тернатива: либо нормальное состояние озера, либо интенсивное земледелие на осушенной береговой полосе. Естественно, автор понимает всю ответственность подобного взаимонсключающего барианта. Рост населения в бассейне озера за последние 50 лет и приобретенная традиция земледелия не позволяют на данном этапе делать директивные изменения, прежде чем изложенная гипотеза не будет проверена и доказана.

Для проверки предложенной версии предусматривается следующая преграмма ис

следований:

— Изучению подлежит вся зона гипергенеза: почвы (как природные, так и антропогенные), растительность (включая дикорастущие и культурные разности). поверхностные и подземные воды и их донные отложения, воды озера, донные отложения озера. Таким образом, режимные наблюдения по всем перечисленным природным телам предусматривают постановку бносферного мониторинга.

— Для изучения связи изменений гипергенных условий под воздействием антропогенных процессов—как фактора возникновения различных эндемических заболе-

ваний, было бы целесообразным привлечь к данной проблеме и медиков.

— Результирующим этапом работ должна явиться социально-экономическая интерпретация полученных выводов по изучению гипергенного состояния бассейна озера.

Институт геологических наук АН Армянской ССР

Поступила 18.11.1988.

Известня АН АрмССР, Науки о Земле, XLI, № 3, 57—62, 1988

УДК: 553.535.08

КРАТКИЕ СООБЩЕНИЯ

Р. В. АКОПЯН, Н. С. НАЛБАНДЯН, А. И. АПРЕСЯН, Л. Г. ГЕВОНДЯН ИССЛЕДОВАНИЕ ФАЗОВЫХ ПРЕВРАЩЕНИИ В ПЕРЛИТЕ В ГИДРОТЕРМАЛЬНЫХ УСЛОВИЯХ

Вулканические стекла кислого состава, в зависимости от геологических услории становления, возраста, претерпевают различные изменения. Вулканические стекла месторождений Армянской ССР являются одними из наиболсе молодых, неизменных, однако, как показывают электронномикроскопические и рентгеновские исследованил на некоторых участках они подвергнуты гидротермальным воздействиям [1].

С гидротермальными изменениями вулканических стекол связаны процессы молтмориллонитизации, цеолитизации и фельдшпатизации. На примере перлитов некоторых районов страны показано существование пространственной и генетической связи
гидратированных стекол с определенчым комплексом минералог, развивающихся по

стеклу [1, 2].

С целью выявления механизма изменений в стекловатых вулканических породах нами исследовалось гидротермальное минералообразование в перлите из Арагадкого месторождения. Для создания гидротермальных условий использовались автоклавы из нержавеющей стали емкостью 60 см. Фазовые превращения в перлите исследовались при температурах 250°С и 400°С и давлениях, составляющих при каждой температуре 400, 700, 900 и 1000 атмосфер, рЫ варьировалась от 9,5 до 11 т. е. реакции минералообразования происходили в щелочной среде. Экспозиция во всех опытах составляла 5 суток. В качестве минеральзатора применялся фтористый натрий. Таким образом, параметры эксперимента соответствовали условиям, в которых приноверхностные зоны вулканических и вмещающих их пород подверглись постгенетическим гидротермальным изменениям. Полученные образды исследовались с помощью реитгенографического, электронномикроскопического, термографического и имерспонного апализов.

Рентгенографические исследования продуктов, полученных при 250°С и давлении 400 атмосфер (табл. 1) показали, что образцы состоят из щелочного полевого шпата, кварца, клиноптилолита и, возможно, кристобалита. Минеральный состав продуктов, полученных при давлениях 700—1000 атмосфер и исследованных в им-

мерсионных препаратах, не отличаются какими-либо новообразованиями

Повышение давления в системе до 1000 атмосфер приводит к увелиечино содержания щелочного полевого шпата и уменьшению количества цеолита и кварца, о чем свидетельствует увеличение интенсивностей характерных линий полевого шпата и, наоборот, уменьшение интенсивностей линий кварца и цеолита. Термографические кривые образцов, полученных при 250°С и давления 400 и 1000 атмосфер (рис. 1. кривые «а» и«б→), характеризуются эндотермическими эффектами с максимумом при 160°С, связанными с дегидратацией клиноптичедита.

	Сиптезирован- вон шпат		Lелочной поле- й шпат по Ми- ееву В. И. [2] образцы					Морденит по Д. Бреку		Сиптези- рованные образны	Кварц по Михееву В. И.		Сиптези- рованные образцы	Кристобал ит по Михееву В. И.	
d n	1	1	d n	1	1	l d n	1	1	l d n	1	1	d n	1	1	d/n
13.60	-	_					4	42 .	13,52			-			
9.01	~~		-	_	-	_	10	100	9.03		-			_	_
8.90		-	_	10	100	8.92			-	_		-	_	-	-
6.39	3	4	6,44	-		_	3	37	6.38	-	-	-	-	_	-
	_	2	5,86	-	-	-	_	28	5.78				_		-
4.53				2	14	4.65	4	42	4.51		-	-	-		-
4.03	Ü	9	4.02	-		_	-			-			10	10	4.03
3.95	-	-	-	4	55	3,96	9	100	3,98		-	-	-	-	-
3+87	-	_	-	8	57	3.89	_	_	_	-	-	-	_		-
3.76	8	8	3,80	-	-	_	-	-	-	-	-	-	-	-	-
3,63	5	U	3.63	-	-	-			_	_	-	-	_	-	-
	-		_	-	-	-		14	3.56	_		-	_		-
	-	2	3.49	2	-	_	_	24	3,47		_	-	_	-	-
3.40		-		-	16	3.419	2	44	3,386				-	-	
3.34	3	7	3.34	-	-	-	_			10	10	3,34	_	-	-
3.20	10	10	3.18	6	_		3	35	3,198	_	-		_	-	-
2.985	-	-			80	2,974	_			_		-	-	-	
2.93	6	7	2.929	1			_			_	_	-		_	
2,84	3	6	2.831	3	15	2.79	_	-	_	_	-		5	7	2,83
2.76	-	-		-	33	2.528	5	J3	2.697		-	-	_	-	
-	-	6	2.645	-	-	-	5	10			-			-	-
2.556	_	-		_	-		2	18	2,556	_		_	_	-	-
2.505	7	7	2.534	-		_	_	-	_	_	-	- 450			0 463
2.462	-		2 200	-	-	-	_			3	5	2,450		8	2,461
mark .		6	2,390	-	-	-	_	_	_	-	-		_	-	-
2.27	4	7	2,286	-	-	-		-	-	-	-	0.110	_		
2.157	2	4	2.130	-	-	_	_	-	_	5	5	2.112	-		1 004
	-	6	1.908	-			_	_	-	_	-	-	_	6	1,924
	-	6	1.857	-	-	-		_	-		_			6	1.867
1,835	_	_	. 774	_	-			_	_	_	9	1.813	_		-
1.785	3	7	1,774	-	-	-	_	-	Nº	_	-	-		-	1 706
1.745	Ö	1	1,728	-	_	_	_			-		-	4	4	1.726
1.670	3	3	1,686	_	-	-	_	-	_	3	6	1,668	3	6	1.687
1,608	4	6	1,595			-	_		_		-		2	4	1.595
1.538	5	6	1,534	_		-	_	_	_	6	9	1.539	4	6	1,530
1.520	4	6	1,493	_	-	-	_	-		-	-	-	5	6	1,492

При нагревании образца вплоть до 1000°С никаких реакций не протекает, что свидетельствует о том, что структура клиноптилолита при дегидратации не претерпевает каких-либо существенных изменений. В образцах, подвергнутых гидротермальной обработке при 400°С и давлении 400 агмосфер (табл. 1), в качестве новой фазы появляется цеолит-морденит. Одновремению наблюдается увеличение количества шелочного полевого шпата и клиноптилолита. При повышении давления в системе до 1000 атмосфер качественных изменений в минеральном составе образцов не происходит. Увеличение интенсивностей характерных линий свидетельствует о росте количеств полевого шпата и морденита. На кривой термографического анализа (рис. 1, кривая «в») выделяется довольно шпрокий эндоэффект с максимумами при 140 и 170°С, связанный с удалейнем воды, соответственно из морденита и клиноптилолита, а на кривой «г» наблюдается только эндоэффект с максимумом при 155°С, характеризующий дегидратацию морденита. В связи с малым содержанием клиноптилолита, потеря веса на кривой не фиксируется.

Образование клиноптилолита и морденита за счет кислых вулканических стекол объясияется их кристаллохимической близостью: идентичностью химических соста-

вов, наличием каналов, заполненных водой.

В иммерсионных препаратах клиноптилолит характеризуется игольчатыми, реже таблитчатыми бесцветными кристаллами с низкими интерференционными окрасками Ng'-Np'=0.012, и косым погасанием, со средким показателем преломления $N=1.480\pm0.002$.

Морденит характеризуется преимущественно радиально-лучистыми образованиями, или самостоятельными волокнистыми кристаллами с прямым погасанием, средним показателем преломления N=1.475 и низким двупреломлением N=0.005.

Щелочной полевой шпат замещает основную часть стекла и образует тонкопризматические, реже пластинчатые кристаллы с $Ng'=1,528\pm0,002$, $Np'=1,519\pm0,002$. Наряду с кристаллической фазой в иммерсионных препаратах наблюдается гелевое вещество апизотропного характера с $N=1,470\pm0,002$.

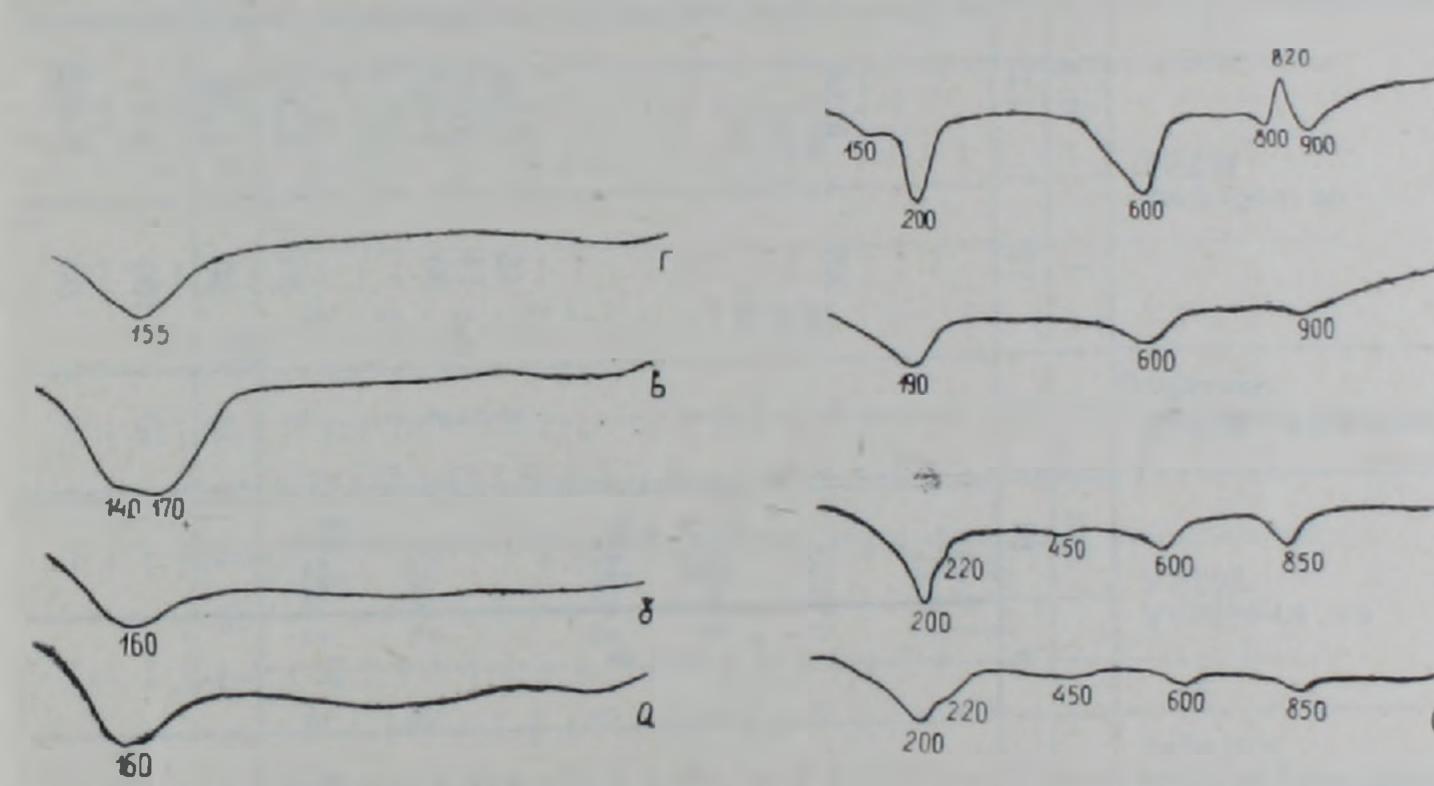


Рис. 1. Термографические кривые продуктов изгротермального изменения перлига: а—250°С, 400 атм.; б—250°С, 1000 атм.; в—400°С, 400 атм.; г—400°С, 1000 атм.

Рис. 2. Термографические кривые продуктов гидротермального изменения в системе перлит-окись магния: а—250°С, 400 атм: 6—250°С, 1000 атм.; в—400°С, 400 атм; г—400°С. 1000 атм.

С целью изучения фазовых превращений при процессах гидротермального изменения стекловатых пород с привносом Ме, в шихту вводилась окись магния.

Петрографические (иммерсионный метод) и рентгенографические исследования продуктов гидротермальной обработки шихты перлита с MgO—при 250 С и давлении 400 атмосфер выявили наличие щелочного полевого шпата, магнезнального монгмориллонита-сапонита и анальцима (табл. 2). При сопоставлении интенсивностей липий анальцима, при давлениях 400 и 1000 атмосфер обнаружено уменьшение содержания анальцима с возрастанием давления. Доминирующими минералами системы являются щелочной полевой шпат и сапонит при значительном преобладанна первого.

Повышение температуры до 400°С, судя по снижению интенсивностей линий, приводит к уменьшению количеств щелочного полевого шпата и сапонита Одновременно на лифрактограмме появляются отражения, характерные для амфибола тича рихтерита, а также рефлексы гидрослюды, которые не изменяются ни после насыщения образцов глицерином, ни после термообработки при 550°С.

		Рентген	ографич	теские	харак	теристи	ки ги	дротери	тально-н	13мененны	x copasiton	В СИСТЕМЕ	ne point	1150			
Сингезированные образцы	елочно	. [1]	Синтезированные	E	хееву В. И. [1]	Синтезирозанные	Анальним по		Синтезированные	Амфибол по		Синтезированные образцы	Гилрослюда по	S	Синтезированные образцы	110	еву В. И. [1]
d/n I	11	l d/n	1	1	d/n	1	1	d/n	1	I	d/n	1	1	d/n	1	1	d/n
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
14,9 13,8 9,91 8,50 7,01 6,43 3 		3,49 3,49 3,49 3,18 2,935	10	10	14,9 4,98 4,57 3,75 3,034			5,61 4,86 		65 	3,39 3,39 3,39 3,39 3,15 2,958	-9 	- 8 8 8 10 8	9,98 	10 - 9 7 8 8	-8 -10 	13,7 6,94

1	2	3	4	5	6	7	8	9	10	11
2.92	7	7	2.929	_		_	7	8	2.925	1
2.81	5	6	2.831	-	100000		-		21320	
2.76			-	_		_	1000	_	_	3
2.71				-	-		3	5	2,693	-
2.705	-			-		_	-			9
2,620	4	6	2.645	8	7	2.639	-			-
2.583		-	-				-			6
2.520					-	- 1	_	-	-	
2.515	6	7	2,490	-	-		5	5	2.505	-
2.465	4	6	2,47				-	_		_
2,460			2 20						-	
2,400	4	6	2.39			- 1	2	3	2,420	_
2.325	5	7	0 206	_	_		4,000	_	-	5
2,164	5	1	2.286	-		4 1070	_		0 000	3
2,062	4	4	2.130	_			3	4	2.220	6
1.994					-	_		_		-
1,874	3	6	1.857				2	1	1.867	
1.748	5	7	1.754	3	4	1.732	4	6	1,743	-
1,674	2	3	1,686	_		17732	2	4	1,689	_
1.659		_	-					-	1,009	
1,600	3	6	1.595		_		_			-
1.575	-		1.030					-		_
1,535		-							_	-
1,532	5	6	1.532					_	_	_
1,530		_		8	10	1,528			_	
1,509	_			_	_		_		_	_
1.483	4	6	1, 83							

12	13	14	15	16	17	18	19
16	2,928	5	8	2.89	_	-	_
	2.020	_	-		7	6	2,815
45	2.731	_	-		-		-
		_		-	-	-	-
100	2,712	_	-		-	-	
	-	_		-	-	-	-
55	2,585	9	10	2.59		-	
	-	-	-	-	6	6	2.539
	- 1	-	-		-		-
-	-		-	_			-
-	-	4	6	2.470	-	-	-
-	-	6	8	2,390	-		
70	2,330	- 1	-	-	-	-	-
30	2,288	2	4	2.270	-	-	
60	2,165	3	4	2.18			1000
	-	6	8	2,135	-	_	1.003
		8	10	1,994	8	9	1,993
	-	-	-	_	2	3	1.869
-	-	-			-	-	
-	-	_			-	-	
-	-	6	8	1.648	_	-	
-	-	-	-	-		7	1.560
-	-	-	-	-	6	8	1.535
-	_	-	-		,		1.000
	_	-		_	_		_
	-		0	1 505	3	3	1,498
-	-	5	8	1.505	3	3	11100
	1	1		1			

Петрографические исследования показали, что с повышением давления до 700 атмосфер содержания полевого шпата и сапонита уменьшаются при парадлельном росте количества амфибола. При давлении в системе 900 атмосфер щелочной полевой шпат не образуется. Образцы состоят преимуществению из амфибола, небольшого количества сапонита, а также хлоритоподобного минерала в качестве новой фазы Дальнейшее возрастание давления до 1000 атмосфер способствует увеличению количества амфибола и хлоритоподобной фазы, что подтверждается также рештенографическим анализом

В иммерсионных препаратах гидрослюда характеризуется пластинчатыми кристаллами бледно-зеленоватого цвета с двупреломлением Ng'-Np'=0.016. Амфибол кристаллизуется в виде слабозеленоватых, плеохроичных тонковолокиистых кристаллов. Сапонит под микроскопом бесцветчый, чешуйчатый, иногда наблюдается в виде агрегатов с высокими интерференционными окрасками и с $N_{cp}=1.560\pm0.002$.

Термографические кривые образцов приведены на рисунке 2. Эндоэффекты с максимумом при 200—220 С и 600°С на кривой а» связаны с дегидратацией сапонита, а при 850°С-с разрушением кристаллической решетки минерала. Эндотермические эффекты с максимумами при 200° и 450°С обусловлены удалением воды из анальцима. Кривая б» отличается более глубокими пиками сапонита, свидетельствующими о большом его содержании. Кривая дифференциально-термического анализа продуктов, образовавшихся при 400°C (кривая «в»), содержит эндотермические эффекты, характерные для гидрослюды. Первая эндотермическая реакция с максимумом при 190 С соответствует потере межслоевой воды. Второй эндоэффект с максимумом при 600°C характеризует потерю ОН воды решетки и частичное изменение структуры. Эндотермический эффект с максимумом при 900 С соответствует полному разрушению кристаллической решетки минерала. Некоторый подъем кривой вслед за третьен эндотермической реакцией свидетельствует о начале процесса перекристаллизации аморфных продуктов разрушения гидрослюды Кривая «г», наряду с увеличением пиков гидрослюды, характеризуется также эндотермическими пиками с максимумами при 150°C, 600°C и 800°C, обусловленными дегидратацией хлорита, и одним экзотермическим эффектом при 820 С, связакным с кристаллизацией аморфных продуктов, образовавшихся при разрушении структуры минерала после полной его дегидратации при 800°С.

Таким образом, исследованиями выявлено, что основной минеральной фазой гидротермального изменения перлита в условаях 250°С в широком диапазоне давленый (40—1000 атмосфер) является щелочной полевой шпат. В небольшом количестве, наряду с полевым шпатом, образуются цео шты—клиноптилолит и мордерит, а также кварц. Повышение давления при указанной температуре способствует интенсуфикации

процесса образования полевого инпата за счет вулканического стекла.

В системе перлит—MgO, т. е. при гидротермальном изменении стекловатых пород с привносом окиси магния при 250 С, наряду е фельдинатизацией происходит процесс монтмориллонитизации (образование сапонита). При повышении температуры в этой системе до 400°С фельдинатизация уступает место образованию гидрослюд, а минерал группы монтмориллонита замещается магнезнальным амфиболом.

НПО «Камень и силикаты»

Поступила 7.Х.1987

ЛИТЕРАТУРА

1. В. В. Наседкин. Петрогенезис кислых вулканитов, М.: Наука, 1975.

2. В. И. Михеев. Рентгенометрический определить минералов. М., 1957 3. Б. Брек. Цеолитовые молекулярные сита: Изд. Мир. М., 1976

Известия АН АрмССР, Науки о Земле, XL1, № 3, 62-66, 1988.

УДК 550.8.012

КРАТКИЕ СООБЩЕНИЯ

Г. О ГАЗАРЯН, С. Н. ГИНЗБУРГ, З. М. МАРЬЯХИН, В. М. ЭППЕЛЬБАУМ

МЕТОДОЛОГИЧЕСКИЕ ПРИНЦИПЫ ОЦЕНКИ ИНФОРМАЦИОННЫХ ВОЗМОЖНОСТЕЙ СИСТЕМ РАЗВЕДКИ

Сквозной общенаучный характер задачи получения и оценки информации усиливает интерес к ней тех отраслей, которые непосредственно связаны с голучением и переработкой информации; в полной мере такой интерес свойственен геологоразнедочной отрасли. Объективные научные методы оценивания информации, получаемой в результате ретрогноза примененной системы разведки, позволяют строить нау ню обоснованные прогностические модели геологоразведочного производства. Этот процесс базируется в первую очередь на эффективном внедрении в геологоразведочного

62