (количество диатомовых панцирей доходит до 90% и более). В образовании диатомитов основная роль принадлежит гидротермальным растворам, при этом источник поступления кремнезема располагался вблизи. Днатомитовое сырье таких разрезов высококачественное, а мощность продуктивных отложений достигает 15 м (Нурнус-

ское, частично Арзнийское и Дзорахпюрское месторождения).

Травертин-диатомитовая. Довольно редкая разновидность, представителями являются Агинское и Дзорахпюрское месторождения. Суммарная мощность отложений достигает 10—12 м, мощность травертинов—2.5—3.0 м Качество диатомитов низкое и среднее, при содержании SiO₂ до 56%. В тех бассейнах, в которых накапливались карбонатные осадки, это оставило свой отпечаток на развитии диатомовых водорослей — большинство панцирей диатомей растворяются и вследствие этого в таких бассейнах чистые диатомовые илы накапливались в ограниченном количестве, либо отсутствуют (Агинское, Дзорахпюрское и др., [1]. Гораздо чаще формировались смещанные разновидности отложений: известково-диатомовые, в которых подавляющее место принадлежит хемогенному карбонату.

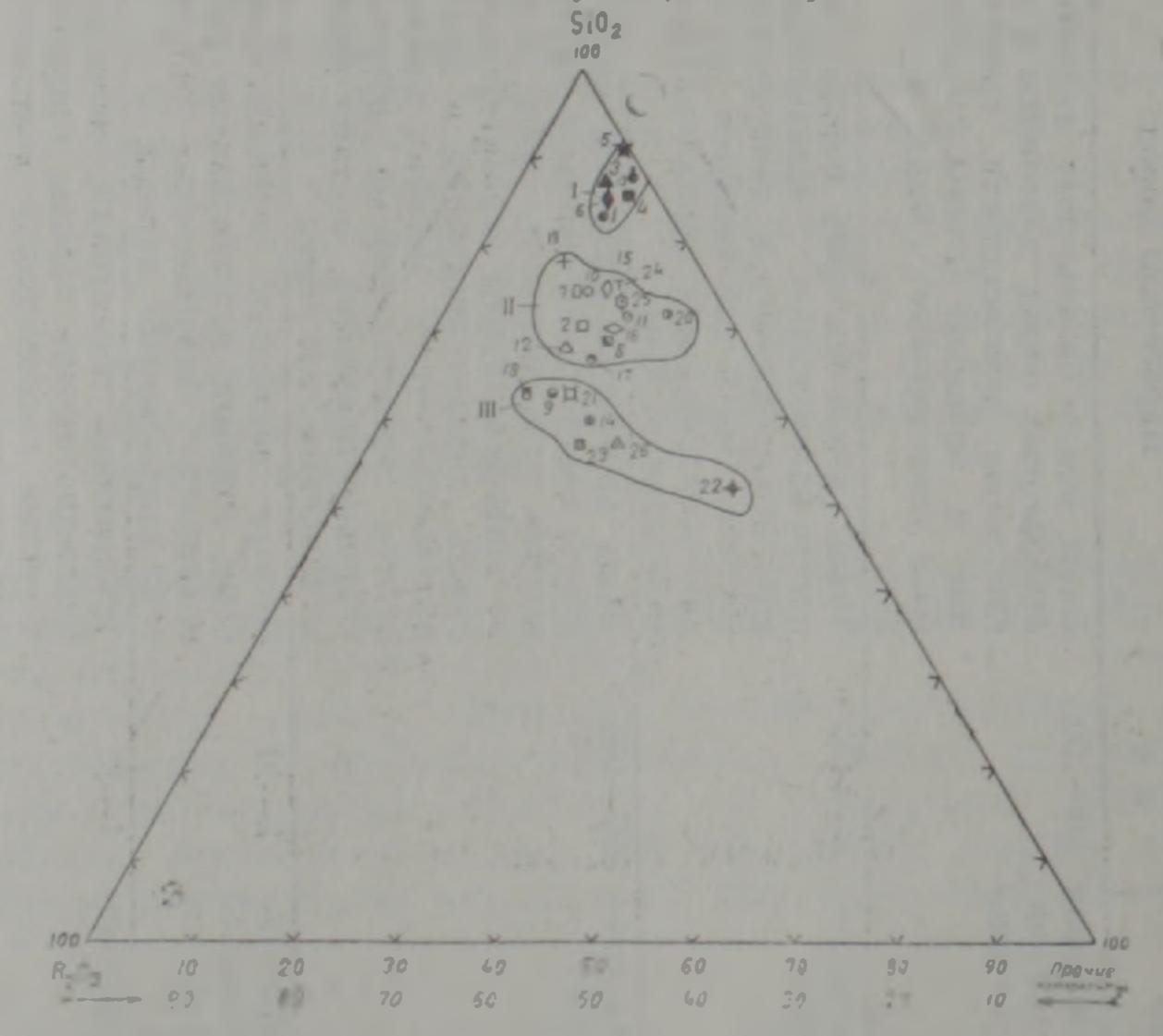


Рис. 2. Содержание основных компонентов в диатомитовых месторождениях Армении. 1 Парпилское 2. Амулсарское. 3. Пжрадзорское. 4. Ц винарское. 5 Цовинарское. 6. Гидевазское 7. Мусаелянское. 8 Арэнийское. 9. Арапийское. 10. Дзорахиюрское. 12. Мармашенское 13. Нурнусское. 14. Пурнусское. 15. Шамбское. 16. Базарчайское. 17. Ворстанское. 18. Паракарское. 19. Паракарское. 20. Какавахиюрское. 21 Узское 22. Аривакарское. 23. Гарвийское. 24. Ераносское. 25. Сазлинское. 26. Арапийское месторождения. 1 П. П. п.ли. составов диатемитов: 1—высококреминстые: П—среднекреминстые; П1 пизкокреминстые.

В общем виде фациальный анализ днатомовых пород различных

субформаций показывает следующее.

Разубоживание диатомовых илов и тем самым снижение их качества как сырья происходит в зонах синхронного эксплозивного вулканизма (вулканокласто-диатомитовая субформация), однако суммар-

ная мощность диатомитов здесь наибольшая.

В пределах участков синхронного эффузивного вулканизма лавовые потоки деструктируют поверхность диатомовых илов. Одновременно они бронируют накопившиеся от последующего размыва диатомовые осадки. Поэтому в бассейнах развития эффузивно-диатомитовой субформации могут быть выявлены значительные объемы высококачественного днатомового сырья.

Наиболее высоким качеством характеризуются диатомиты, залегающие над эффузивными потоками и относящиеся к собственно осадочной субформации, входящей в состав вулканогенно-диатомитовон

формации.

Содержание аморфного кремнезема, как основного породообразующего минерала, определяет, как известно качество диатомитового сырья (рис. 2). В общем случае в разрезах, где терригенный ма териал уступает место пепловому, увеличивается содержание аморф-

ного кремнезема.

Варнации содержания аморфного кремнезема и прочих компонентов значительны в диатомитах рассмотренных субформаций. Так, например, в диатомитах вулканокластово-диатомитовой субформации содержание аморфного кремнезема достигает 76%, тогда как в днатомитовых месторождениях собственно диатомитсвой субформации содержание аморфного кремнезема достигает 92% и более. Таким образом, взаимосвязь формационного типа отложений и качественной характеристики диатомитовых месторождений предопределяет возможность научного прогнозирования поисков этсго вида минерального сырья.

Институт геологических наук HAH PA

Поступила 6. VII. 1994

P. U. ULU93UV

ZUBUUSUUP PPUSHUPSUBPU ZUBPUQUBUBUP HPHUUUV ՖՈՐՄԱՑԻՈՆ ՉԱՓԱՆԻՇՆԵՐԸ

Udhnihnid

-րաբխա-դիատոմիտային ֆորմացիայի կարվածքների բազմակողմանի ուսումնասիրությունները ցույց են տալիս, որ հրաբխա-դիատոմիտային կըալրվածքներում նկատվում են լիթոլոգիական կազմի էական փոփոխություններ, որոնք արտահայտվում են այդ կտրվածքները կաղմող ապարների օրիսաչափ հերթափոխումներով, ոչ միայն ուղղաձիգ, այլև հորիզոնական շարբերում, որն էլ Թույլ և տայիս անջատելու հետևյալ ենթաֆորմադիաները։ և էֆֆուզիվ-դիատոմիտային, 2. հրարիսա-բեկորա-դիատոմիտային, 3. էֆֆուղիվ-հրաբեկորա-դիատոմիտային, 4. հիղրոներմալ-դիատոմիտայիա

Ենթաֆորմացիաների կազմը որոշվում է էֆֆուզիվ, հրաբխա-բեկորային, ւրաբիսա-տերիզեն և տերիդեն Նյութերի, ինչպես նաև դիատոմային Նյութերի

Կարունակությունների փոխհարաբերություններով։

Տեքսաում բերվում են նշված ենիաֆորմացիաների նկարագրությունները և դրանց հետ կապված ապարների պարապենետիկ ասոցիացիաները, հանքավայրերի տեսակները, նրանց հզորությունները, ինչպես նաև ենթաֆորմա-

ցիաների հետ կապված հանքավայրերը։

Տեքստում բերվում են նաև եզրակացություններ այն մասին, որ հրաբխադիատոմիտային ֆորմացիայում գտնվող դիատոմիտային հանքավայրերի որակական հատկանիշների և ֆորմացիոն տեսակների փոխհարաբերությունները հնարավորություն են տալիս հանրապետության տարածքում կատարելու դիատոմիտային հումքի որոնման գիտական կանխագուշակումներ։

T. A. AVAKIAN

FORMATIONAL CRITERIA FOR PROSPECTING OF DIATOMITE DEPOSITS IN ARMENIA

The basis subformation types of volcanogenic-diatomite formation and their role in a qualitative estimate of diatomite deposits, are considered.

ЛИТЕРАТУРА

1. Авакян Т. А. О характере распределения аморфного кремнезема в диатомитовых породах Армянской ССР.— Изв. АН АрмССР, Науки о Земле, № 5, 1975, с. 79—83.

2 Авакян Т. А. Силициты плиоцен-четвертичного возраста.— В кн.: Кремнистые породы фанерозоя территории Армянской ССР. Ереван: Изд. АН АрмССР,

1987. c. 136—168.

3. Авакян Т. А. Геология и закономерности образования вулканогенно-диатомитовой формации и месторождений диатомитов Армении. Автореф дисс. на соискание ученой степени доктора геол.-мин. наук.— М.: 1992, 29 с.

Известия НАН РА, Науки о Земле. 1994, XLVII, № 3, 42—49

В. Л. АНАНЯН

О РАДИОАКТИВНОСТИ ПОЧВ АРМЕНИИ В СВЯЗИ С АВАРИЕЙ НА ЧЕРНОБЫЛЬСКОЙ АЭС

Показано, что после аварии на ЧАЭС радиоактивные выбросы достигли Армении. В основном это были короткоживущие изотопы, в том числе ¹⁸⁴Сs. Концентрация выпавших долгоживущих изотопов ¹³⁷Сs и ⁹⁰Sr незначительны и на фоне радиоактивного загрязнения почв глобальными радионуклидами их влияние почти не проявилось. Концентрации их в почвах в 1988—1989 году были соизмеримы с уровнем 1980—1984. годов.

В результате аварии на Чернобыльской АЭС, происшедшей 26 апреля 1986 г., было обнаружено повышение уровня радиоактивности почв в отдаленных регионах страны, в том числе и в Армении. В связи с этим представляется важным выявить качественные и количественные показатели дополнительного радиоактивного загрязнения почв

Армении.

По данным Ильина, Павловского [3], в момент аварии выброс ¹⁰Sг, ¹³¹I и ¹⁸⁷Cs составил соответственно 8,1, 270 и 37 ПКи. Отношение ¹³⁷Cs/⁹⁰Sг равнялось примерно 4,6. По мере удаления местности от Чернобыля соотношение нуклидов изменялось. Основными дозообразующими радионуклидами для данной аварии оказались ¹³¹I— $-T^{1/2}=8$ дней, ¹³⁴Cs— $T^{1/2}=2,07$ года и ¹⁸⁷Cs— $T^{1/2}=33$ года. В первые дни и недели после аварии активность пищевых продуктов была обусловлена в основном ¹³¹I. Ввиду короткого периода полураспада ¹⁸¹I в течение 1,5 месяца распался. При оценке радиологической обста-