- 12 Лебедев П. И. Вулкан Алагез и его лавы Тр. COllC, серия закавказ.. Л. изд. АН СССР и Упр. водн. хоз-ва ССР Армении, 1931, вып. 3, 379 с.
- 13 Лебедев П. И. К вопросу о природе туфовых лав вулкана Алагез.—Изв. АН СССР, серия геол., 1947, № 6, с. 119—120.
- 14. Левинсон-Лессинг Ф. Ю. Армянское вулканическое нагорье.—Природа, 1928, № 5, с. 430—436.
- 15. Мкртчян К. А. Некоторые замечания о генезисе туфов артикского типа (Армянская ССР).—Изв. АН СССР, серия геол., 1954, № 5, с. 119—126.
- 16. Петров В. П. Игнимбриты и туфолавы; еще о природе артик-туфа.—В кн.: Туфолавы, М.: Изд. АН СССР, 1957. с. 17—25.
- 17. Петров В. П. Петрографический облик игнимбритов и туфовых лав и их место среди горных пород, промежуточных между лавами и туфами.—В кн.: Туфолавы и игнимбриты, М.: Изд. АН СССР. 1961. с. 24—38.
- 18. Смит Р. Л. Потоки вулканического пепла. В кн.: Проблемы палеовулканизма, М.: ИЛ, 1963, с. 307—370.
- 19. Ширинян К. Г. Стратиграфическое расчленение четвертичной туфо-туфолавовой голщи области г. Арагац.—В кн.: Вопросы геологии и гидрогеологии Армянской ССР, Ереван: Изд. АН АрмССР, 1956, с. 74—82.
- 20. Ширинян К. Г. Игнимбриты и туфолавы (принципы классификации и условия формирования на примере Армении).—В кн.: Туфолавы и игнимбриты. М.: Изд. АН СССР, 1961, с. 47—61.
- 21. Ширинян К. Г. Вулканические туфы и туфолавы Армении. Ереван: Изд. АН АрмССР, 1961, 160 с.
- 22. Ширинян К. Г. Игнимбритовый вулканизм.—В кн.: Позднеорогенный кислый вулканизм Армянской ССР, Ереван: Изд АН АрмССР, 1971, с. 89—96.

Известия АН АрмССР, Науки о Земле, XXXVIII, № 5, 44—71, 1985. УДК:552.333.552.12:551,763.3

А. Х. МНАЦАКАНЯН, Э. Х. ХУРШУДЯН

ИЗМЕНЧИВОСТЬ СОСТАВА КЛИНОПИРОКСЕНОВ ВЕРХНЕМЕЛОВОГО БАЗАЛЬТОВОГО КОМПЛЕКСА КАК ОТРАЖЕНИЕ СТЕПЕНИ ЕГО ДИФФЕРЕНЦИРОВАННОСТИ (ИДЖЕВАНСКИЙ ПРОГИБ)

Клинопироксены различных генераций в последовательно залегающих пластах брекчий, потоках и силлах верхнемеловых базальтов Иджеванского прогиба варьируют от диопсид-салитов до авгитов (Si₉Fe⁺²Mg₄ → Al^{1V}Fe⁺³Ca₄). Эти замещения гызывают закономерные вариации таких параметр в элементарной ячейки, как с и b. Устанавливаются два типа зональности: прерывистая (Si₁₀Mg₉Fe⁺² → Al^{1V}Fe⁺³Tl₆), связанная со сменой Amf—CPx парагенезиса фенокристаллов на Ol—CPx в различных фракциях базальтово о расплава в условиях повышения Т и падения P_{H,0}, и непрерывная (Al^{V1}Ca₇Fe⁺³ → Si₁₀Fe⁺²Al^{1V}), связанная со сменой ин рателлурического этапа на эруптивный и прекращением кристаллизации вкрапленников оливина в условиях падения Т и дегазации.

Существенная роль клинопироксенов в петрогенезисе базальтов определяется тем, что их кристаллическая структура вмещает все главные катионы базальтовых систем и является индикатором химизма вмещающей среды. Состав клинопироксенов и ведущие изоморфные пары элементов отражают принадлежность базальтовых серий к различным геологическим ассоциациям [5, 14, 17]. Характерные для клинопироксенов зональные структуры фиксируют изменения Т°, химиз-

ма силикатной части расплава и режима летучих, в частности, SiO₂, TiO₂, Ca/AI по [19, 20], Si/AI, Fe/Mg по [15], Si/AI и Р_{н.}о в связи с прерывистой кристал изацией лейцита по [16], Si, ∑ Fe и Fo, определяющими по [21] гетеровалентные SiFe⁺²↔Al^{IV}Fe⁻³ замещения. В статье приводятся результаты химических и микрозондовых анализов различных генераций клинопироксенов верхнеконьяк-сантон-

ских базальтовых потоков, даек и силлоз Иджеванского прогиба. Этот минерал представляет особый интерес как фаза, которая в изученном базальтовом комплексе кристаллизуется на всех этапах длительной эволюции очага.

Антидромная последовательность извержений базальтов и поягление наиболее легкоплавких порций на самых ранних этапах вулканизма, а также прерывистая смена парагенезисов фенокристаллов в последовательно поступающих порциях расплава указывают на глубоко зашедшую флюидно-магматическую дифференциацию, обусловившую вертикальное расслоение магматической колонны и накопление летучих в ее верхних частях с последующей дегазацией [8]. Одновременно, общий порядок смены ассоциаций указывает на условия сохраняющегося подтока тепла из области первичного выплавления магмы.

Рис. 1. Разрез средней части верхнеконьяк-нижнесантонского вулканического комплекса Иджеванского прогиба (с. Ачаджур) и ассоциации фенокристаллов изученных минералого-петрографических типов базальтов. 1. Пласты эпикластических брекчий. 2. Прослон туфопесчаников. 3. Потоки плагиоклаз-оливиновых и плагиоклаз-оливинклинопироксеновых базальтов. 4. Силлы оливиновых долеритов.

Петрография и химизм. Базальты верхнеконьяк-сантонского комплекса Иджеванского прогиба дифференцированы по составу и представлены тремя минералого-петрографическими типами, формирозание которых шло с определенными временными перерывами. На примере детального изучения средней части опорного Ачаджурского разреза (рис. 1) устанавливается следующая последовательность их формирования: 1) P1—Amf—CPх базальты слагают в основании приведєнного фрагмента горизонт грубообломочных эпикластических и шлаковых брекчий. Они обладают порфировой структурой со стекловатой гиалопилитовой основной массой, содержащей первые мелкие выделения

оливина; 2) PI—OI и PI—OI—CPх полифировые базальты и долери ты—наиболее характерный для изученного комплекса петрографический тип, образующий мощные пласты брекчий и потоки. Ему свойственны сериально-порфировая структура, разновозрастные ассоциации фенокристаллов, общее высокое их содержание и мелкосреднекристаллическая микродолеритовая основная масса, облик которой слабо зависит от температурной зональности потоков. Из особенностей, важных для дальнейшего рассмотрения вариаций состава клинопироксенов, подчеркнем, что в участках медленного охлаждения крупных потоков возрастает количество вкрапленников плагиоклаза II генерации и магнетита, а также степень окисленности последнего. 3) ОІ долериты—монофировый тип со среднекристаллической долеритовой или призматически-зернистой основной массой, образующий пластовые тела и дайки на разных горизонтах комплекса.

Средние химические составы, главные петрохимические параметры и содержание микроэлементов приведены в табл. 1 и 1а. Из нее следует, что все типы базальтов имеют недосыщенный SiO₂ состав, натровую щелочность, низкую титанистость и мантийное соотношение Cr>V>Ni≥Co, обнаруживая по этим параметрам близкое сходство с базальтовыми ассоциациями кайнозойских окраинных и внутренних морей по [1]. Главная тенденция петрохимической изменчивости в направлении от ранних базальтов к поздним, выявленная для общей выборки из 45 анализов, имеет антидромный характер и состоит в

выборки из 45 анализов, имеет антидромный характер и состойт в резком возрастании MgO, P₂O₅, Cr, Ni, V. согласованном с резким убыванием Al₂O₃, CaO, ∑ FeO, Co на фоне слабого возрастания SiO₂ и постоянства суммы щелочей. Эта тенденция—свидетельство глубоко зашедшего фракционирования интрателлурических фаз. Первый и второй тип базальтов обнаруживают отчетливую положительную корреляцию с одной стороны между SiO₂, ∑ FeO и Na₂O, с другой—между MgO. CaO и Al₂O₃. Отрицательная корреляция SiO₂ и Al₂O₃ и положительная Al₂O₃ с CaO и MgO объясняется повышенной ролью фракционирования фенокристаллов амфибола и плагиоклаза при спаде давления, который способствует также возрастанию содержания Ал в последнем. При переходе от второго типа базальтов к третьему некоторое возрастание SiO₂ и резкое повышение MgO, P₂O₅ противоныставляются такому же резкому уменьшению содержаний Al₂O₃. ∑ FeO, что указывает на фракционирование плагиоклаза и оливина с отсадкой последнего.

Для изученной возрастной последовательности характерна дискретная смена парагенезисов вкрапленников по следующей схеме: плагиоклаз (№ 45—40) + базальтическая роговая обманка (m=64%) + клинопироксен (диопсид-салит) + магнетит → плагиоклаз (№ 90—75) + оливин (Fo₇₆₋₅₅) + клинопироксен (авгит) + титаномагнетит → оливин (Fo₈₅) + хромшпинель. Отмеченное возрастание кальциевости плагиоклаза, глиноземистости клинопироксена, титанистости магнетита при переходе от первого типа базальтов ко второму, резкое возрастание магнезиальности оливина и появление хромшпинели в базальтах третьего типа очевидно указывает на дискретное смещение интрателлурической кристаллизации каждой фракции расплава в область все бо-

лее и более высоких температур. При этом заметно возрастает как степень порфировости, так и степень кристалличности основной массы. Эти особенности свидетельствуют об условиях прогрессивной дегазации, «осушения» пересыщенного летучими расплава. P1—Amf—CPх базальты представляют наиболее приповерхностную и водонасыщенную его фракцию, имеющую низкую степень плавления, при которой

СаО преимущественно входит во вкрапленники, а FeO и MgO—в основную массу. Pl—Ol и Pl—Ol—CPx базальты отвечают той стадии. когда частичное плавление исходного вешества достигает максимального объема. В этих условиях, после прорыва на поверхность и спада внешнего давления в очаге ускоренно повышается устойчивость высокоанортитового плагиоклаза, усиливается его фракционирование и появляется характерная низкобарная высокотемпературная ассоциация фенокристаллов ранней интрателлурической стадии (плагиоклаз+ оливин). При этом приповерхностная амфибол—клинопироксеновая

Таблица 1

Средние химические составы, нормы и тренд изменчивости базальтов верхнемелового комплекса Иджеванского прогиба

	1	11	111	Hanu				
	n=5	n=30	n=11	Порми	DI		11	111
The second second	1 · · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}		1		1	1
SIO,	44.74	46.24	47.28	ap		0.34	0.34	0.67
TIO,	1.16	0.90	1.04	I II		2.28	1.67	1.97
Al ₂ Õ ₃	18.16	18-15	13.98	mt		7.87	7.18	5.79
Fe,O,	6.83	4.93	4.02	hem		1.44		_
FeO	3.49	7.09	6.35	or		5.57	4.45	5.00
MnO	0.17	0.18	0-18	ab		20.97	23.59	19.41
MgO	6.39	5-73	12.00	an		34.49	34.85	25.31
CaO	11.06	11-17	.50	пе		1.14	0.85	
Na ₂ O	2.69	2.93	2.27	(wo		8.48	8.94	9.06
K ₂ Ó	0.89	0.75	0.84	dilen		7.33	5.42	6.63
H,O	0.98	0.47	0.55	Ifs			3.03	1.58
T ₂ O ₅	0.16	0.18	0.35	(0.00	
п.п.п.	2.46	1.22	2.26		•		-	
			<u> </u>	l, ifo		6.04	6.19	10.41
Σ	99.08	99.94	100.62	01 fa			3.67	2.45
$Mg/Mg \rightarrow \Sigma Fe$	0.63	0.52	0.72	Len,		-		8.55
0.01				ny fs	1	-	-	1.98
Fe+3/Fe+3+Fe+3	0.66	0.41	0-38			95.9 6	100 - 18	98.80
і фактор	Mg	P ₉ Si ₂	1			1		
CW = 63 %	AL	Ca-YFe.N	2.					

I-PI-Amf-CPx базальты; II-PI-OI-CPx базальты; III-OI долериты.

Таблица 1а

17

Сред	ние содержания	микроэлемен	108
	I	11	111
	<i>n</i> ==6	n=15	n=10
V Cr Co	0.035 0.044 0.004	0.034 0.047 0.0047	0.062 0.150 0.0017
NI Cu Sc	0.004 0.0009	0.0035	0.053 0.003

V/Cr 0.80 0.79 0.51 Co'Nt 1.00 1.30 0.40

• По результатам количественного спектрального анализа; ИГН АН АрмССР. аналитик С. А. Мнацаканян. ассоциация как неустойчивая претерпевает диссоциацию, рекристаллизацию с частичным растворением и становится для данных базальтов реликтовой. Выделение оливиновой фазы в них определяет авгитовый состав появляющихся вслед за ней вкрапленников клинопироксена. Последний продолжает выделяться и на более поздних этапах интрателлурической кристаллизации, когда исчезает оливин, и на эффузивном этапе, постоянно ассоциируя с плагиоклазом. Оливиновые долериты, внедрившиеся после интенсивного выноса из очага летучих компонентов и завершения эффузивно-эксплозивных процессов, являются наиболее высокотемпературной и глубинной фракцией с характерной аккумулятивной ассоциацией фекокристаллов. Она соответствует наиболее высокой степени плавления, при которой глиноземистые фазы переходят в расплав.

Химизм клинопироксенов. В различных типах изученных базальтов клинопироксен образует зерна разных генераций. В Pl—Amf—CPx базальтах это в основном мегакристаллы и гломеропорфировые сростки слабозонального строения со следами рекристаллизации и редкие точечные выделения в стекловатом базисе. В Pl—Ol—CPx базальтах кристаллизация клинопироксена имеет длительный характер: устанавливаются два поколения фенокристаллов зонального строения (мегакристаллы и микрофенокристаллы), а также призматические выделения в основной массе Ol долериты содержат клинопироксен толь-

ко эффузивной стадии кристаллизации.

Мономинеральные фракции клинопироксенов под бинокуляром представляют смеси разноокрашенных разновидностей. Их по крайней мере три: 1) светлая, ярко-травяно-зеленая, отвечающая диопсид-салиту; 2) интенсивно-зеленая и 3) буровато-зеленая до светло-коричневой, отвечающие авгиту. Наблюдаются также и обломки с постепенными переходами окраски, но в различных телах или на разных горизонтах потоков преобладающими оказываются те или иные разновидности. Характерно, что в Pl—Amf—CPх базальтах пироксеновая фаза представлена почти исключительно светло-окрашенным диопсид-салитом. В потоках Pl—Ol—CPх базальтов встречаются все три разновидности, но существенно преобладают интенсивно-зеленая (зоны закалки) и буровато-зеленая, светло-коричневая (зоны медленного охлаждения). В Ol долеритах клинопироксен основной массы представлен светлоокрашенным диопсид-салитом.

Химические анализы, кристаллохимические формулы, параметры состава и физические свойства каждой из выделенных разновидностей клинопироксенов приведены в табл. 2, 3, 4. В табл. 5 сведены результаты микрозондовых анализов зональных фенокристаллов и зерен эффузивной стадии кристаллизации. Определения проводились в прозрачно-полированных шлифах, при этом, учитывая рекомендации И. Я. Центер [13], преимущественно выбирались близкие к базальным сечения, в которых границы зон перпендикулярны плоскости шлифа и срез проходит ближе к ядру кристалла.

Во всех анализах сумма весовых процентов приведена к 100%. Качество выполненных анализов оценивалось на основании четырех

последовательных операций, суммированных в работе [17]. Удовлетворительным признавался анализ, в котором после расчета формулы на 6 атомов кислорода: I) сумма Si + Al^{IV} = 2.00 ± 0.02 ; 2) сумма октаэдрических катионов (Mn, Fe⁺², Fe⁺³, Mg, Ti, Al^{IV}) >0.98; 3) сумма катионов в позиции M(2) = $1,00\pm0.02$; 4) баланс зарядов (VI Al + Fe⁺³+2^{VI}Ti⁺⁴ = ^{IV}Al + ^{MB}Na) уравнивался с точностью ±0,03. С по-

Таблица 2

Компо- немты,па- раметры	1	2	3	4	5	6	7	8
SiO ₂	49.45	49.52	40.90	50.24	50.25	50.45	50.63	50.62
TiO ₂	0.48	0.76	0.85	0.50	0.56	0.60	0.55	0.75
Al ₂ O ₃	4.79	5.08	4.95	4.61	3.98	3.36	3.87	3.91
Fe_2O_3	4.03	3.10	1.33	3.25	4.13	2.90	3.31	3.07
Feo	3.56	3.58	4.99	3.57	3.52	4.15	3.80	4.28
MnO	0.12	0.14		0.18	0.16	0.13	0.14	0.19
MgO	14.70	14.57	15.28	15.05	14.85	15.19	15.03	15.80
CaO	22.52	22.79	22.35	22-19	21.83	22.64	22.29	20.74
Na ₂ O	0.32	0-40	0.32	0.30	0.62	0.52	0.32	0.59
K ₂ O	0.03	0.06	0.03	0.06	0.10	0.06	0.05	0.05
	Кри	сталлохим	ические	формулы	в расчете	на 4 катис	она	
SI	1.828	1.826	1.836	1.850	1.854	1.857	1.867	1.858
AI	0.172	0.174	0.164	0.150	0.146	0.143	0.133	0.142
	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
AL	0.037	0.047	0.053	0.049	0.027	0.003	0.035	0.026
TI	0.013	0.020	0.024	0.013	0.015	0.018	0.014	0.022
Fe+3	0.111	0.084	0.035	0.089	0.115	0.080	0.093	0.084
Mg	0.810	0.800	0.833	().828	0.816	0.834	0.824	0.865
Fe ⁺²	0.029	0.049	0.055	0.021	0.026	0.065	0.034	0.003
10000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fe12	0.082	0.063	0.099	0.090	0-083	0.063	0.084	0.129
Mn	0.002	0.004	_	0.007	0.004	0.005	0.004	0.006
Ca	0.890	0.902	0.879	0.877	0.865	0.893	0.883	0.817
Na	0.022	0.027	0.022	0.022	0.044	0.035	0.022	0.044
K	0.004	0.004		0.004	0.004	0.005	0.004	0.004
	1 00	1.00	1.00	1 00	1.00	1.01	0.99	1.00

Соотношения	атомов	

$Mg/Mg + \Sigma Fe$	0.78	0.80	0-81	0-81	0.77	0.80	0.79	0.80
Ca ∑ Fe Mg	46.3 11.6 42.1	47.5 10.3 42.2	46.2 9.9 43.8	46.0 10.5 43.5	45.4 11.8 42.8	46.1 10.8 43.1	46.0 11.0 43.0	43.0 11.4 45.6
Si/Al	8.7	8.2	8.5	9.3	10.7	12.7	11.1	11.1
+2V Ng'(±0.003) Np'	50° 1.706 1.682	54° 1.704 1.680	50° 1.706 1.682	50° 1.707 1.682	53° 1.712 1.687	53° 1.708 1.689	52° 1.706 1.682	54° 1.708 1.678
asin\$ (Å) a b csin\$ c	9.360 9.744 8.914 5.062 5.256 73°49	9.360 9.740 8.911 5.050 5.255 73°56	9.360 9.738 8.897 5.052 5.247 73 59	9.355 9.739 8.897 5.045 5.252 73°52	9.360 9.745 8.898 5.062 5.265 73°50	9.355 9.740 8.897 5.059 5.267 73°51	9.359 9.744 8.906 5.053 5.261 73°51	9.355 9.753 8.904 5.056 5.271 73°38

1-обр. 20016, плагиоклаз-оливин-клинопироксеновый долерит из субвулканического тела, с. Хаштарак; 2-обр. 2072, плагиоклаз-оливин-клинопироксеновый базальт из дайки, лев. борт р Агстев; 3-обр. 2086, мегакристалл (2×3 см) из плагиоклаз-оливин-клинопироксенового долерита, с. Хаштарак; 4-обр. 2071, плагиоклаз-оливинклинопироксеновый базальт из лавового потока, с. Ачаджур; 5-обр. 2077с, плагиоклаз-амфибол-клинопироксеновый базальт из обломков в вулканических брекчиях. с. Ачаджур; 6—обр. 2076—плагиоклаз-оливин-клинопироксеновый базальт из лаво-вого потока. лев. борт р. Агстев; 7—обр. 2070—оливин-плагиоклаз-клинопироксеновый долерит из лавового потока, с. Ачаджур; 8-обр. 20-клинопироксен из основной массы оливиновых долеритов, пластовое тело, с. Саригюх. 49

Известия, XXXVIII, № 5-4

			X	имическі нс	нй соста Э-зелено	ав, крис й разно	сталлохи Ости кл	мически инопиро	е форму ксенов	улы н с Из Иссл	ризическ едовани	ие свойо ых база	ства ині Альтов	сенсив-		Таб	лица З
Компо- ненты,па- раметры	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
SIO ₂ TIO ₂ AI ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	$46.10 \\ 0.74 \\ 7.30 \\ 5.64 \\ 3.69 \\ 0.08 \\ 14.04 \\ 21.89 \\ 0.47 \\ 0.05$	$\begin{array}{r} 46.53 \\ 0.95 \\ 6.22 \\ 5.20 \\ 5.28 \\ 0.19 \\ 14.33 \\ 21.76 \\ 0.50 \\ 0.17 \end{array}$	46.70 0.76 6.68 3.32 5.87 0.19 13.75 22.13 0.45 0.15	$45.70 \\ 1.01 \\ 7.03 \\ 4.24 \\ 4.82 \\ 0.25 \\ 13.77 \\ 21.66 \\ 0.46 \\ 0.06$	$46.72 \\ 0.84 \\ 7.33 \\ 3.18 \\ 5.06 \\ 0.22 \\ 14.43 \\ 22.01 \\ 0.20 \\ 0.01$	46.87 0.90 6.26 5.96 3.59 0.07 13.80 21.79 0.68 0.08	$46.89 \\ 0.86 \\ 6.95 \\ 4.45 \\ 5.04 \\ 0.04 \\ 13.72 \\ 21.35 \\ 0.64 \\ 0.06$	46.89 1.00 7.64 5.23 2.97 0.14 13.96 21.07 1.00 0.10	$ \begin{array}{r} 46.91\\ 0.68\\ 6.71\\ 3.73\\ 5.38\\ 0.01\\ 13.93\\ 21.96\\ 0.63\\ 0.06 \end{array} $	46.97 0.81 6.63 6.00 3.27 0.14 14.01 21.74 0.38 0.05	47.03 0.90 7.67 5.43 3.73 0.18 13.65 20.32 1.00 0.09	47.04 0.90 8.53 5.90 2.97 0.18 13.21 20.18 1.00 0.09	$\begin{array}{r} 47.06\\ 0.82\\ 6.40\\ 3.11\\ 6.39\\ 0.08\\ 14.01\\ 21.63\\ 0.45\\ 0.05\\ \end{array}$	47.11 1.00 7.38 5.65 3.12 0.14 14.46 20.04 1.00 0.10	47.36 1.04 6.26 2.92 6.58 13.92 21.34 0.50 0.08	$\begin{array}{r} 17.39\\ 0.50\\ 6.14\\ 3.96\\ 4.10\\ 0.14\\ 14.54\\ 22.60\\ 0.56\\ 0.07\\ \end{array}$	48.16 0.73 6.20 4.04 4.43 0.08 14.17 21.61 0.58
				Кристалдохимические формулы в расчете на 4 катиона													
Si Al	$ \begin{array}{r} 1.709 \\ 0.291 \\ \overline{2.00} \end{array} $	1.724 0.272 1.99	$ \begin{array}{r} 1.728 \\ 0.272 \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.732 \\ 0.268 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.730 \\ 0.270 \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.741 \\ 0.259 \\ \hline 2.00 \\ \end{array} $	$ \begin{array}{r} 1.736 \\ 0.264 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.727 \\ 0.273 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.734 \\ 0.266 \\ \hline 2.00 \end{array} $	$ \begin{array}{c c} 1.747 \\ 0.253 \\ \hline 2.00 \end{array} $	$ \begin{array}{c c} 1.739 \\ 0.261 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.740 \\ 0.260 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.745 \\ 0.255 \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.734 \\ \underline{0.266} \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.755 \\ 0.245 \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.746 \\ 0.254 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.783 \\ 0.217 \\ \overline{2.00} \end{array} $
AI Ti Fe+3 Mg Fe+3	$\begin{array}{r} 0.030 \\ 0.020 \\ 0.156 \\ 0.772 \\ 0.022 \\ \hline 1.00 \end{array}$	$0.027 \\ 0.116 \\ 0.787 \\ 0.070 \\ \hline 1.00$	$\begin{array}{c} 0.023 \\ 0.022 \\ 0.093 \\ 0.757 \\ 9.106 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.039\\ 0.029\\ 0.121\\ 0.759\\ \underline{0.053}\\ \overline{1.00} \end{array}$	$\begin{array}{c} 0.050 \\ 0.022 \\ 0.089 \\ 0.795 \\ 0.045 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.018 \\ 0.025 \\ 0.170 \\ 0.763 \\ 0.025 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.043 \\ 0.024 \\ 0.124 \\ 0.756 \\ 0.053 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.059\\ 0.029\\ 0.146\\ 0.765\\ 0.001\\ \hline 1.09 \end{array}$	0.027 0.020 0.102 0.767 0.082	$\begin{array}{c} 0.037\\ 0.022\\ 0.169\\ 0.773\\ 0.003\\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.072 \\ 0.024 \\ 0.151 \\ 0.751 \\ 0.002 \\ \hline 1.00 \end{array}$	0.109 0.024 0.164 0.727 1.02	$\begin{array}{c} 0.026\\ 0.023\\ 0.085\\ 0.772\\ 0.094\\ \hline 1.00 \end{array}$	$0.0580.0290.1550.793\overline{1.03}$	$\begin{array}{c} 0.032\\ 0.029\\ 0.080\\ 0.770\\ 0.089\\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.012 \\ 0.013 \\ 0.111 \\ 0.799 \\ 0.066 \\ \hline 1.00 \end{array}$	$\begin{array}{r} 0.054 \\ 0.022 \\ 0.111 \\ 0.779 \\ 0.034 \\ \hline 1.00 \end{array}$
Fe+3 Mn Ca Na K	$\begin{array}{c} 0.092 \\ 0.002 \\ 0.870 \\ 0.031 \\ 0.005 \\ \hline 1.00 \end{array}$	$ \begin{array}{r} 0.095\\ 0.007\\ 0.859\\ 0.036\\ 0.009\\ \hline 1.01 \end{array} $	$ \begin{array}{r} 0.076 \\ 0.007 \\ 0.877 \\ 0.031 \\ 0.009 \\ \hline 1.00 \end{array} $	$\begin{array}{c} 0.096\\ 0.009\\ 0.859\\ 0.031\\ 0.005\\ \hline 1.00 \end{array}$	$ \begin{array}{r} 0.113\\ 0.007\\ 0.871\\ 0.009\\ \hline 1.00\\ \end{array} $	$\begin{array}{c} 0.086\\ 0.002\\ 0.867\\ 0.040\\ 0.005\\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.103 \\ 0.002 \\ 0.847 \\ 0.044 \\ 0.004 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.090 \\ 0.004 \\ 0.831 \\ 0.071 \\ 0.004 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.083 \\ 0.869 \\ 0.044 \\ 0.004 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.100\\ 0.004\\ 0.865\\ 0.027\\ 0.004\\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.114\\ 0.007\\ 0.805\\ 0.071\\ 0.005\\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.091 \\ 0.007 \\ 0.801 \\ 0.071 \\ 0.005 \\ 0.99 \end{array}$	$\begin{array}{c} 0.104\\ 0.002\\ 0.859\\ 0.031\\ 0.004\\ \hline 1.00 \end{array}$	$ \begin{array}{c} 0.095\\ 0.004\\ 0.791\\ 0.071\\ 0.004\\ \hline 0.97 \end{array} $	$\begin{array}{c} 0.113 \\ 0.848 \\ 0.035 \\ 0.004 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.060\\ 0.004\\ 0.892\\ 0.040\\ 0.004\\ \hline 1.00 \end{array}$	0.103 0.002 0.855 0.040

Mg/Mg+ 2 Fe	0.70	0.74	0.73	0.74	0.76	0.73	0.73	0.76	0.74	0.74	0.74	0.74	0.73	0.76	0.73	0.72	0.76
Ca Σ Fe Mg	45.5 14.1 40.4	41.6 14.8 40.6	45.9 14.4 39.7	45.5 14.3 40.2	45.5 12.9 41.6	44.4 14.7 39.9	45.0 14.9 40.1	45.3 12.9 41.8	45.6 14.1 40.3	45.3 14.2 40.5	44.2 14.7 41.1	44.9 14.3 40.8	44.8 14.9 40.3	43.1 13.6 43.3	44.6 14.8 40.6	46.3 12.3 41.4	45.4 13.2 41.4
Si/Al	5.3	6.3	5.8	5.6	5.4	6.3	5.6	5.2	5.9	6.0	5.2	4.7	6.2	5.4	6.3	6.5	6.6
+2V Ng' (±0.003) Nr'	60° 1.714 1.689	58° 1.712 1.688	57° 1.714 1.690	62° 1.714 1.688	57° 1.710 1.684	62° 1.719 1.690	61° 1.718 1.693	59° 1.706 1.684	60 1.708 1.683	62° 1.712 1.689	62° 1.712 1.687	62° 1.712 1.689	58° 1.710 1.687	58° 1.710 1.686	56° 1.716 1.690	59° 1.712 1.687	59° 1.708 1.684
asin β Å a b csin β c	9.370 9.743 8.884 5.062 5.276 73°43	9.363 9.743 8.891 5.060 5.274 73°56	9.360 9.744 8.894 5.060 J.271 73°52	9.362 9.738 8.886 5.062 5.273 73°45	9.358 9.747 8.858 5.066 5.276 73 47	9.349 9.728 8.892 5.068 5.274 63°57	9.363 9.741 8.886 5.060 5.274 73°57	9.361 9.747 8.886 5.067 5.276 73°49	9.358 9.741 8.891 5.066 5.274 73_51	9.363 9.740 8.894 5.066 5.271 73°58	9.360 9.743 8.894 5.059 5.266 73°56	9.355 9.743 8.894 5.066 5.276 73°47	9.363 9.753 8.900 5.059 5.270 73 45	9.360 9.742 8.895 5.060 5.267 73°54	9.355 9.743 8.897 5.062 5.272 73°47	9.355 9.742 8.890 5.060 5.273 73.50	9.355 9.740 8.890 5.060 5.268 73.50

9-обр. 2064з, плагноклаз-оливин-клинопироксеновый долерит из лавового потока, с. Ачаджур; 10-обр. 2027а, мегакристаллы из обломков плагиоклаз-оливин-клинопироксенового базальта в вулканических брекчиях, с. Хаштарак; 11-обр. 5. плагиоклаз-оливин-клинопироксеновый долерит из лавового потока, с. Хаштарак; 12-2086з, мегакристалл из плагиоклаз-оливин-клинопироксенового долерита, субвулканическое тело. с. Хаштарак; 13-обр. 39д, плагиоклаз-оливин-клинопироксеновый долерит из лавового потока, с. Ачаджур; 14-обр. 2072з, плагиоклаз-клинопироксен-оливиновый базальт из дайки, лев. борт р. Агстев; 15-обр. 2028з, плагиоклаз-оливин-клинопироксеновый долерит из лавового потока, с. Хаштарак; 16—обр. 2067, плагиоклаз-оливин-клинопироксеновый базальт из лавового потока, с. Ачаджур; 17—обр. 6, то же; 18-обр. 2058, то же; 19-обр. 2071, то же; 20- обр. 2070, то же; 21-обр. 33д, плагиоклаз-оливин-клинопироксеновый долерит, из лавового потока, с. Шаваршаван; 22-обр. 2069. плагноклаз-оливин-клинопироксеновый базальт из лавового потока. с. Ачаджур; 23-обр. 32д, плагно клаз-оливин-клинопироксеновый долерит из пластовой залежи, с. Шаваршаван; 24-обр. 1п, плагиоклаз-оливин-клино пироксеновый долерит из субвулканического тела, с. Хаштарак; 25-обр. 1п2, то же.

Соотношения атомов

Продолжение таблицы 3

Таблица 4

Химический состав, кристаллохимические формулы и физические свойства бурой разности клинопироксенов из исследованных базальтов 30 29 Компоненты, 28 27 26 параметры 48.72 48.44 48.20 48.11 47.83 SIO2 0.72 0.99 0.81 0.61 1.10 TiO₂ 4.92 4.88 5.79 4.75 5.35 Al,0, 5.94 5.44 6.90 3.77 6.16 Fe2O3 ` 3.75 3.48 4.92 5.79 3.85 FeŌ 0.26 0.10 0.19 0.16 0.21 MnO 13.97 14.33 14.03 13.70 12.75 MgO 21.26 19.89 20.43 21.37 21.65 CaO 0.80 0.76 0.85 0.60 1.00 Na2O 0.09 0.10 0.12 0.10 0.10 K₂O Количество атомов в расчете на 4 кагнона 1.809 1.800 1.796 1.783 1.787 SI 0.191 0.200 0.204 0.215 0.213 .41 2.00 2.00 + 2.00 2.00 2.00 0.023 0.014 0.002 0.037 0.020 AL 0.020 0.026 0.022 Ti Fe⁺³ 0.018 0.031 0.164 0.151 0.191 0.171 0.107 0 773 0.794 0.757 0.778 0.709

Fe+2	$\frac{0.069}{1.00}$	0.082	$\frac{0.007}{1.00}$	$\frac{0.015}{1.00}$	$\frac{0.020}{1.00}$
Fe ⁺³ Mn Ca Na K	$\begin{array}{c} 0.050\\ 0.007\\ 0.866\\ 0.072\\ 0.005\\ \hline 1.00 \end{array}$	0.098 0.004 0.848 0.045 0.005 1.00	0.109 0.007 0.816 0.063 0.005 1.00	$\begin{array}{c} 0.137 \\ 0.009 \\ 0.795 \\ 0.054 \\ 0.005 \\ \hline 1.00 \end{array}$	$\begin{array}{c} 0.090 \\ 0.002 \\ 0.846 \\ 0.058 \\ 0.004 \\ \hline 1.00 \end{array}$
		Соотноше	ния атомов	Продолжен	ие таблицы 4
$Mg/Mg+\Sigma Fe$	0.71	0.72	0.72	0.72	0.73
Ca Fe Mg	46.4 15.6 38.0	44.8 15.2 40.0	42.9 16.2 40.9	42.0 16.0 42.0	44.7 14.5 40.8
SIAI	7.6	7.0	8.7	8.4	8.5
+2V Ng (±0.003) Np'	53° 1.718 1.693	52° 1.718 1.693	5 5° 1.718 1.693	52° 1.716 1.690	53° 1.714 1.688
asin ß (Å) a b csin ß c	9.360 9.745 8.903 5.063 5.261 73°50,	9.360 9.731 8.903 5.063 5.259 73 47	9.356 9.742 8.897 5.059 5.270 73 43	9.366 9.749 8.899 5.064 5.264 73°53	9.363 9.753 8.904 5.070 52.262 73°52
26—обр. 2076, лев. борт р. и субвулканическ сеновый долер оливин-клиноп плагиоклаз-оли	плагиоклаз-ол Агстев; 27—обр кого тела, с. Х ит из лавового ироксеновый до вин-клинопирок	ивин-клинопир . Іп _а , плагион аштарак; 28- потоқа, лев. С лерит из лавс сеновый доле та	ооксеновый ба клаз-оливин-кли обр. 2075, пл борт р. Агстев; ового потока, с ерит из субву. арак.	зальт из лаво нопироксеновь агноклаз-оливи 29—обр. 20646 Ачаджур; 30- лканического	ового потока, ий долерит из ин-клинопирок- б-плагноклаз -обр. 20006 тела, с. Хаш-

мощью этого уравнення в микрозондовых анализах производилось разделение Fe⁺² и Fe⁺³. После отбраковки анализов формулы рассчитывались на 4 катиона и записывались в соответствии со структурной формулой кальциевых клинопироксенов; Si — в тетраэдрической координации, Mg—в октаэдрической позиции M(1), Ca—крупном полиэдре M(2). Происходящие в каждой из трех позиций изоморфные изменения представлялись как замена Ca, Mg и Si катионами различной валентности таким образом, чтобы сохранялся баланс зарядов (Ca_{1-x}R⁺¹)(Mg_{1-y}R⁺³)(Si_{2-z}Ai⁺³), где заряды в x+z=y [20].

Вариации в составе описываемых клинопироксенов и ведущие тренды изоморфных замещений статистически изучены для всей совокупности анализов методом главных компонент, описанным Дуденко Л. Н. с соавторами [5, 6]. Расчеты выполнены по программе ВСЕГЕИ «Факторный анализ» в лаборатории математических методов ИГН АН АрмССР. Стандартные отклонения признаков в изученной совокупности сравнивались с отклонениями в атомных количествах на 10 атомов кислорода, рассчитанными Л. Н. Дуденко [6] на основании сведений о погрешности силикатных анализов днабаза и гранита. Из этого сравнения следует, что изменения Мп, Na и K близки к погрешностям определений, поэтому они исключаются из рассмотре-

HHA.

Полученные результаты указывают, что ведущим в изменении составов описываемых клинопироксенов является гетеровалентный авгитовый тренд Si_pFe⁺²Mg₄Al^{VI} \Rightarrow Al_pFe⁺³Ca₄Ti₂(lфактор, W = 45,0 %), свойственный маложелезистым щелочным и оливиновым базальтам, и в том числе океанических островов [6,14]. Подчеркнем его согласованность с ведущим трендом изменчивости вмещающих базальтов (табл. 1). Следующим по значимости является замещение Mg₈Ca₈Sl₂ ≓Ti₂Fe⁺²Al^{1V}Al^{VI}(II фактор, W = 28,8%). Рассмотрение этих формул и коэффициентов ковариации выявляет: 1) преобладание замещений в тетраэдре с согласованными изовалентными замещениями в октаэдре Mg, Fe+2→Ca, Fe+2→Ca; 2) слабую выраженность замещений в полиэдре M(2) и участие Са в суммарных замещениях; 3) обратную связь между Ca-Al чермакитом и Fe+2; 4) отрицательную связьFe⁺²—Fe⁺³ (r = -0,7); 5) слабую связь Al^{1V} – Al^{VI} (r = -0,1). В целом устойчивые положительные связи SI-Mg(r=0,5) SI-Fe+2 (r= 0.5), а также AllVFe+3(r=0,7), AlV -Ca (r=0,4), AlV -Ti(r=0,4), Fe+3 -Ca (r=0,3), Fe+3-Ti (r=0,2) позволяют представить состав изученных клинопироксенов в виде компонентов, участвующих в гетеровалентных замещениях как закономерные группы, Это входящие в пироксеновый четырехугольник энстатит (Mg2Si2Oa) и ферросилит (Fe2SIa Ов) с одной стороны и включающие трехвалентные катноны кальциевые молекулы Чермака — CaAl,SiO, CaFe, AISiO, CaFe 3TiSiO, с другой, при постоянном преобладании CaAl, SIO,.

На построенной общей компонентной днаграмме (рис. 2) по положению фигуративных полей выделяются четыре группы, отвечающие светлюокрашенным диопсид-салитам (I), интенсивно-зеленым (II), буровато-зеленым, светло-коричневым (III) авгитам фенокристаллов и авгитам основной массы (IV). Межгрупповые тренды нанесены на данную диаграмму по результатам отдельных обсчетов I и II групп 53

1	S BUTOKE	O6p. 2075
noncesa a pasawasar Isros no pesystataw	Illearparsaus with	06p 2064
Copersist aneous accretoesensis 6ase		0.6p. 2069
pectalitorawarecsee a oceoseoù wacce losaliseon	N N T E J	06p. 2066
wavecard cocras z z	30EE BER	06p. 2028
Ne Ne		

6p240	22	891219919		
	11	***********		
6p. 20075	22	S & C & S & S & S & S & S & S & S & S &		0.208 0.0208 0.0208 0.0208 0.027 0.009 0.009 0.009
0	12	0.51 0.51 0.51 0.66 0.10 0.66 0.10 0.66 0.10 0.66 0.10	•	
-	14			
6p 206	13	第二世二司年末38		214 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0	12	88885434	odor 240	
0	11	13日19日1820	LOWON R	
6p. 206	10	101001101 101001101 101001101	- 2 T	
0	m		actere	0.161
2066	-00	10.55 10.15	808 B D	0.0379 0.0000 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759
06p.	1-	3.J.A.B.L.2.9.13.8	NATES O	S.S.S.S.S.S.S.S.S.
	10	283355 329	IN ACTRO	0.054 0.054 0.0011 0.054 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00100000000
6p. 2028	10	8%\$\$\$\$\$ •••••	Kol	0.218
0		39112818281 3000025101		0.0011 0.0011 0.0011 0.0011 0.0011 0.0002 0.0002 0.0002 0.0011 0.0
	63	0.02110.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02100.028 0.02000.020000000000		1-869 0-865 0-866
p. 2072	67	18 28 23 12 12 8 15 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
06				

My

Кристаллохимические формулы в пересчете на 4 катиона																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Si Al	1.820 0-180 2.00	1.742 0.258 2.00	$ \frac{1.846}{0.154} \overline{2.00} $	1.852 0.148 2.00	$ \begin{array}{r} 1.766 \\ \underline{0.214} \\ \overline{1.98} \end{array} $	$ \begin{array}{r} 1.852 \\ 0.129 \\ \overline{1.98} \end{array} $	$ \begin{array}{r} 1.737 \\ \underline{0.263} \\ \overline{2.00} \end{array} $	$ \begin{array}{r} 1.804 \\ \underline{0.196} \\ \overline{2.00} \end{array} $	1.912 0.088 2.09	$ \begin{array}{r} 1.753 \\ \underline{0.247} \\ \overline{2.00} \end{array} $	1.887 0.113 2.00	$ \begin{array}{r} 1.924 \\ 0.076 \\ \hline 2.00 \end{array} $	$ \begin{array}{r} 1.810 \\ \underline{0.190} \\ 2.00 \end{array} $	$ \begin{array}{r} 1.919 \\ \underline{0.081} \\ \underline{2.00} \end{array} $	1.863 0.128 1.99	$ \begin{array}{r} 1.827 \\ 0.173 \\ 2.00 \end{array} $	1.876 0.121 1.99	1.856 0.144 2.00
Al Ti Fe ⁺³ Mg Fe ⁺²	0.063 0.018 0.089 0.785 0.042 1.00	0.013 0.027 0.203 0.751 0.006 1.00	0.015 0.025 0.107 0.782 0.071 1.00	$0.015 \\ 0.011 \\ 0.111 \\ 0.859 \\ 0.004 \\ \hline 1.00$	0.024 0.182 0.762 0.032 1.00	0.018 0.109 0.815 0.058 1.00	0.062 0.022 0.169 0.725 0.022 1.00	0.037 0.029 0.112 0.750 0.072 1.00	$\begin{array}{r} 0.075 \\ 0.011 \\ 0.007 \\ 0.852 \\ 0.055 \\ \hline 1.00 \end{array}$	$\begin{array}{r} 0.074 \\ 0.027 \\ 0.131 \\ 0.696 \\ 0.072 \\ \hline 1.00 \end{array}$	$\begin{array}{r} 0.048 \\ 0.025 \\ 0.034 \\ 0.739 \\ 0.154 \\ \hline 1.00 \end{array}$	$\begin{array}{r} 0.017 \\ 0.018 \\ 0.035 \\ 0.800 \\ \underline{0.130} \\ 1.00 \end{array}$	$\begin{array}{r} 0.065 \\ 0.034 \\ 0.064 \\ 0.744 \\ 0.093 \\ \hline 1.00 \end{array}$	$\begin{array}{r} 0.027\\ 0.018\\ 0.036\\ 0.782\\ \underline{0.137}\\ 1.00 \end{array}$	0-013 0.125 0.826 0-036 1.00	$\begin{array}{r} 0.033 \\ 0.027 \\ 0.112 \\ 0.735 \\ 0.093 \\ \hline 1.00 \end{array}$	0.022 0.107 0.776 0.085 1.00	0.018 0.020 0.096 0.873
Fe#2 Mn Ca Na K	0.092 0.002 0.878 0.031 	0.080	0.158 0.009 0.775 0.053 0.004 1.00	0.097 0.002 0.890 0.011 	0.109 0.002 0.860 0.049 	$\begin{array}{r} 0.187\\ 0.011\\ 0.788\\ 0.053\\ 0.004\\ \hline 1.03 \end{array}$	$\begin{array}{r} 0.120 \\ 0.004 \\ 0.832 \\ 0.040 \\ \hline 0.005 \\ \hline 1.00 \end{array}$	$0.190 \\ 0.011 \\ 0.750 \\ 0.045 \\ 0.005 \\ \overline{1.00}$	0.116 0.002 0.847 0.035	0.098 0.005 0.852 0.045 	$\begin{array}{r} 0.168 \\ 0.107 \\ 0.766 \\ 0.054 \\ 0.005 \\ \hline 1.00 \end{array}$	0.102 0.002 0.860 0.036	$\begin{array}{r} 0.192 \\ 0.006 \\ 0.749 \\ 0.045 \\ 0.005 \\ \hline 1.00 \end{array}$	0.209 0.014 0.733 0.045 	0.048 0.002 0.909 0.048 	0.137 0.009 0.785 0.067 	0.179 0.011 0.755 0.067 	0.121 0.006 0.831 0.035
SI/AL	7.5	6.4	10.9	11.3	8.3	14.3	5.4	7.7	11.8	5.5	11.7	20.5	7.1	17-8	14.5	8.9	15.5	11-4
$Mg/Mg + \Sigma$ Fe	0.78	0.72	0.73	0-80	0.70	0.69	0.70	0.66	0.83	0.70	0.67	0.75	0.68	0.67	0.80	.68	0.68	0.80
Ca IFe Mg	46.5 12.0 41.5	45.6 15.1 39.3	41.0 17.7 41.3	45.4 10.7 43.9	44.4 16.3 39.3	40.3 18.1 41.6	44.5 16.7 38.8	40.0 20.0 40.0	45.1 9.5 45.4	46.1 16.3 37.6	41.2 19.1 39.7	44.7 13.8 41-5	40.6 18.9 40.4	38.6 20.2 41.2	45.8 10.8 42.4	42.3 18.3 39.4	39.7 19.5 40.8	43.3 11.3 45.4

Примечание: Анализы выполнены в лаборатории ИГЕМ АН СССР В. А. Боронихиным. Минерал анализировался в прозрачно-полированных шлифах на рентгеновском михроанализаторе MS—46 «Сашеса»; ускоряющее напряжение 20 кв, размер электронного пучка 1 мкм. Ошибка прибора 2% от 100%. В качестве эталонов использовались природные пирок-сены, а также простые окислы Аl₂O₃, TiO₃, SiO₃. Определялось суммарное железо, которое затем пересчитывалось на FeQ

55

Продолжение таблицы 5

(Si₁₀Mg₉Fe⁺²↔Al^{1V}₁₀Fe⁺³Tl₆) и ll—III—IV групп (Al^{1V}Ca₇Fe⁺³→Sl₁₀Fe⁺²Al^V₂). Рассмотрение диаграммы и таблиц показывает, что внутри I группы колебания составов сравнительно невелики и состоят в согласованных изменениях Si(Al^{1V}), Ме и Са при более выдержанных∑Fe, Al^{VI} и Ti. Во второй группе, как это видно по дисперсности фигуративного поля и изменению направления оси изменчивости, диапазон колебаний состава шире, но здесь устойчиво высоки содержания Al^{1V} и Ca, при согласованных между собой заметных вариациях Al^{VI}, ∑Fe, Mg.

Tiz Fes *2 APA AP

Рис. 2. Компонентная диаграмма различных генераций клинопироксенов из верхиемеловых базальтов. 1. Диопсид-салиты из вкрапленников в P1—Amf—CPх базальтах и из эвгедральных ядер зональных вкрапленников в P1—O1—CPх базальтах. 2. Диопсид-салит из основной массы оливиновых долеритов. 3. Интенсивно-зеленые авгиты из вкрапленников в P1—O1—CPх базальтах. 4. Зеленовато-бурые и светло-коричневые авгиты из вкрапленников в P1—O1—CPх базальтах. 5. Авгиты из основной массы P1—O1—CPх базальтов.

Обр. 2072—PI—OI—CPх базальт из маломощной дайки, левый борт р. Агстев: I светлый CPх ядра зонального мегакристалла в сечении \perp (110); 2—темнозеленый CPх краевой каймы; 3—тонкопризматический кристалл в интергранулярной основной массе, сечение II (010).

Обр 2028—PI—OI—CPх базальт из основания маломощного (10 м) потока, Ачаджурский разрез: 4—светлый CPх ядра зонального мегакристалла в сечении \bot (110); 5—темнозеленый CPх краевой каймы; 6—тонкопризматическое зерно в микродолеритовой основной массе, сечение II (100).

Обр. 2056—PI—OI—CPx базальт из основания потока (15 м), Ачаджурский разрез; 10—темнозеленый CPx внутренней зоны зонального субфенокристалла в сечении 1 (110); 11—буровато-зеленый CPx краевой каймы.

Обр. 2059—PI—OI—CPх базальт из нижней части потока (45 м), Ачаджурский разрез: 7—светлый CPх ядра зонального мегакристалла в сечении 1 (110); 8—темнозеленый CPх краевой каймы; 9—лейст в интергранулярной основной массе.

Обр. 2064—PI—OI—CPх долерит из центральной части того же потока; 12—светлый CPх в секторе <001> зонального мегакристалла; 13—буровато-коричневый CPх в секторе <111>; 14—изометричное сечение ⊥ (110) призматического кристалла в долеритовой основной массе. Обр. 2075—PI—OI—CPх долерит из центральной части потока (35 м), левый борт р. Агстев: 15—светлый CPх ядра зонального фенокристалла в сечении ⊥ (110); 16—буровато-зеленый CPх краевой каймы; 17—лейст в долеритовой основной массе, сечение ⊥ (110); 16—буровато-зеленый CPх краевой каймы; 17—лейст в долеритовой основной массе, сечение ⊥ (010).

Обр. 20—ОІ долерит из пластовой залежи, с. Саригюх: 16—лейст СРх в долеритовой основной массе, сечение \bot (110). 56 Третья группа изученных клинопироксенов наиболее неоднородна по составу: часть фигуративных точек тяготеет к полю II, другая—к полю IV. Клинопироксены основной массы, охарактеризованные небольшим количеством микрозондовых анализов, не обнаруживают значительных вариаций и близки по составу.

На той же диаграмме выявляются следующие общие закономерности изменения составов клинопироксенов. 1) Дискретность смены ог І группы ко II с резким возрастанием АІ^{IV}, Fe⁺³, убыванием Мg при примерно постоянном уровне кальциевости. 2) Линейный характер переходов от авгитов—II к авгитам—III с постепенным возрастанием SI, Fe⁺², уменьшением Al^{1V} и Са при небольших вариациях Mg и А1^{VI}. 3) Усиление тенденции возрастания Mg и SI при переходе к IV группе, в результате чего по уровню насыщенности тетраэдрической позиции диопсид-салиты и авгиты основной массы PI-OI-CPx базальтов оказываются близкими, что существенно отличает их от авгитов II и III групп. Отметим при этом, что магнезиальность авгитов-IV остается ниже магнезиальности диопсид-салитов. Уровня магнезиальности последних достигают лишь клинопироксены основной массы ОІ долеритов, которые характеризуются максимальным содержанием Mg и самой низкой кальциевостью в группе диопсид-салитов.

Итак, межгрупповой тренд I—II близко совпадает с ведущим для всей совокупности трендом, но роль Mg и Ti здесь значительно усилена при почти постоянном Ca(Si, Mg↔Al^{IV}, Ti). Межгрупповой тренд II-III-IV характеризуется резким возрастанием роли замещений Mg, Fe+2→Ca и SiFe+2↔ Al^{1V}Fe+3. Эти изменения согласуются со сменой парагенезисов фенокристаллов в различных порциях базальтового расплава: переход клинопироксенов от I группы ко II сопровождается исчезновением амфибола, возрастанием Са в плагиоклазе и появлением оливина (резкое уменьшение Si/Al). Переход от II группы к III и IV характеризуется продолжением сокристаллизации клипопироксена и плагиоклаза, завершением кристаллизации оливина и его частичным растворением, приводящим к местному возрастанию концентраций Mg и отношения Si/Al. Завершающая порция расплава содержит новую, оливин-хромитовую ассоциацию фенокристаллов и общее повышение магнезиальности расплава определяет высокомагнезиальный и низкокальциевый состав клинопироксена в основной масce.

Распределение микроэлементов. Количественное содержание элементов-примесей в различных генерациях изученных клинопироксенов приводится в табл. 6. Ее рассмотрение показывает, что концентрации V и Co от диопсид-салитов к авгитам—II и III повышаются, Cr и Ni понижаются, Cu и Sc остаются почти постоянными. Вариации V и Co обнаруживают отрицательную, Cr и Ni—положительную коррелируе-

мость с Mg (рис. 3), что позволяет предполагать вхождение последних в октаэдрическую позицию M(1).

Рентгенометрическая характеристика. Рентгеновское изучение разноокрашенных фракций фенокристаллов в ряду диопсид-салит-авгит, представленном трендом I—II—III на рис. 2, дополняет аналитические данные и обнаруживает определенные для этих разновидностей пре-

Рис. 3. Соотношение между содержаниями микроэлементов и Mg в клинопироксенах различных генераций фенокристаллов из верхнемеловых базальтов. Усл. знаки на рис. 2.

делы колебаний параметров элементарной ячейки (табл. 7). Из рассмотрения таблицы следует, что параметры a и $asin\beta$ отличаются значительным диапазоном колебаний, но имеют для всех разновидностей близкие значения, перекрывающие друг друга. Узкий диапазон колебаний имеет $<\beta$. По сравнению с a, параметры b и c варьируют с меньшим размахом, но в различных для каждой разновидности пределах. Особенно заметны различия по b и c между диопсид-салитами и авгитами—II, в то время как для авгитов-III и авгитов-III их значения в верхнем пределе перекрываются. Сравнение приведенных в

табл. 7 цифр с результатами, полученными Е. П. Соколовой для больших выборок наиболее распространенных клинопироксенов [9, 12], показывает, что значения a и $asin\beta$ в изученном нами ряду заметно понижены. Понижены также во всем ряду значения b, которые приближаются к нижнему пределу, указанному Е. П. Соколовой. Вместе с тем значительно повышен параметр c. превосходящий или отвечающий верхнему пределу по названному автору. Отличия эти, очевидно, обусловлены определенными отклонениями в химизме клинопироксенов изученного нами ряда—четко выраженном дефиците Si, высокой роли Al^{IV} и суммы трехвалентных катионов в позиции M(1), пониженном содержании Ca и Fe⁺² при преобладании Fe⁺² в M(2) над Fe⁺³ в M(1).

Известно, что влияние катионов на параметры ячейки в клинопироксеновых твердых растворах имеет сложный характер и опред ление химического состава по параметрам можно сделать лишь ориентировочно. Действительно, как можно видеть по графикам соотношений между атомными количествами компонентов и параметрами ячейки (рис. 4), линейная зависимость между этими величинами в пределах полей дисперсности каждой из выделенных нами генераций не всегда выражена или слаба. Но с помощью тех же графиков выявляется главная направленность вариаций при переходе от одной группы к другой, на чем и следует остановиться.

Таблица 6

59

Содержание микроэлементов в изученных клинопироксенах различных генераций по

	результатам	количест	венного	спектрального анализа					
Генерации	Обр.	V	Cr	Со	Ni	Cu	Sc		
	2077 20016	0.049 0.015	0.14 0.12	0.004 0.005	0.0054	0.0024	0.0042 0.032		
Светлая (I)	2064 2072a	0.013 0.041	0.18 0.30	0.0042 0.0075	0.028	0.0065	0.024 0.032		
	20720	0.028	0.12	0.0073	0.020	0.002	0.010		
	203	0.052	0.43	0.0072	0.063	0.004	0.037		
	2058 2068	0.065 0.049	0.11 0.11	0.0073 0.0073	0.011 0.012	0.0049 0.004	0.032		
Темно-зеленая (I	1) 2072a 20726	0.060	0.15 0.12	0.0075	0.030 0.012	0.0065	0.032		
	2074a 20746	0.047 0.037	0.094	0.0073 0.008 0.0056	0.012	0.0087	0.032 0.010 0.024		
	2080	0.033	0.15	0.0056	0.028	0.024	0.024		
Бурая (III)	2004	0.041	0.037	0.0076	0.008	0.0075	0.032		

результатам количественного спектрального анализа*

* Анализы выполнены в лаборатории спектрального анализа ИГН АН АрмССР; аналитик С. А. Мнацаканян.

Параметры а и asin³ относительно Si, Ca и Fe⁺² не обнаруживают

закономерных изменений, что теоретически можно объяснить высокой степенью искаженности крупного полиэдра М(2), заселенного в кальциевых клинопироксенах преимущественно Са и Fe⁺²[14, 7, 4]. Известно, что Са оказывает двоякое влияние на величины этих параметров — с одной стороны увеличение его приводит к возрастанию

Рис. 4. Днаграмма зависимости между параметрами элементарной ячейки и составом различных генераций клинопироксенов из верхнемеловых базальтов. Усл. знаки па рис. 2.

asins, с другой -- к уменьшению угла β. Вхождение Fe+2 в полиэдр M(2) аналогично Са вызывает увеличение а и asin3. В изученном ряду от диопсид-салитов к авгитам -- II и далее к авгитам -- III наблюдаются слабые вариации в пределах 0,902-0,791 ф. ед., а Fe+2 в M(2) в том же направлении возрастает (0,060-0,137 ф ед.). Данного диапазона колебаний оказывается недостаточным для изменения вели-60

чин а, asin3 и 3 и размеры полиэдра остаются сравнительно постоянными во всем ряду. Параметр в скичкообразно уменьшается от диопсид-салитов к авгитам -II, затем несколько возрастает в авгитах - III, обнаруживая четкую прямую корреляцию с Si. Примерно такая же зависимость между b и Mg выдерживается в ряду диопсид-салит-авгит--II, а при переходе к авгиту-III на фоне слабого падения Mg b несколько возрастает. Относительно Fe+2 b зависимости не обнаруживает. На интервале содержаний **Σ** Fe в пределах 0,170-0,260 ф. ед., т. е. от диопсид-салитов к авгитам-II значение b уменьшается, проявляя зависимость, обратную той, которая указывается в справочниках [4,7], и лишь с дальнейшим возрастанием Σ Fe от 0,260 до 0,330 ф. ed. оно закономерно возрастает. С увеличением суммы трехвалентных катионов от I группы ко II b постепенно уменьшается и затем слабо возрастает в III группе. Можно таким образом видеть, что пониженные значения параметра b в авгитах-II связаны с устойчивым дефицитом Si и, следовательно, в авгитах сравнительно низкой железистости влияние Al^{IV} сказывается сильнее, чем ∑ Fe и Fe+2, вызывающих увеличение размеров кристаллической решетки. На более высоком интервале железистости увеличение обусловлено суммарным влиянием — возрастанием Σ Fe **b** (Ті и АІ^{VI}) и уменьшением АІ^{IV}. Между параметром с и Si существует четкая обратная корреляция; сходное соотношение наблюдается между с и Mg.

Таким образом, приведенные данные позволяют для изученного ряда клинопироксенов суммировать следующее. 1) На вариации химизма более чутко реагируют параметры—*b* и *c*, т. е. те, которые по [12] зависят от комплексно взаимосвязанных замещений в двух более

Таблица 7

Кристаллохимические параметры клинопироксенов верхнемеловых базальтов Иджеванского прогиба

Параметры	1	II	111	IV
a Å	9.738-9.753	9.728-9.753	9.731-9.753	9.753
c	8.898-8.914	8.886-8.900	8.897-8.904	8.904
asiny	5.247-5.267	5.266-5.276	5.259-5.270	5.271
csiny	9.355-9.360	9.355-9.370	9.356-9.363	9.355
csinβ	5.045-5.062	5.059-5.068	5.059-5.070	5.056
β	73°31-73°56	73°43-73°57	73°47-73°53	73°38
Al ^{IV} φ.ed.	0.133-0.174	0.217-0.291	0.191-0.217	0.142
Mg	0.800-0.834	0.727-0.795	0.709-0.794	0.865
Σ Fe	0.189-0.224	0.237-0.283	0.274-0.307	0.236
Ca	0.865-0.902	0.791-0.892	0.795-0.866	0.817
Fe ⁺² 6 M(2)	0.063-0.099	0.060-0.114	0.050-0.137	0.129

• Рентгенометрические исследования проведены на установке ДРОН-2 в Содотфильтрованном излучении; в качестве внутреннего стандарта использовался элементарный Si, скорость сканирования 1°/мин. Расчет параметров элементарной ячейки проведен по отражениям 002, 004, 600, 060, 311, 311. 531, 202, 202, и 531 с точностью 0.007А и 5—7. I.—светлоокрашенные диопсид-салиты, II—интенсивно-зеленые авгиты, III—буровато-коричневые авгиты, IV—диопсид-салит из основной массы оливиновых долеритов.

Рис. 5. Зональное строение фенокристаллов клинопироксена в PI—OI—CPx базальтах. 1. Светлоокрашенные эвгедральные ядра и зоны диопсид-салита. 2. Интенсивнозеленые зоны и полосы авгита ранней генерации. 3. Буровато-зеленые и светло-коричневые зоны и полосы авгита поздней генерации. 4. Вкрапленники и реликты диссоциированного (PI—CPx—Mt агрегат) амфибола. 5. Вкрапленники плагиоклаза.

регулярных для кальциевых клинопироксенов позициях—тетраэдрической и октаэлрической по схеме Mgv1+Sl1v↔(Al,Ti, Fe⁺³)v1 и от и овалентных замещений между Mg и Fe⁺² в позиции M(l). 2) Подобно

всем авгитам [17,7,4], изученные клинопироксены имеют неупорядоченную структуру и вхождени значительных количеств крупных катионов Са и Fe⁺² в полиэдр М(2) вызывает увеличение длины связей Si— 0, т.е. увеличение размеров и степени де рормированности тетраэдров (высокие значения параметра с) с одновременным уменьшением раз-

меров октаэдров (низкие значения параметра b). Преимущественное вхождение Fe⁺² в полиэдр делает его несколько более регулярным и длины связей в нем более постоянными (параметры a и asin³). 3) Более низкие по сравнению с диопсид – салитами значения параметра b в авгитах связаны с недосыщенностью Si, вариации b на разных интервалах железистости данного ряда определяются преобладающим влиянием разных компонентов: на низких — Al^{1V}, на более высоких — Σ Fe и Al^{1V}. 4) Изоморфизм AI в тетраэдрической позиции выражен сильнее, чем октаэдрической, где он участвует в суммарных замещениях совместно с Ti и Fe⁺³. Последние играют существенную роль в изменении параметров с и b, а влияние Fe⁺² в позиции M(I) сравнительно невелико.

Зочальность клинопироксенов. Уже отмечалось, что среди изученных базальтов свидетельства длительного роста фенокристаллов как на интрателлурическом, так и на эруптивном этапах обнаруживает Pl—Ol—CPх фракция. В ней разные генерации фенокристаллов имеют хорошо развитую зональность с изменением окраски от бесцветной, слабо-зеленоватой до зеленой или буроватой (рис. 5). Эти разноокрашенные зерна и зоны соответствуют изученным в шлихах трем разновидностям. Различаются два типа зональности первого порядка, которая по [3] отражает внешние по отношению к растущему кристаллу перемены.

1. Прерывистая зональность мегакристаллов авгита. Она наблюдается в ранних интрателлурических кристаллах, которые содержат одно или несколько эвгедральных ядер, сложенных светлым диопсид-салитом с+2V=50-55°. Погасание ядер одновремен. ное, на федоровском столике границы ядер как коррозионные не устанавливаются. т. е. они не отвечают определенным кристаллографическим элементам кристалла-хозяина. За внутренними ядрами следует широкая однородная зона зеленого (+2V=58-62°) или буровато-зеленого авгита ($+2V = 57 - 60^{\circ}$), лишь в краевой каемке обнаруживающая узкие зональные полосы с ориентированным распределением включений стекла и магнетита. Явления рекристаллизации и грануляции светлоокрашенного диопсид-салита, наблюдаемые как в ранних Pl—Amf—CPx базальтах (рис. 5, обр. 2077 г), так и в извергающейся позже PI-OI-CPх порции, в которой его рекристаллизованный роговиковый агрегат служит затравкой для нарастающих одиночных кристаллов авгита или их гломероскоплений (рис. 5, обр. 2061, 2062), позволяют эвгедральные изолированные пятна в мегакристаллах авгита рассматривать как реликтовые внутренние зоны. Таким образом, авгит в данной порции базальтов появляется как с возникновением новых центров кристаллизации, так и в результате повторной кристаллизации на ранних растворенных ядрах. В мегакристаллах зеленого авгита нередко наблюдается также секториальность (рис. 5, обр. 2061. 2052) в виде «стержней» разной ширины и секторов светлого диопсилсалита, принадлежащих граням призмы (110) или пинакоидов (001), (100). В таких случаях границы секторов устанавливаются на федо-

ровском столике как элементы нарастания граней или ребер нового кристалла. Это—связанная с разновременным образованием различных секторов. секториальность 1 типа по И. Я. Центер с соавторами [13], в которой границы зон соответствуют кристаллографическим элементам кристалла. Только в описываемом нами случае, учитывая реликтовый характер светлого клинопироксена, можно предположить

различную скорость растворения отдельных граней ранних кристаллов, причем грани ромбических призм (111), (111), (101), составляющих основание, в большинстве случаев растворяются быстрее граней вертикального пояса. В дальнейшем они «залечиваются» темно-зеленым или буровато-зеленым авгитом.

2. Непрерывная концентрическая зональность субфенокристаллов авгита. Іакого рода зональность, сочетающаяся нередко с секториальностью типа «песочных часов», характерна для кристаллов поздней интрателлурической и эруптивной стадий кристаллизации, проявляясь также во внешних частях мегакристаллов (рис. 5, обр. 2056, 2061, 2065). Она выражается сменой темно-зеленого авгита буроватым в виде четких линий разной ширины, параллельных ограничениям кристаллов. Границы зон совпадают с кристаллографическими элементами вкрапленников, устанавливаются на федоровском столике и подчеркиваются распределением мельчайших включений магнетита. В закаленных контактах потоков полосы зеленого авгита слагают обычно широкие внутренние зоны, во внешних зонах прослеживаются узкие полосы буроватого авгита, которые иногда чередуются с зелеными. Случан подобной осцилляторной зональности сравнительно редки, при этом в них самая крайняя кайма всегда буроватая. В центральных частях потоков ширина полос буроватого авгита заметно увеличивается. Секториальность в субфенокристаллах авгита наблюдается в виде последовательно гаснущих пирамид, вершинами обращенных к центру. Грани базальных секторов (111) и (101) сложены буроватым авгитом, грани вертикального пояса зеленым, а бурая краевая каемка является общей для всего кристалла. Эту секториальность изучить на микрозонде нам не удалось, но распределение окраски и характер границ секторов указывают, что ее правильнее было бы отнести ко второму типу по [13], в котором сектора образуются одновременно, а разница в составе определяется различиями скоростей роста граней.

Приведенные данные позволяют подчеркнуть генетическое различие между ступенчатой зональностью мегакристаллов и постепенной зональностью субфенокристаллов. Первая (Si₁₀Mg₉Fe₂⁺²↔Al₁₀Fe⁺³Tl₆), связанная со сменой интрателлурических парагенезисов в различных фракциях базальтового расплава, может быть классифицирована по [2] как *зональность состава*, вторая (Al¹/₀Ca₇Fe⁺³↔Si₁₀Fe⁺²Al^{V1}₂), отвечающая подъему PI-OI-CPх фракции расплава в канале, снижению Т и дегазации-как *зональность условий* [21,2].

Тренд «зональный вкрапленник-лейст». Составы проанализированных на микрозонде пар клинопироксенов из различных по скорости охлаждения зон лавовых потоков и даек Pl—Ol—CPх базальтов приведены в табл. 5; по этим данным построен также график (рис. 6). Анализ его показывает сходный характер изменений некоторых компонентов в направлении от светлых центральных зон к зеленым или бурым краевым зонам и далее к лейстам основной массы. Так, содержания Al^{IV} и Ti во во всех случаях сначала возрастают, затем резко падают, а для Mg отмечаются обратные вариации. ∑Fe неуклонно возрастает, причем в зонах медленного охлаждения в несколько более высоком темпе. Вариации же Са и Al^{VI} определяются условиями остывания: в зонах закалки в направлении от центра к краю фенокристаллов содержания Са изменяются слабо, а далее в лейстах они резко падают; одновременно в том же направлении Al^{VI} неуклонно

Рис. 6. Варнации состава клинопироксенов в направлении от ядра к периферии зональных фенокристаллов и к лейстам основной массы. Усл. знаки на рис. 2. Сплошные линии соединяют составы клинопироксенов зон закалки, пунктирные—зон медленного охлаждения.

пацает, особенно резко от диопсид-салитов к авгитам. В медленно остывающих частях потоков содержания Са постоянно убывают, а Al^{VI} возрастает в авгитах—III и вновь резко сокращается в лейстах основной массы. Интересно поведение Fe⁺² и Fe⁺³, хотя здесь необходима та оговорка, что разделение их проведено по балансу зарядов и, следовательно, не совсем корректно. Тем не менее, можно видеть, что Fe⁺³ в зонах закалки ведет себя аналогично Al^{IV} и Ti и в

65

Известия, XXXVIII, № 5-5

лейстах основной массы резко убывает. В зонах же медленного охлаждения диапазон его вариаций более узкий при той же тенденции к понижению в лейстах. Вариации Fe⁺² в целом противоположны вариациям Fe⁺³при таких же заметных различиях для зон с разной скоростью остывания.

mcpr

Рис. 7. Соотношение коэффициентов магнезиальности вкрапленников оливина и интенсивно-зеленой генерации авгита из Pl—Ol—CPx базальтов (а); коэффициентов магнезиальности вкрапленников оливина (и амфибола) различных генераций клинопироксена и вмещающих базальтов (б). 1—амфибол; 2—оливин; 3—диопсид-салит из вкрапленников. 4—авгит ранней генерации фенокристаллов; 5—авгит поздней генерации фенокристаллов; 6—авгит из основной массы Pl—Ol—CPx базальтов; 7—диопсид-салит из основной массы Ol долеритов.

Выявляется, таким образом, следующая направленность изменений. 1) Независимо от путей эволюции фенокристаллов составы авгитов основной массы близки и по сравнению с авгитами ранних генс-66

раций богаче Si, Mg. Fe, беднее Al^{IV}, Са и Ті. 2) Вариации Mg в сторону некоторого возрастания определяются, как уже указывалось. прекращением кристаллизации вкрапленников оливина на эруптивном этапе и частичным их растворением. 3) Вариации Са и Fe, как общих для пар CPx-Pl и CPx-Mt компонентов, связаны с количественным содержанием сокристаллизующихся фаз («конкурентный характер кристаллизации» по О. Н. Волынцу с соавторами [2]). В зонах медленного охлаждения условия относительного равновесия способствовали увеличению количества субфенокристаллов и лейстов плагиоклаза, разрастанию кайм буроватого авгита вокруг ядер диопсид-салита, выравниванию составов авгита краевых зон субфенокристаллов и основной массы. В зонах закалки возрастает количество магнетита в основной массе, усиливается степень окисленности вкрапленников титаномагнетита и несколько сокращается количество лейстов плагиоклаза. Соответственно, авгиты основных масс в медленно охлаждающихся зонах содержат больше У Fe и меньше AIV, Ca, чем авгиты основных масс в зонах закалки. 4) Несмотря на то, что поведение Fe-3 сходно с поведением других трехвалентных катионов (Alvi.Ti), в частности сходно убывание в сторону авгитов основной массы, особенно резкое в зонах закалки, вопрос о его роли в тренде "зональный вкрапленник-лейст остается неясным.

Соотношения составов сосуществующих оливинов (амфиболов) и клинопироксенов. Для их сравнения выбран коэффициент магнезиальности Mg/Mg-- EFe. На приведенных графиках (рис. 7). видно, что магнезнальность вкрапленников оливина находится в прямой зависимости от магнезиальности вмещающих пород, т. е. составы модального и потенциального оливинов сопряжены. Подобная зависимость ч высокая магнезиальность изученных базальтов позволили [8] оценить температуру их солидуса (и ликвидуса) по соответствующим геотермометрам. Уже указывалось, что оливин в виде крупных фенокристаллов появляется только во фракциях PI-OI-CPx базальтов и OI долеритов, хотя в ранней, Pl-Amf-CPx фракции уже отмечаются первые мелкие выделения в стекловатом базисе. Это связывается с условиями водонасыщенности последовательных фракций расплава [8]. В ранней, приповерхностной фракции, благодаря высокому содержанию воды (Рн20>5 кбар, T~1000°С) образуются крупные фенокристаллы роговой обманки, магнезиальность которых ниже магнезиальности сосуществующих вкрапленников диопсид-салитов (рис. 7 б). В более поздних фракциях РІ-ОІ-СРх базальтов (Рно ~2,5-5 кбар. Т~ 1100—1180°) и ОІ долеритов (Рно <2 кбар, Т~1250—1300°С) оливин образуется как стабильная фаза в поле сосуществования кристаллов с жидкостью. В том же поле вслед за оливином начинается кристаллизация авгитов различных генераций. Особенности этой кристаллизации. как следует из приведенного графика, таковы. 1) Магнезиальности оливинов и кристаллизующихся непосредственно вслед за ними авгитов ранней генерации варьируют прямо пропорционально и тол в целом выше тсрх (рис. 7а); со снижением магнезиальности вмещающих пород эти параметры сближаются, становятся равными или соотпошения меняются на обратные (mcPx > moi). 2) Авгиты субфенокристаллов и основных масс по магнезиальности заметно ниже вкрапленников оливинов, но соотношения их менее закономерны, поскольку тсря варьируют с большим размахом. 3) Составы диопсид-салитов центральных зон мегакристаллов не обнаруживают связи с составом оливинов, что еще раз подтверждает их реликтовый характер (рис. 56). 4) Распределение Mg, Ni и Cr по сосуществующим парам фенокрис-

таллов в описываемых базальтах согласуется с принципом фазового соответствия [11].

К_D^{Mg}, К_D^{NI}, К_D^{Cr} в паре роговая обманка-диопсид-сэлит равны соответственно 0,52-0,58, 0,82-0,80, 1,65 - 1,70, и это объясняет высокую магнезиальность (и N1) всей группы диопсид-салитов, хотя вмещающие их базальты характеризуются самой низкой температурой ликвидуса и высоким Рн₂о. С повышением температуры амфибол, как водосодержащий минерал, исчезает, Mg, Ni и Cr перераспределяются в оливин и К_D^{Mg}, К_D^{NI} в паре оливин—авгит возрастают (0,88-1,17, 5,3-5,7 соответственно), К_D^{Cr} уменьшается (0,25-0,40). Максимальной величины (1,31 и 18,39) К_D^{Mg} и К_D^{NI} достигают в паре оливин—диопсид—салит, характерной для наиболее высокотемпературных оливиновых долеритов.

Заключение

Выполненное исследование подтверждает то положение, что зональность и вариации клинопироксенов в вулканитах имеют сложный механизм и контролируются многими факторами. При рассмотрении ведущего из них мы исходим из того, что глубоко фракционированный характер верхнемелового базальтового комплекса Иджеванского прогиба и парагенезисы интрателлурических фаз определяются процессами кристаллизационной дифференциации при участии флюидной фазы, происходящими в неглубоко залегающем промежуточном очаге при высоких Т°. В условиях последовательной дегазации (повышения Т° н падения Рн.о) очага происходит смена плагиоклаз-амфибол-клинопиро'ксенового' парагенезиса плагиоклаз-оливин-клинопироксеновым и далее оливиновым. При этом составы клинопироксенов регулируются распределением компонентов между сокристаллизующимися фазами. Кристаллизация собственно авгита с высоким содержанием Aliv и трехвалентных элементов начинается после оливина, в момент смены ранней интрателлурической PI—OI котектики на PI—CPx (и CPx—Mt) котектику поздней интрателлурической и эруптивной стадий кристаллизации. Высокая степень кристалличности основной массы, т. е. длительное сохранение котектических соотношений этих минералов и обусловленное условиями дегазации количественное преобладание плагиоклаза, его обогащение Ап компонентом определяют рассмотренные тренды убывания АПУ и Са от ранних генераций клинопироксена к лейстам. Таким образом можно объяснить противоречие между принадлежностью изученных базальтов к формации щелочных оливиновых базальтов с характерным общим трендом изменчивости клинопироксенов и «толеитовым» типом [2, 19, 10] тренда «вкрапленник-лейст».

Авторы глубоко признательны И. Я. Центер за ценную помощь

при проведении настоящего исследования и критические замечания к рукописи статьи, В. А. Баскиной и А. С. Остроумовой за консультации. а также Л. А. Оганесян, З. Ш. Гаспарян, Г. М. Мкртчяну, С. А. Мнацаканян за выполненные химические и количественно-спектральные англизы и В. А. Боронихину за микрозондовые определения.

Институт геологических наук АН Армянской ССР

68

Поступила 15.IV.1985.

Ա. Խ. ՄՆԱՑԱԿԱՆՅԱՆ, Է. Խ. ԽՈՒՐՇՈՒԴՅԱՆ

ՎԵՐԻՆ ԿԱՎՃԻ ԲԱԶԱԼՏԱՅԻՆ ՀԱՄԱԼԻՐԻ ԿԼԻՆՈՊԻՐՈՔՍԵՆՆԵՐԻ ԿԱԶՄԻ ՓՈՓՈԽՈՒԹՅՈՒՆԸ՝ ՈՐՊԵՍ ՆՐԱՆՑ ՏԱՐԲԵՐԱԿՎԱԾՈՒԹՅԱՆ ԱՍՏԻՃԱՆԻ ԱՐՏԱՑՈԼՈՒՄ (ԻԶԵՎԱՆԻ ՃԿՎԱԾՔ)

Ամփոփում

երի առաջացման դադարելու հետ՝ պայմանավորված ջերմաստիճանի անկմամբ և հալոցքից ցնդող միացությունների հեռացմամբ։

A. Kh. MNATSAKANIAN, E. Kh. KHURSHUDIAN

AHE UPPER CRETACEOUS BASALTIC COMPLEX CLINOPYROXENES COMPOSITION CHANGEABILITY AS A REFLECTION OF ITS DIFFERETIATION DEGREE (IDJEVAN TROUGH)

Abstract

In consequently deposited breccias, flows and sills of the Idjevan trough Upper Cretaceous basalts the different generations of clinopyroxenes vary from diopside-salites to augites $(Si_9Fe_7^{+2}Mg^3 \leftrightarrow Al_9^{IV}Fe_7^{+3}Ca_4)$. These substitutions give rise to regular variations of the unit cell *c* and *b* parameters. Two types of zoning are established: 1) the *interrupted* one $Si_{10}Mg_9Fe_2^{+2} \leftrightarrow Al_{10}^{IV+3}Ti_6$, being connected with the Amf—CPx paragenesis replacement by OI—CPx in the basaltic melt different fractions under conditions of temperature increase and P_{H_sO} decrease and 2) the *uninterrupted* one $Al_{10}^{IV}Ca_7Fe_6^{+5} \leftrightarrow Si_{10}Fe_{10}^{+2}Al_2^{V1}$, being connected with the

change of the intratelluric stage by an eruptive one and olivine phenocrysts crystallization stopping under conditions of temperature decrease and degassing.

ЛИТЕРАТУРА

- 1. Белоусов А. Ф., Кривенко А. П., Полякова З. Г. Вулканические формации. Новосибирск: Наука, 1982. 281 с.
- 2. Волынец О. Н., Ермаков В. А., Колосков А. В., Рудич К. Н., Селянгин О. Б. Взаимосвязь разноглубинного магматизма. М.: Наука, 1982. с. 25—43, 146—148.
- 3 Григорьев Д. П., Жабин А. Г. Онтогения минералов. Индивиды. М.: Наука. 1975. с. 122—129
- 4 Дир У А., Хауи Р. А., Зусман Дж. Породообразующие минералы. Том 2, М: Мир, 1965, с. 122—156.
- 5 Дуденко Л. Н., Центер И. Я., Румянцева Н. А. Марковский Б. А., Порошин Е. Е. Типы трендов и изоморфных замещений в авгитах вулканических ассоциаций. ЗВМО. 1977, ч. VI, вып. 4, с. 403—416.
- 6. Дуденко Л. Н. Геохимические структуры эндогенных систем. Л.: Недра, 1981, 196 с.
- 7. Минералы. Справочник. Том III, вып. 2, М.: Наука, 1981. с. 283-300.
- 8. Мнацаканян А. Х. Петрология верхнемеловой вулканической серии Северной Армении. Ереван: Изд. АН АрмССР, 1981. 242 с.
- 9. Остроумова А. С., Центер И. Я., Соколова Е. П. О двух генерациях пироксена в тефрит-базальте.—ДАН СССР, 1975, т. 222, № 4, с. 928—931.
- 10. Остроумова А. С., Центер И. Я., Сысоев А. Г. Состав и свойства породообразующих минералов как показатель глубинности кристаллизации базальт-андезитовых расплавов.— ЗВМО, 1976, ч. 105, вторая серия. вып. 2. с. 164—172.
- 11. Перчук Л. Л., Рябчиков И. Д. Фазовое соответствие в минеральных системах. М.: Недра, 1976. 2-85 с.
- Соколова Е. П., Шнай Г. К., Орлова М. П. Типоморфные особенности клинопироксенов пород щелочно-габброидной формации (на примере Алданского комплекса). В кн: Минералы и парагенезисы минералов горных пород и руд. Л.: Наука. 1979. с. 70—82.
 Центер И. Я., Сысоев А. Г. О зональных и секториальных пироксенах в олигоценовых базальтах Западного Айоцдзора (Малый Кавказ). В кн.: Минералы и парагенезисы минералов горных пород. В кн.: Минералы и парагенезисы минералов.
- 14 M. Cameron. J. J. Papike. Structural and chemical variations in pyroxenes. Am. Miner., 1981, v. 66, N1-2, p. 1-50.
- 15 A. M. Duncan R. M. F. Preston. Chemichal variation of clionpyroxene phenocrysts from the trachybasaltis lavas of Mount Ethna, Sicily—Min. Mag., 1980, v. 43, N330, p. 765-770.
- 16. S. Rahman. Some aliminous clinopyroxenes from Vesuvius and Monte Somma, Jtaly Min. Mag., 1975, v. 40, N309, p. 43-52,
- 17. E. L. Schweizer. J. J. Papike A. E. Bence. Statistical analysis of clinopyroxenes from deep--sea lasalts. Am. Miner., 1979, v. 64, N5-6,p. 501-513.
- 1×. P.W. Scott Crystallization trends of pyroxenes from alkaline volcanic rocks of Tenerife, Canary Jslands. Min. Mag., 1976, v. 40,N316, p. 805--816.
- 19. D. Smith. D. Lindsley. Stable and metastable crystabllization trends in a single basalt flow. Am. Miner., 1971., v 56, N1-2, p. 225-233.
- 20. R. J. Tracy P. Robinson. Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitution in augite. - Am. Miner., 1977, v. 62, N7-8, p. 634-645.
- 21. K. Vieten The minerals of the volcanic rock association of the Siebengebirge. I. Clinopyroxenes. 1. Variaton of chemical composition of Ca--rich clinopyroxenes, (salites) in dependense of the degree of magma differentiation. - N. Jb. Miner. 1979, Abh., Band 135, Heft 3, p. 270-286

