Известия НАН РА, Науки о Земле, XLVII, 1994, № 1-2, 128-133.

КРАТКИЕ СООБЩЕНИЯ

А К. ТОВМАСЯН, И В ГОРБУНОВА

ИССЛЕДОВАНИЕ ФАЗЫ Р_{тах} НА ЗАПИСЯХ СЛАБЫХ АФТЕРШОКОВ СПИТАКСКОГО ЗЕМЛЕТРЯСЕНИЯ 1988 г. ДЛЯ ИЗУЧЕНИЯ ОЧАГОВЫХ ПРОЦЕССОВ

В настоящей работе с помощью новой методики интерпретации сейсмограмм [1], в которой принимается во внимание пространственно-временной характер процесса при землетрясении, определены направления разрывообразований в очагах 30 слабых землетрясений (афтершоков) Спитакского землетрясения.

Для этой цели обрабатывались записи американских цифровых станций, хорошо окружающих рассматриваемую эпицентральную область (рис. 1).

Методика обработки исходит из следующего: максимальная энергия в результате землетрясения выделяется не в первый момент процесса, а через некоторый интервал времени t. Эти выводы сделаны на основе теоретических и модельных экспериментов по физике очага землетрясения [3, 4]. На сейсмограмме это время соответствует максимальным амплитудам скорости на записях в группах P- и S-волн (P_{max} и S_{max}).

Рис. 1. Карта направлении разрывообразования на основе азимутальных годографов для 29 афтершоков Спитакского землетрясения 7 декабря 1988 г.

128

	Т	to	ΨN	уE	Н, к.и	Tmax	5min	1. K.M	Az	CK.M/C	1/11	k
	23.12.88	16-57-55.4	4054-40	44-08.33	6	1.0	0.1	2.61	120	4.7	119 128	9.4
	24.12.88	14-14-46.2	$40 - 54 \cdot 55$	44-11.90		0.6	0.1	1.7	90		107 17	9.5
	26.12.88	13 - 11 - 03	40-53 52	44-12.53	7	0.5	0 1	1.04	(210)70	3.5		(7.4
		$ 14 - 43 - 03 \cdot 2 $	40-51.77	44 - 15.05	8	1.0	0.18	2.89	200	33		(8.1
		$ 14 - 51 - 23 \cdot 9 $	40 - 52.17	44 17 12	7	0.45	0.05	0.89	190	40	154/119	(7)
		14 - 56 - 50.7	40 - 57 . 23	43-59.77	10	0.5	0.1	1.16	60(250)	3.9	152 51	10.0
	27 12 88	$ 05 - 04 - 14 \cdot 8 $	40 - 54 - 15	43 - 58.39		0.4	0.1		3(0(70)			(8 0
		07-4515.4	40-57.15	44 - 06.40	9	0.25	0.1	0.44	300(70)	2.5	111/142	9.6
		11-17-19 9	40-52 12	43 - 53 . 26	03	0.94	01	2.85	190(100)		82 84	
		16-49-11 8	40-56.95	43 - 59.50	12	1.6	0.1	1.71	140	4.5		9.0
		18-02-45.3	40-57.87	44 - 10.36	6	0.74	0.2	1.62	330(70)	3.4	145 151	
	28.12.88	03 - 46 - 04 1	4058.13	43-58.84	10	0.5	0.2	0.73	50(300)			10.
		15-58-48.5	40 - 57.87	44 - 72 - 15	6	0.8	0.1	2.09	340	4.7		
		22-46-58.3	40 - 57.98	44 - 00.81	5	0.45	0.1	1.05	260(55)	5.7		9.
	29.12.88	00-23-13.3	40-44.69	44-21.74	8	0 45	0.1	1.05	(170)	3.8		(8)
		00-45-35	40 - 57.83	44 01.82	7	0.52	0.1	1.34	320	4.3	140 142	(8.)
		02-57-51.0	40-49.90	4419.45	10	0.8	0.1	2	240 10)			(7.7
		$ 10 - 08 - 43 \cdot 2 $	40 - 53 24	44-16.75	6	07	0.3	1.12	90	2.2		9.
		14 - 32 - 10.8	4054.02	$44 - 12 \cdot 2$	8	0.85	0.25	2.85	210(80)	3.9		8.
		18 - 43 - 50.1	40 - 56 83	44-57.08	8	0.5	0.1	1.32	240	4.4	107 11	10.0
		23 - 11 - 13.7	40 8.6	43-50.69	13	0.75	0.18	3.8	260	5.4	148 26	8.8
	30-12-88	02 - 49 - 32.7	40 - 59.07	44 02.78	12	0.5	0.2	0.73	260	2.0		
		05 - 02 - 35 5	40-44.5	4418.73	8	1.1	0.1	3.0	340			
		12-47-51.9	40-55 46	44-11.92	7	0.7	0.08	1.8	60	1	103 78	9.0
		13-28-48.4	40-55.39	43-58.87	12	1.8	0.1	5.1	330(70)	4.2	31 59	11.2
	31-12-88	$ 14 - 32 - 51 \cdot 9 $	40-55.34	43-58.71	10				66		47 32	
	01.01.89	22 - 59 - 38.0	40-46.28	44-23.65	8	0.85	0.22	18	99	3.4	92 2	
	03.01.89	08-19-54.8	40-52.49	44-14.08	6	1.0	0.05	2.7	91	5.2	16/106	
1		20-00-11.6	40-54.9	44-00.8	14	0.95	0.22	2.1	145	3.5	72 142	

[1]), I II- модальные плоскости. k - класс энергин: k=lgE (Дж)

Сведения о параметрах протяженных очагов афтершоков Спитакского землетрясения 1988 г.

Таблица 1

Наравне с интерпретацией первых вступлений Р-волн, которые соответствуют началу разрыва в очаге землетрясения, интерпретируется волна Р_{шах} как волна, излучаемая очагом в момент самого интенсивного разрушения.

Для подтверждения очагового происхождения волн Р_{тах} и S_{тах} используются азимутальные годографы, которые устанавливают зависимость времени пробега очаговых волн Р_{тах} и S_{тах} от протяженности очага и скорости распространения разрыва.

Теоретический азимутальный годограф имеет форму косинусонды. Экспериментальный же годограф имеет колоколообразную форму, сильно вытянутую в азимуте разрыва.

На основе азимутального годографа определяется направление вспарывания разрыва. Кроме этого, азимутальный годограф позволяет установить характер разрыва в очаге (однонаправленный, билатеральный или сложный разрыв) (рис. 2).

Для 29 афтершоков были построены азимутальные годографы. которые показаны на рис. 2. Как видно из этого рисунка, форма их ока-

залась не одинаковой. По форме и пространствечно они разделились на четыре группы. Первая, соответствующая землетрясениям типа однонаправленный разрыв (азимутальный годограф одногорбый) с направлением распространения разрыва ЮВ-СЗ. Вторая—тоже соответствует землетрясениям типа однонаправленный разрыв, чо с направлением распространения разрыва с севера на юг. Такого характера разрывы наблюдаются непосредственно в эпицентральной зоне Спитакского землетрясения (около Спитака).

Третья также соответствует землетрясениям типа однонаправленный разрыв с направлением его распространения в субширотном направлении с востока на запад.

Четвертая группа включает двунаправленные разрывы: разрывообразование происходит по азимутам 300—330° и 50—70°.

Подробные данные об этих землетрясениях помещены в таблице l. Таким образом полученные результаты на основе близких землетрясений и нового подхода интерпретации сейсмограмм позволили установить сложную картину сейсмического разрывообразования в очаге. Сложность картины заключалась в том, что в разных частях эпицентральной зочы Спитакского землетрясения разрывообразование происходило в разных направлениях. Генеральное направление субширотное, меридиональное. Наблюдаются сложные разрывы под углом, которые, по-видимому, должны соответствовать зоне стыка разломов разных направлений. Такая же сложная картина сейсмического разрывообразования устанавливается в районе Спитака, где в очагах наблюдаются двунаправленные разрывы, одно из простираний которых соответствует С-З направлению, а другое—меридиональному (рис. 1).

Институт геофизики и инженерной сейсмологии НАН РА, ИФЗ АН РФ Поступила 25 ПП. 1991.

131

ЛИТЕРАТУРА

- 1 Горбунова И. В Методика и некоторые результаты определения длины, скорости и направления распространения разрыва по волновой картине на сейсмограмме АН СССР ИФЗ, Москва, 1984, 181 с.
- 2. Горбунова И. В., Товмасян А. К. Некоторые характеристики протяженности очаговой области Спитакского землетрясения. Тезисы докладов международного семинара Спитак—88, Ереван, АН АрмССР, 1989. 39 с.
- З. Костров Б. М. Механика очага тектонического землетрясения. М.: Наука. 1975, 176 с.
- 4 Шамина О Г. Модельные исследования физики очагов землетрясений. М., Наука, 1981, 191 с.