КРАТКИЕ СООБЩЕНИЯ

УДК 550.838(479.25)

Д С ГРИГОРЯН, А. К. ДАВТЯН, С. А. ПНРУЗЯН, А. Д. ШАХНАЗАРЯН

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ГЛУБИННЫХ МАГНИТОТЕЛЛУРИЧЕСКИХ ЗОНДИРОВАНИЯ НА ТЕРРИТОРИИ АРМЯНСКОЙ ССР

Глубинное магнитотеллурическое зоплирование произведено в двух пунктах Армянской ССР—Мадина (Мартунинский р-н) и Кечут (Азизбековский р-н), расположенных в зоне Анкаван—Зангезурского антиклинория, который сложен зопалеозойскими сланцами мощностью около 3000 м и несогласно перекрывающими их отложениями мела и палеогена большой мощности. Зона эта—наиболее интенсивного развития на Антикавказе альпийского геосинклинального магматизма и эндогенной минерализации. Фундамент этой зоны приподнят на 1,5—2,5 км. Современные и новейшие движения характеризуются большой амплитудой и резкой дифференцированностью, сейсмичность оценивается в 7—8 баллов. Зона характеризуется относительным минимумом силы тяжести и высоким тепловым потоком 2—2,6·10—6 кал/см²-сек [5, 6, 4, 3].

Наблюдения ГМТЗ в п. п. Кечут и Мадина выполнены с помощью магнитотеллурической лаборатории МТЛ-71 и магнитовариационной станции «ИЗМИРАН»-4. Регистрировались колебания горизонтальных составляющих магнитотеллурического поля H_x , H_y , E_x , E_y в диапазоне периодов от 10 сек до нескольжих часов.

Сочетание данных регистрации МВС и МТЛ-71 позволило нам более уверенно построить длиннопериодную часть кривой р (7).

Обработка магнитотеллурических данных сводилась к определению импедансов Z_{xy} и Z_{xy} по которым затем строился график Z = f(T) в логарифмическом масштабе.

На рис. 1 изображен график $Z_{xy} = f(T)$ для пункта Кечут.

На всех графиках Z = f(T) отдельные значения импеданса лежат в полосе, ширина которой колеблется от 15 до 30% относительно ореднего значения в зависимости от направления измерений, района наблюдений и участка спектра регистрируемых вариаций.

По средним значениям импедансов Z_{xy} и Z_{yx} , полученным графически, вычислены значения сопротивлений по формуле:

$$\rho = 0.2 T |Z|^2$$

где T — период вариаций, |Z| — модуль импеданса.

На рис. 2—3 показаны кривые ρ_{ry} и ρ_{yx} для пунктов Кечут и Мадина.

Интерпретация кривых р (7) проводилась по известным приближенным формулам, а также путем сопостанления с теоретическими кривыми [2].

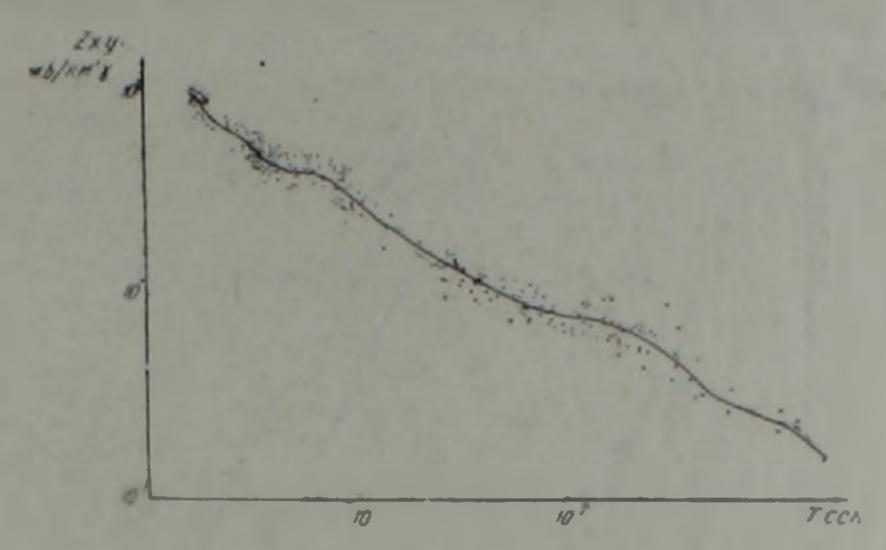


Рис. 1. График $Z_{xy} = f(T)$ для пункта Кечут.

В п. Кечут кривые ρ_{xy} и ρ_{yx} отличаются друг от друга только в диапазоне пернодов 16-80 сек, причем $\rho_{yx} > \rho_{xy}$. Начиная с периода 40 сек, кривая ρ_{yx} приближается к кривой ρ_{xy} и с 80 сек практически с ней сливается.

Совпадение кривых р_{гу} и р_{ут} позволяет однозначно интерпретировать материал наблюдений.

Результаты интерпретации сведены в таблицу 1.

В п. Мадина кривые ρ_{xy} и ρ_{yx} существенно отличаются друг от друга, причем $\rho_{yx} > \rho_{xy}$ на всем диапазоне частот. Различие между кривыми, очевидно, можно объяснить ориентацией осей x, y.

Ось ж в п. Мадина имеет широтное направление: вдоль нее не

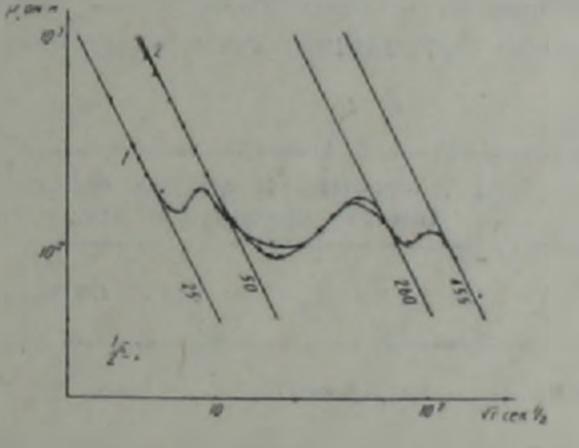


Рис 2. Кривые ГМТЗ в пункте Кечут $1-\rho_{xy}$, $2-\rho_{yx}$.

наблюдаются существенные изменения в глубине залегания кристаллического фундамента, фундамент погружается в северном направлении приблизительно на 15 –20° [2].

В связи с вышеотмеченным считаем поперечную кривую искаженной, поэтому интерпретируется только продольная кривая рау.

Кривая р_{ху} в п. Мадина, так же как и в п. Кечут, имеет несколько восходящих и нисходящих ветвей. І восходящая ветвь кривой позволяет оценить суммарную продольную проводимость осадочной толщи.

По нисходящим ветвям кривой можно выделить 4 хорошо проводящих слоя (табл. 1).

Сопоставление данных зондирования в пунктах Кечут и Мадина показывает отсутствие значительных искажающих факторов в исследуемом районе, что подтверждается и анализом карты «S» Армении (Ваньян Л. Л., Яникян В. О).

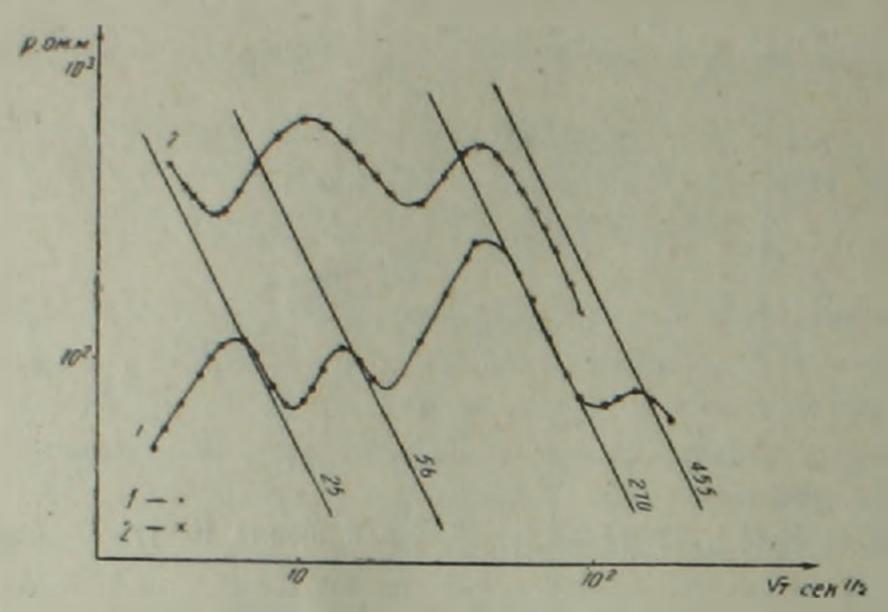


Рис. 3. Кривые ГМТЗ в пункте Мадина. $1-\rho_{xy}$, $2-\rho_{yx}$.

Таким образом, кривые ГМТЗ как в пункте Кечут, так и в пункте Мадина позволяют выделить в земной коре и в верхней мантии четыре хорошю проводящих слоя на глубинах 25, 50—55, 260—270 и 455 км.

Таблица 1

Пункт	S—суммарная продольная прово- димость надопорной толщи в мо		Глубина до хорошо проводящих слоев в км	
	по рху	по рух	по Рху	по Рух
Кечут	не более 70	не более 40	25 50 260 455	50 260 455
Мадина	280		25 50 270 455	-

Авторы выражают искреннюю признательность профессору Л. Л. Ваньяну за консультации и внимание к работе на ее разных этапах.

Институт геофизики и инженерной сейсмологии АН Арм. ССР

Поступила 11. XII 1980

JHTEPATYPA

- 4. Асланян А. Т. Региональная геология Армении. «Айпетрат», Ереван, 1958.
- 2. Бердиченский М. Н. Электрическая разпедка методом магнитотеллурического профилирования. «Недра», М., 1968.
- 3. Габриелян А. А. и др. Тектоническая карта и карта ингрузивных формаций Армянской ССР. Ереван, 1968.
- 4 Мириджанли Р. Т. О природе повышенного геотермического поля центрального района Армянской ССР и вопросы его сейсмичности. Известия АН Арм ССР. Науки о Земле, т. 27, № 6, 1964
- 5, Оганисян Ш. С. Изостатическая аномалия силы тяжести и новейшие движения земной коры на территории Арммянской ССР, Известия АП Арм.ССР, Науки о Земле, т. 25, № 4, 1972.

6. Строительные нормы и правила, СН и II 11-А 12-69.