КРАТКИЕ СООБЩЕНИЯ

УДК 550 344 094.7:624 131.253

г м авчян, а о микаелян

О ВЛИЯНИИ ХАРАКТЕРА ИЗМЕНЕНИЯ ПОРОВОГО ДАВЛЕНИЯ НА ПОВЕДЕНИЕ СКОРОСТИ Р—ВОЛН

В настоящей работе представлены результаты исследования влияния циклического и монотонного изменения контролируемого порового давления со стороны насыщающих флюидов на характер поведения окорости P—воли (V_p) в известняках из района Ингури ГЭС в условиях всестороннего давления. Эксперименты проводились с целью изучения на уровне лабораторного эксперимента поведения V_p в процессе изменения порового давления под действием различных тектонических и техногенных факторов. Подобные вариации, как следует из гипотезы ДД [2], могут иметь место при подготовке и реализации землетрясений в районах строительства гидротехнических сооружений.

Принимая во внимание то обстоятельство, что в природе вариации порового давления, подобно многим естественным процессам, происходят циклами, а также имеющие место циклические изменения уровия воды в водохранилищах и скважинах, в проведенных опытах в большинстве случаев поровое давление изменялось циклически.

Эксперименты проводились на установке высокого давления $S\Phi C$ -1 РО-ВНИИ геофизики. Образцы насыщались 2H раствором NaCl. Эксперименты с циклическими вариациями порового давления (P_t) проводились как при постоянном, так и при возрастающем всестороннем давлении (P_n) . В некоторых случаях наряду со скоростью P—волн (V_p) , регистрировалось и удельное электросопротивление (p)

На рис. І представлены результаты нескольких экспериментов, проведенных при возрастающем всестороннем давлении. При этом на каждом фиксированном уровне $P_{\rm u}$ (200 бар, 300 бар, 500бар, ...1500 бар) поровое давление каждый раз доводилось до уровня всестороннего и сбрасывалось до нуля. Кривые І и 2—это кривые V_p , полученные для образцов, выпиленных в направлении максимальной скорости распространения P—волн в блоке (кривая 1—для образца с коэффициентом пористости 1.1%, кривая 2— для образца с коэффициентом пористости 3%, выпиленного из того же блока породы, но в направлении минимальной скорости распространения P—волн. Кривая 4—это график $\Delta P = P_{\rm u} - P_{\rm t}$.

Для экспериментов, проведенных как при возрастающем, так и при постоянном $P_{\rm H}$, наолюдаются в общем аналогичные закономерности. Укажем их:

- 1. Между поровым давлением P_i и V_p отмечается обратная корреляция.
- 2. Циклические вариации P_i приводят к увеличению V_p и p как при постоянном, так и при возрастающем всестороннем сжатия.
- 3. В конце каждого цикла P_l отмечается увеличение V_ρ и ρ по сравнению со значениями до начала цикла.
- 4. В образцах, выпиленных по направлению максимальной скорости P—волн в блоке, наблюдаются более резкие вариации V_p (до 5—7%) по сравнению с образцами, выпиленными по направлению минимальной скорости P—волн (1-3%).
- 5. Величина коэффициента пористости в пределах 1-7% не оказывает влияния на амплитуду и характер изменения V_ρ во время циклов P_i . Увеличение абсолютных значений P_μ и P_i , наблюдае-

E-12 1 - 1- 11

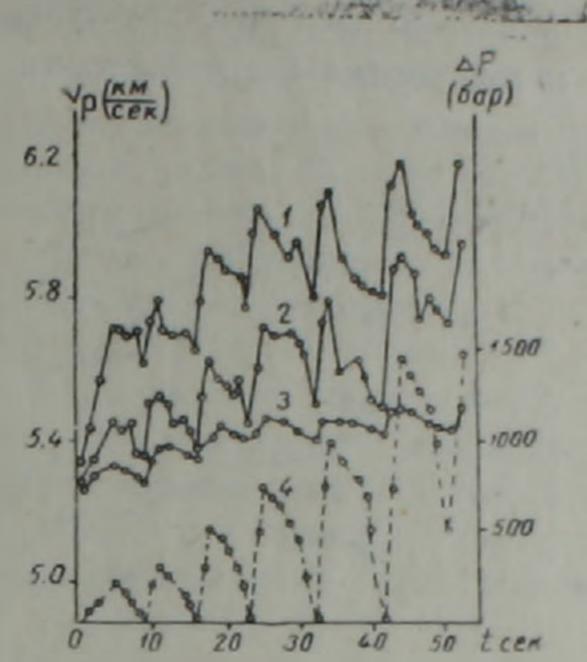


Рис. 1. График зависимости скорости P — воли (V_{μ}) от циклических вариаций порового давления (P_{μ}) на разных ступених возрастающего всестороние-

го сжатия (P_{n}) .

1, 2, 3-кривые V_{n} 4-кривая $\Delta P = P_{n} - P_{l}$.

мое как в конце каждого цикла P_i , так и в процессе всего эксперимента, свидетельствует о постепенном уплотнении породы.

Под уплотнением насыщенной породы в диапазове рассматриваемых напряжений мы понимаем уменьшение числа и размеров открытых и изолированных пустот (заполненных или не заполненных жидкостью) и увеличение эффективного напряжения между зернами. Рассмотрим один из возможных механизмов этого явления.

При циклическом изменении P_I жидкость проникает в открытые пустоты и выдавливается из них. Во время первоначального увеличения P_{ii} часть пустот, насыщенных флюидами, может гидродинамически изолироваться от окружающей открытой системы. О наличия полобных гидродинамически изолированных объемов в насыщенных породах косвенным образом можно судить по результатам исследований, проведенных на образцах после окончания экспериментов. Лабораторный анализ показывает, что у насыщенных образцов, побывавших в условиях всестороннего давления, отмечается некоторое увеличение скорости P—воли (до 2—3%). Разрушение этих гидродинамически изолированных объестей под действием неравнозначного влияния порового давления на пормальную и тангенциальную компоненты внешнего давления на

ления [3] может привести к замыканию трещин, из которых выдавливается жидкость, и дополнительному уплотнению породы в конце каждого цикла P_i . Прорывы этих участков могут иметь место в результате цик жиеского изменения порового давления вследствие возвратно-поступательного движения структурных дефектов и активизации их взаимно- по воздействия. С другой стороны, одной из причин увеличения V_p может

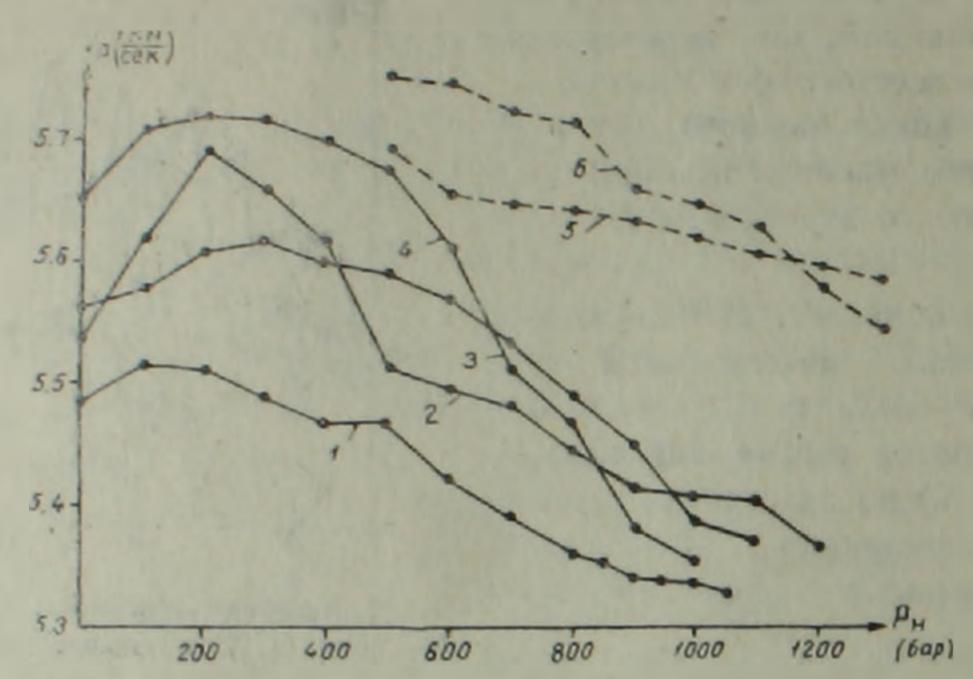


Рис. 2. График зависимости скорости P—волн (V_p) от монотонного изменения порового давления (P_p)

1, 2, 3, 4—кривые
$$V_{\rho}$$
 при $\Delta P = P_{\rm H} - P_{\ell} = 0$, 5, 6—кривые V_{ρ} при $\Delta P = P_{\rm H} - P_{\ell} = 500$ бар.

быть заполнение жидкостью ранее изолированных сухих пустот в породе, а также ее последующее выдавливание. С этим явлением, по-видимому, связаны локальные максимумы V_p , наблюдаемые во время увеличения I_p , в начале и середине опытов.

Эксперименты с монотояным изменением проводились при одинаковом повышении всестороннего и порового давлений с постоянной разницей между ними. На рис. 2 представлены графики зависимости V_ρ от $P_{\rm H}$. Сплошные линии (кривые 1, 2, 3, 4) представляют V_ρ , построенные для ΔP =0, в то время как пунктирные линии (кривые 5, 6) соединяют точки V_ρ при ΔP =500 бар.

Из графиков видно, что во всех случаях на первых этапах опытов отмечается небольшое увеличение V_ρ , которое затем сменяется понижением, причем для кривых V_ρ при $\Delta P = 0$ это понижение более резкое (3—6%), чем у кривых V_ρ при $\Delta P = 500$ бар (1,5—3%). Понижение V_ρ свидетельствует о некотором разуплотнении породы при монотонном изменении P_l , а также об увеличении активности разуплотняющего влияния P_l при его относительно высоких значениях (для небольших ΔP). Лабораторный анализ, проведенный на образцах в конце опытов, не показал значительного изменения V_ρ при атмосферном давлении (до и после эксперимента).

Таким образом, полученные результаты приводят к следующему основному выводу: циклические вариации порового давления в условиях всестороннего сжатия сопровождаются постепенным уплотнением породы, а его монотонные изменения—разуплотнением, хотя это разуплотнение и не вызывает разрушения породы. Полученные результаты могут быть учтены при строительстве гидротехнических сооружений. В тех регионах, где действие девиатора в поле напряжений незначительное, циклические вариации уровня водохранилища и связанного с ним порового давления, могут привести к уплотнению окружающих пород, а также к прорывам гидродинамических аномалий [1]. При этом значительную роль в этих процессах играет, по-видимому, не сама пористость или трещиноватость (в рассматриваемом диапазоне), а общая направленность дефектов.

Из сказанного следует, что поровое давление в квазиоднородном поле напряжений (при отсутствии или незначительности девиатора) не в состоянии самостоятельно вызывать значительные сейомические события, а его циклические изменения даже могут привести к уплотнению среды, о чем свидетельствуют проведенные нами исследования.

Ереванский государственный университет, Институт геологических наук АН Армянской ССР

Поступила 23.ХІ 1981.

ЛИТЕРАТУРА

- 1. Киссин И. Г. Динамика уровней подземных вод при создании крупных водохранилищ как индикатор возбужденных землетрясении. В сб.: Влияние сейсмической деятельности на сейсмический режим. М., «Наука», 1977.
- 2. Мячкин В. И. Процессы подготовки землетрясений. М., «Наука», 1979.
- 3. Ферхуген Дж., Тернер Ф. и др. Введение в общую геологию М., «Мир», 1974.