Г. П. БАГДАСАРЯН, Р. Х. ГУКАСЯН

КРАТКИЕ РЕЗУЛЬТАТИВНЫЕ ДАННЫЕ ОБ ИЗОТОПНОМ ДАТИРОВАНИИ ГЕХАРОТСКОГО ГРАНИТОИДНОГО МАССИВА К—Ar и Rb—Sr ИЗОХРОННЫМ МЕТОДАМИ

В работе приведены краткие данные о геолого-петрографо геохропологиче ком псс. сдования Гехаротского гранитондного массива, размещенного в юрской (анаранская серия») вулканогенной толще, в северо западной части Цахкуняцкого блокантиклинория. По результатам этих работ, в противовес доминирующим ранее у большлиства геологов представлениям об эоценовом времени формирования интрузива, авторами по прямым геологическим фактам был установлен доконьяк-сантонский его возраст. Затем путем двукратного отбора образцов пород интрузива К-Аг методом определялся их возраст. Результаты в обоих случаях указали на время внедрения Гехаротского массива в отрезке времени от самой поздней юры до раннего псокома.

В последнее время авторами был тщательно исследован интрузив также Rb-Sr изохронным методом, подтвердившим K-Ar датировки.

Рассматриваемый массив, являющийся одним из относительно крупных на Цахкуняцком хребте интрузивов, по своей геолого-структурной позиции, внутрениему строению, сложному комплексу слагающих его пород, особенно жильной фации, представляет интереснейшее плутоническое образование в Северной Армении. Обнажается в северо-западной части Цахкуняцкого блок-антиклинория—крупного выступа байкальского кристаллического фундамента—на участке его погружения под мезокайнозойские отложения.

Рассматривая в настоящей статье в основном вопросы геохронологии Гехаротского массива, во избежание ненужного повторения, опускаем данные об истории геологической изученности района развития этого массива, сложного комплекса слагающих его пород, структурной позиции, внутреннего строения и т. д. Вопросы эти в той или иной мере охарактеризованы рядом исследователей, но особенно обстоятельно в работе Р. А. Хоренян [10]. Поэтому в дальнейшем изложении ограничимся лишь ссылкой на некоторых авторов, уделявших значительное внимание вопросам геохронологии.

Первое, весьма краткое геологическое описание интрузива под наименованием Ворднавского* дано К. Н. Паффенгольцем [9] в связи с проводившими им систематическими геолого-съемочными работами (М 1:200 000) в северной части АрмССР и сопредельных с исю районах.

В работах последующих исследователей, охвативших геологическими, геолого-поисковыми и др. работами также район Гехаротского массива, описаны некоторые аспекты последнего и вмещающих его пород, о чем по мере надобности отмечается в дальнейшем нашем изложении. Надо однако подчеркнуть, что детальное, обстоятельное изучение рассматриваемого массива и пород его обрамления выполнено Р. А. Хоренян. Благодаря ее систематическим полевым исследованиям (1971—1974 гг.), сбору анализа и обобщению весьма значительного фактического материала, разработаны вопросы петрографии, минералогии, геохимии, условий образования, петрогенезиса и т. д. Поэтому читателя, интересующегося Гехаротским массивом и вмещающими его формациями вулканогенных пород, мы отсылаем прежде всего к указанной работе Р. А. Хоренян [10].

В процессе проведенных нами с 1954 г. и последующие годы тема-

[•] По факту обнажения интрузива в бассейне правых составляющих р. Ворднав один из авторов настоящей статьи, проводивший в этом районе геолого-петрографо-геохронологические исследования, нашел целесообразным дать ему более благозвучное наименование—Гехаротский (1954 г.) по названию села, расположенного на южной периферии интрузива.

новозрастных интрузивных комплексов Севано-Ширакского синклинория и сочлененного с ним с юго-запада Цахкуняцкого антиклинория одно из первостепенных винмании было уделено Гехаротскому гранитондному массиву. Эти исследования, сопровождавшиеся геолого-петрографической съемкой (в М 1:50000), оказались крайне необходимыми для выяснения вопроса о времени внедрения интрузива. Тщательные наблюдения особенно в зоне его контакта с породами обрамления, привели нас к твердому убеждению о явно доконьяк-сантонском возрасте массива. На всем протяжении зоны контакта интрузива с его боковыми и перекрывающими явно верхнемеловыми отложениями белесоватых известняков нигде не наблюдались даже слабые признаки перекристаллизации в последних явлений мраморизации, не говоря уже о полном отсутствии пирогенных контактов с той или иной минерализацией. Кроме того, на ближайших участках эти отложения явно подстилались базальными полимиктовыми конгломератами с обилием обломков, характерных для интрузива гранитондов и жильных дериватов, а также пород вмещающей вулкансгенной толщи преимущественно базальт-андезитового состава. Забегая вперед, отметим, что последняя, по данным А. Р. Арутюняна (1964), под наименованием «менсарской свиты» отнесена к юре [2].

Наши же наблюдения контактовых взаимоотношений гранитоидов интрузива с породами указанной вулканогенной толщи показали явное ороговикование последних местами с некоторой минерализацией.

Таким образом, по прямым геологическим взаимоотношениям, на наш взгляд, надежно устанавливалось доверхнемеловое время внедрения Гехаротского гранитоидного массива. И тем не менее отдельные геологи придерживались представлений К Н. Паффенгольца [9] и более того—на составленных ими картах отражен эоценовый возраст этого массива.

Вместе с тем ряд геологов высказывали убеждение о ранне- или среднепалеозойском возрасте рассматриваемого массива и обрамляющей его вулканогенной толщи (Асланян А. Т. [3], Аракелян Р. А., Саркисян О. А. и др.). В основном эти представления вытекали из убеждения В. Н. Котляра [8] о «докембрий-палеозойском» времени формирования указанной вулканогенной толіци, рассматриваемой нынє как апаранская серия [1]. Детальное многолетнее изучение пород этой серин, трансгрессивно налегающих на различные эрознонные уровни кристаллического фундамента Цахкуняцкого блока, привело исследователей почти к однозначному заключению о среднеюрском времени ее формирования. При этом, по последним работам В. А. Агамаляна [1], апаранская серия расчленяется на 4 свиты и к наиболее поздней относится менсарская (по А. Р. Арутюняну [6]) или миракская (по В А. Агамаляну, [1]) свита, в которой на современном эрознонном уровне размещен Гехаротский интрузив. Отметим также, что структурная позиция последнего и его взаимосвязь с разыгравшимися тектоническими событиями области представляет большой интерес и заслуживает обстоятельного освещения. Однако более полную информацию по вопросу о становлении этого, так же как и других интрузивов позднеюрско-ранненеокомского тектоно-магматического цикла Северной Армении дало бы ознакомление с работой А. А. Габриеляна с соавторами [7].

Краткие данные по изотопно-геохронологическому исследованию Гехаротского массива

В целях подкрепления геологических аспектов возраста данного массива и корреляции их с радиологическими методами датирования, авторами в качестве первых же экспериментов только что созданной (при отделе петрографии) радиометрической лаборатории были исслелованы К-Аг методом первые четыре характерных образца из пегматитово-аплитовой фации интрузива, давшие явно раннемеловые воз-

растные значения [4]. Позже подверглись исследованию уже 14 образцов как из главных фаций (кварцевые диориты, гранодиориты), так и из пегматитов, аплитов и отдельных даек основного состава.

Анализ и обобщение накопленного нами за последние годы значительного фактического материала по К-Аг геохронометрии привели почти к аналогичным с предыдущими датировками возрастным значенням [6]: а) породы главной фации—137—125 млн. л; б) аплиты-пегматиты—128—122 млн. л.; в) дайки основных пород—124—120 млн. л.

Разумеется, отмеченные даже максимальные К-Ar значения следовало бы рассматривать как незначительно «аргоново омоложенные», учитывая тенденцию частичной утечки радиогенного аргона из пород С внесением этих поправок возраст Гехаротского массива может быть

рассмотрен как позднеюрско-раннемеловой [6].

Следует отметить, что одной из главных целей настоящей статьи являлось изложение результатов недавно завершенных нами работ по определению возраста Гехаротского массива более «престижным»— Rb-Sr изохронным методом. Разумеется, представляла большой интерес и корреляция с К-Ar датировками. Не исключался при этом и «ответ» отдельным геологам, которые на наш взгляд, недостаточно углубленно рассматривая возможности и ограничения К-Ar геохронометрии, проявляют, к сожалению, скептический подход к этому весьма важно-

му классическому методу.

Для Rb-Sr изохронного датирования гранитоидов Гехаротского массива использовались крупные пробы (весом $10-15~\kappa z$) исключительно свежих пород, отобранных специально для данного исследования. Содержания рубидия и стронция определялись из разных навесок стандартной методикой изотопного разбавления. В качестве индикаторов использовались растворы особо чистых солей RbCl и Sr(NO₃)₂, обогащенных, соответственно, 87 Rb(\sim 96%) и 84 Sr(\sim 50%). Разделение стронция производилось на попиообменных колонках с катионитом Dawex—50. Содержания стронция и рубидия в холостых опытах для использованных навесок в 1 и 0,5 г составляли, соответственно, 0,3 и 0,02 мкг.

Изотопные измерения проводились на масс-спектрометре МИ— 1309 в однолучевом режиме со ступенчатой разверткой масс по магнитному полю .Для всех образцов были поставлены отдельные опыты без добавления индикаторного стронция для непосредственного измерения изотопного отношения ⁸⁷Sr/⁸⁶Sr. Измеренное отношение нормализовалось к величине ⁸⁶Sr/⁸⁸Sr = 0,1194. Все, без исключения, определения дублировались. На основе разброса результатов параллельных определений вычислялись средние значения коэффициентов вариации

геохронометрических параметров, которые составляют:

для отношения ⁸⁷Rb/⁸⁰Sr—около 1,7 %, для отношения ⁸⁷Sr/⁸⁸Sr—около 0,08 %.

При вычислении изохронного возраста использовалась константа распада рубидия—87, рекомендованная Международной подкомиссией

по геохронологии— /87Rb = 1.42×10^{-11} год⁻¹.

Rb—Sr изотопно-аналитические данные исследованных образцов риведены в табл. 1. Статистическая обработка полученных экспериментальных данных полиномиальным методом наименьших квадратов, учигывающим существование ошибок по обеим координатным осям, приводит к уравнению регрессии:

 $Y = (0.7052 \pm 0.0009) + (0.00209 \pm 0.00007) \cdot X$

го средним квадратом взвешенных отклонений—СКВО = 0,291. Так как полученное для СКВО значение меньше единицы, то изученный набор образцов полностью соответствует изохронной модели (когенетичность образцов и их геохимическая замкнутость в последующей геологической истории). Вычисления дают следующие значения для возраста и первичного отношения стронция:

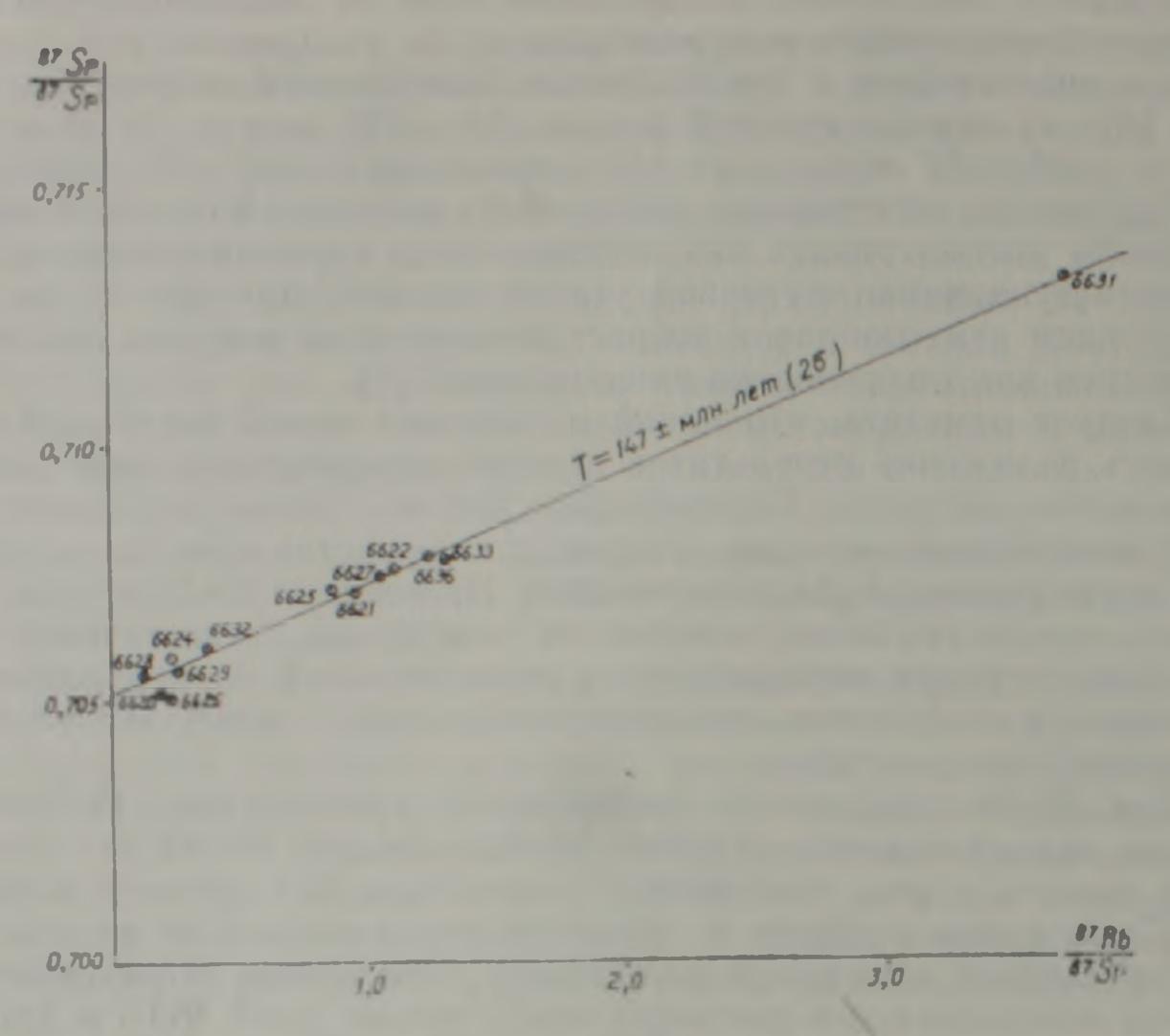


Рис. 1. Rb - Sr изохронная диаграмма гранитондов Гехаротского массива

Таблица 1 Rb—Sr изотопно-аналитические данные гранитондов Гехаротского массива

№ № 06p.	1 название породы	Rb .nkz z	Sr .ukz z	aтом. отнош.	87Sr 86Sr atom. othoui.
6622	Аплит	63.77	168,03	1,104	0,7071
		64,19	167 · 2 5		0,7083
		22 =2	100.05		0.7074
66.0	Кварцевыи диорит	32.73	499.95	0.193	0.7056
		33.90	490.54		0.7043
6623	Квар евый диорит	26 90	410 25	0.265	0.7057
		38,88	416.35		0,7049
66 26	Кварцевый диорит	38.10	424.41	0.007	0.7065
0020	Кварцевый диорит	34,39 35,10	490.56	0.207	0.7043
6627	Жильный гранит	68,08	481.55 188.18	1.051	0.7076
		67,94	186,32		0.7072
6625	Полевошпатовая пирода	67,87	233.75	0.851	0.7077
		69.77	234,16		0.7068
6630	Anaut	52,65	122.66	1,243	0.7076
		52.93	123.18		0.7080
6631	Пегматит	69,81	54,46	3.705	0.7131
		67.83	53.01		0.7131
6632	Данка диорит-пор прита	30.01	231.68	0.372	0.7062
		29 - 38	230.65		0.7060
6633	Пегматит кварц-полевош-	64.02	142.30	1.293	0.7075
0001	патовыи	63.88	143,85		0.7079
6624	Дайка диорит-порфирита	36.97	456,55	0.238	0.7060
ccon	l V = = = = = = = = = = = = = = = = = =	38,10	454,89		0.7056
6621	Кварцевый диорит	35.88	405.53	0.249	0.7058
6528	Taime automate	34.48	410.25		0.7054
0928	Дайка диорита	9,39	225.90	0,116	0.7055
€621	Аплит	9.04	234.07	0 938	0.7058
		62.75	191,38		0.7070
		61.83	192.83		0.7072

Таким образом, мы располагаем достаточно надежно установленным возрастом Гехаротского гранитондного массива. Его формирование, по-видимому, имело место на рубеже от самой поздней юры дораннего неокома.

Институт геологических наук АН Армянской ССР

Поступила І.ХІ. 1989.

15

Գ. Պ. ՔԱՂԳԱՍԱՐՅԱՆ, Մ. Խ. ՂՈՒԿԱՍՅԱՆ

ՀԱՄԱՌՈՏ ՀԱՆՐԱԳՈՒՄԱՐԱՅԻՆ ՏՎՏԱԼՆԵՐ ԳԵՂԱՐՈՏԻ ԳՐԱՆԻՏՈՒԳԱՅԻՆ ԶԱՆԳՎԱԾԻ ԻԶՈՏՈՊԱՅԻՆ ՀԱՍԱԿԻ ՄԱՍԻՆ ԸՍՏ K-Ar ԵՎ Rb-Sr ԻԶՈՔՐՈՆԱՅԻՆ ՄԵԹՈԳՆԵՐԻ

Udhnyand

Հողվածում բերված են Գեղարոտի գրանիտոիդային զանգվածի երկրաբանա-ապարագրա-երկրաժամանակագրական հետղոտությունների արդյունջները։ Այդ ինարուզիվ մարժինը յուր երկրաբանական-կառուցվածջային դիրջով, ներքին կառուցվածքով, այն կաղմող ապարների (հատկապես երակային ֆացիայի) բարդ բաղադրությամբ և այլ առանձնահատկություններով հանդիսանում է մեծ հետաքրքրություն ներկայացնող մի խորքային կազմավորում։ Տեղադրված է ծաղկունյացի անտիկլինորիումի հյուսիս-արևմտյան մասում, բայկալյան հասակի բյուրեղային հաստվածքի և դրան ծածկող յուրայի («ապարանի սերիա») հրաբխային շերտախմբի մեջ։

ի տարբերություն տասնյակ տարիներ առաջ երկրաբանների զգալի մասի կողմից ունեցած այն տեսակետին, որի համաձայն ինտրուզիան տեղի է ունեցել էոցենի ժամանակահատվածում, հեղինակները և այլ երկրաբաններ ուղղակի երկրաբանական տվյալներով ապացուցեցին Դեղարոտի զանգծ վածի ավելի հին՝ մինչկավճի հասակին պատկանելու Այնուհետև K-Ar մեթոդով կրկնակի անգամ ապարների մանրամասն հետաղոտությունները, հասաահիային դանգվածի հասակի տվյալները ցույց տվեցին, որ գրանիտորիային ղանգվածը կազմավորվել է վերին յուրայի և ստորին նեոկոմի սահմաններում։

Սեյս հասակային տվյալները լրացուցիչ փաստական նյութերով հաստատակու նպատակով, հեղինակները դիմեցին նաև Rb-Sr իզոքրոնային մեթոդի կիրառմանը։ Վերջինս մեկ անգամ ևս հաստատեց K-Ar հասակի տվյալները, ցույց տալով, որ Գեղարոտի զանգվածը տեղադրվել է 147±11 միլիոն տարի առաջ։

G. P. BAGHDASARIAN, R. KH. GHUKASIAN

BRIEF RESULTATIVE DATA ON THE ISOTOPE AGE DETERMINATION OF THE GUEGHAROT GRANITOID MASSIF BY K-Ar AND Rb-Sr ISOCHRONOUS METHODS

Abstract

Brief data on the geological, petrographycal and geochronological investigations of the Guegharot granitoid massif are brought, which is placed in the Jurassic volcanogenous rocks ("aparan series.). In the north-western part of the Tsaghkuniats block-anticlinorium. As a result.

to counterbalance dominating earlier ideas on the Eocene age of this intrusion formation, the authors have established its pre-Contactan-Santonian age. Then twice the intrusive rocks were sampled and their ages were determined by the K-Ar method. In both cases the results have shown an interval between the very Late Jurassic and Early Neocomian.

Lately the authors have investigated the intrusion by the Rb-Sr isochronous method, which has corroborated the K-Ar dating.

ЛИТЕРАТУРА

1. Агамалян В А. Мезозойский аккреационный комплекс (Апаранская серия) Цахкуняцкого хребта Армянской ССР.—Изв АН АрмССР, Науки о Земле, XLI, № 2, 1987, с. 13—24

2 Арутюнян А. Р. Основные черты тектонического строения и рудоносности южнон части Севано-Ширакского синклинория.—Изв. АН АрмССР, Науки о Земле,

1964. № 6, c. 4—22.

3. Асланян А. Т. Региональная геология Армении. Ереван; Изд-во «Айпетрат», 1958, 403 с.

4. Багдасарян Г. П., Гукасян Р. Х. О возрасте «палеозойских интрузий» Арминской

ССР.—Изв. АН АрмССР, геол и геогр. кауки, т. XIV, 1961, № 4.

5. Багдасарян Г. П. О возрастном растленении интрузивов Северной Армении в свете радиологических данных и геологических представлений. Труды XIII сессии Комисс, по опр. абс. возраста геол. формаций при ОНЗ АН СССР. М.: Наука, 1966, с. 10—26.

6 Багдасарян Г. П., Гукасян Р. Х. Геохронология магматических, метаморфических и рудных формаций Армянской ССР. Ереван: Изд-во АН АрмССР, 1985. 291 с.

7. Габриелян А. А., Багдасарян Г. П., Джрбашян Р. Т., Меликсетян Б. М., Мелконян Р. Л., Мнацаканян А. Х. Основные этапы геотектопического развития и магматической деятельности на территории Армянской ССР.—Изв. АН АрмССР, Науки о Земле, 1968. № 1—2, с. 6—39.

8. Котляр В. Н. Памбак. Геология, интрузивы и металлогения Памбакского хребта и смежных районов Армении. Ереван: Изд-во АН АрмССР, 1958, 228 с.

9. Паффенгольц К. Н. Геология Армении. М.-Л.: Госгеолтехиздат, 1948.

10. Хоренян Р. А. Мезозойский магматизм Цахкуняцкого хребта. Ереван; Изд-во АН АрмССР, 1982, 142 с.

Известия АН АрмССР, Науки о Земле, 1990, ХІЛИ, № 1, 16—21

УДК: 552.1

Н. З. ТЕР-ДАВТЯН

ПЕТРОФИЗИЧЕСКОЕ ИССЛЕДОВАНИЕ ОСТЫВШИХ ЕДИНИЦ

В статье описываются закономерности изменения петрофизических параметров (5, K_n, V_p, p, I_n, 2) в пределах остывшей единицы арагацкого типа в сравнении с нижележащими потоками игнимбритов, образовавшихся в «нормальных» условиях. 1 ости и лившихся на холодное ложе и имевших длительный контакт с атмосферой. Результатом исследований является вывод об отсутствии петрофизических критериев для выделения остывшей единицы как таковой, которая четко выделяется геологически, а также воп смещения, различное поведение которых может свидетельствовать о длительности промежутков между извержениями отдельных пстоков.

Предыдущие петрофизические исследования игнимбритов посвящены отдельным, одиночным потокам, огложившимся в обычных условиях, то есть излившихся на холодное ложе и имевших во время остывания длительный контакт с атмосферой [1]. Что касается игнимбритов остывших единиц, в составе которых остывание нескольких потоков, извергающихся непосредственно друг за другом, происходит одновременно или почти одновременно [3], то их петрофизическое исследование до сегодняшнего дня не проводилось. В настоящем сообщении приводятся результаты петрофизического изучения и сравнитель-16