УДК 55.38(479.25)

А. К. КАРАХАНЯН

ТЕРМОМАГНИТНЫЕ ИССЛЕДОВАНИЯ ПАЛЕОГЕНОВЫХ ЭФФУЗИВОВ АРМЕНИИ

Выделение палеомагнитных зон разной полярности имеет большое значение для стратификации вулканогенных образований и их корреляции. Но прежде чем считать правомерным выделение палеомагнитных зон, необходимо доказать, что естественная остаточная намагниченность эффузивных пород содержит первичную стабильную компоненту намагниченности, направление которой совпадает с направлением геомагнитного поля эпохи образования породы. У эффузивов такой намагниченностью обычно является термоостаточная [1].

Выяснение с какими магнитными минералами связана намагниченность изученных горных пород необходимо для определения природы и стабильности естественной остаточной намагниченности. Так как информация, которую несут ферромагнитные минералы, может относиться к различным периодам жизни горной породы, то диагностика ферромагнитных минералов—носителей первичной J_n является одним из важных этапов палеомагнитных исследований.

В настоящей статье сделана попытка диагностировать ферромагнитные носители естественной остаточной намагниченности эффузивов палеогена и установить природу их намагниченности.

Одной из основных характеристик, отражающих ферромагнитный состав горных пород, является точка Кюри. Она определялась двумя методами: по кривым $J_s(t)$ и $J_s(t)$. Так как изменение намагниченности насыщения от температуры зависит только от состава ферромагнитных минералов, то кривые $J_{rs}(t)$ и $J_s(t)$ горной породы можно представить как сумму соответствующих кривых для составляющих ферромагнитных минералов.

На основе анализа зависимости $J_{es}=f(t)$ и по отношению J_{es} вулканогенные породы палеогена Армении подразделены на три типа (рис. 1 а,б, в,).

а) На первичных кривых J_r , наблюдаются перегибы в области $200-250^{\circ}$ С. Оба эти перегиба исчезают при повторном нагреве. Это указывает на то, что в этих пределах происходят минералогические превращения и они не являются точками Кюри. Очевидно, в этих образцах присутствуют магнетит и маггемит. Наличие маггемита отражается и на кривых I_r (I_r).

Величина J_{rs} после нагрева уменьшается почти в два раза (от J_{rs} J_{rs} = 0.46 до J_{rs} = 0.68). Намагниченность становится равной нулю при 550—575°. Первичная и повторная кривые J_{rs} (t) сливаются с осью абсцисс при 550—575 С, что подтверждает наличие в эгих образцах магнетита.

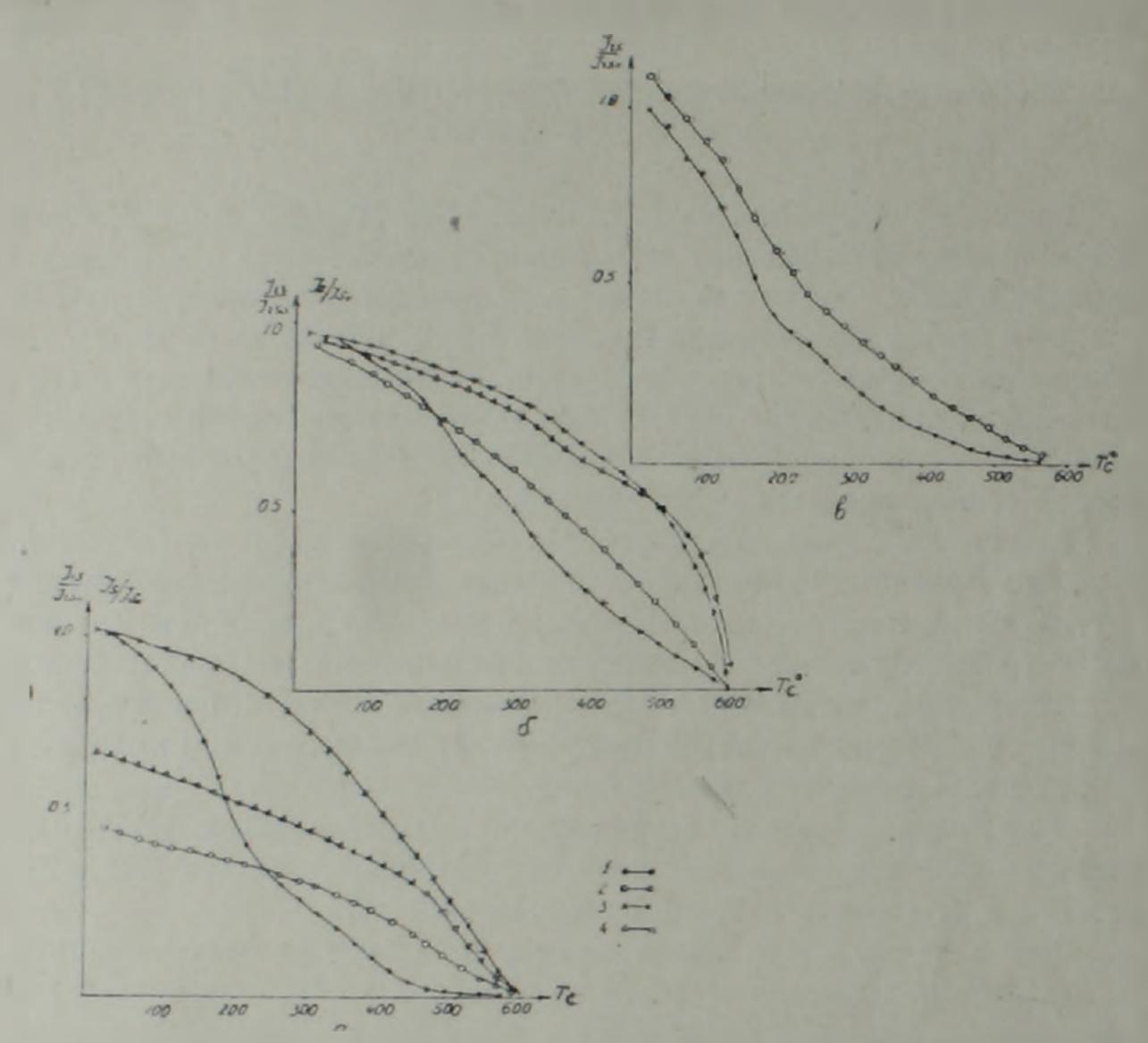


Рис. 1. Кривые термомагнитного анализа палеогеновых пород. 1.2—кривые $J_{r,s}(t)$ (1—первичный нагрев; 2—вторичный нагрев). 3,4—кривые $J_{s}(t)$ (3—первичный нагрев; 4—вторичный нагрев). а—первый тип; б—второй тип; в—третий тип.

б) Кривые первичного и повторного нагрева близки друг к другу Отношение $J_{r_s}J_{r_s}$ изменяется от 0.85 до 0,95, т. е. близко к единице. Кривые $J_{r_s}(t)$ характерны для пород с магнетитовой фракцией. В пределах 200—250°С наблюдаются слабо выраженные перегибы. Они коррелируются с наличием в образцах этой группы незначительного количества титаномагнетита (по данным анализа ферромагнитной фракции). Слияние кривых $J_{r_s}(t)$ в интервале 525—600°С также свидетельствует о магнетитовом составе ферромагнитной фракции. Наличие магнетита подтверждается и кривыми $J_{r_s}(t)$ — они близки и фиксируют фазу с точкой Кюри 525—575°С.

в) Вид кривых $J_{rs}(t)$ позволяет считать, что носителями естественной остаточной намагниченности пород этой группы являются магнетит и титаномагнетит. При повторном нагреве возрастает. На кривых первого нагрева отмечается перегиб в интервале $250-300^{\circ}$ С. Он не исчезает и при повторном нагреве, т. е. является точкой Кюри.

Вторая точка Кюри отмечается в интервале 525—600°С.

Для эффузивов наиболее надежным методом определения природы намагниченности является известный метод Телье [2]. Были изучены как прямо, так и обратно намагниченные образцы эффузивных пород от нижнего эоцена до олигоцена включительно. Результаты этих исследований представлены в виде кривых $J_n(t)$, $J_{rt}(t)$, X(t) и графиками D(t), J(t). Величина восприимчивости магнитной использовалась для определения устойчивости ферромагнетиков к нагревам. С этой же целью проводился повторный нагрев после 400 С. На рис. 2 а, б представлены кривые Телье прямо и обратно намагниченных палеогеновых эффузивов Армении. Из приведенных кривых видно, что изученные образцы характеризуются высокой стабильностью J_n к нагревам до 400-500 С. Нензменность направления Ја в интервале 100-500 С также свидетельствует об этом. Незначительный вклад вязкой на-

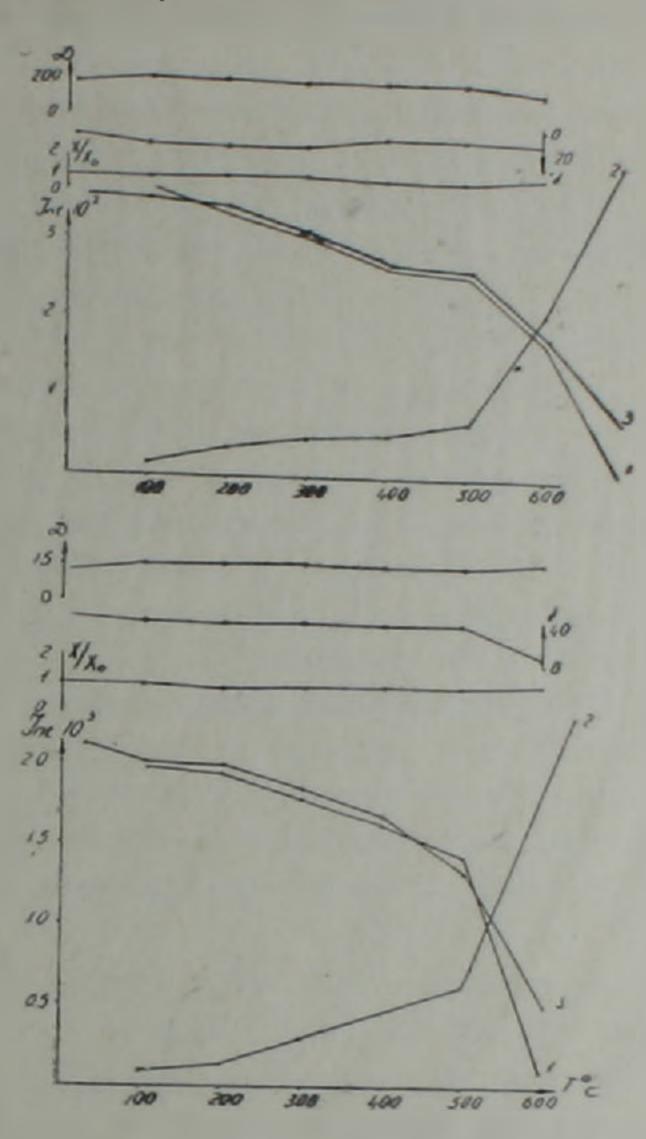


Рис. 2. Кривые последовательных нагренов Телье. 1-кривая терм размагничивания $J_n(t)$; 2-кривая лабораторного термонамагничивания J_n ; 3- кривая терморазмагничивания первичной

магниченности на величину и направление J_n в температурном интервале от 20 до 150—200 С, хорошее совпадение кривых $J_n(t)$ и $J_n(t)$ и их квадратная форма позволяет считать намагниченность однокомпонентной. Все вышеприведенное, а также близость значений коэффициентов К (табл. 1) для различных температурных интервалов свидетельствуют о термоостаточном происхождении J_n и ее синхронности времени образования самих пород.

В высокотемпературном интервале отмечается некоторое несовпадение кривых $J_n(t)$ и $J_{rt}(t)$. По всей вероятности, при температуре более 500°С происходят минералогические изменения в ферромагиитной фракции. Анализ кривых X(t) и $J_{i}(t)$ позволяет предположить, что при температуре выше 500°С происходит распад исходного ферромагнетика (титаномагнетит, магнетит) с образованием более сильной фазы. Небольшие изменения магнитной восприимчивости свидетельствуют о том, что минералогические изменения захватывают лишь часть исходного ферромагнетика. Но количество вновь образованной фракции достаточно, чтобы вызвать заметный рост величины J_{ii} . Именно, образованием новой ферромагнитной фракции и объясияется некоторое расхождение кривых $J_{ii}(t)$ и $J_{ii}(t)$ в температурном интервале 500—600°С.

Важно отметить, что минералогическая нестабильность в высокотемпературном интервале N и R—намагниченных пород одинакова и не следует предполагать о специфичности этого процесса у пород с разной полярностью.

Таким образом, на основе термомагнитных исследований можно считать, что при отсутствии минералогических изменений до 500°С изученные породы как N-, так и R—намагниченные, обладают термоостаточной намагниченностью, носителями которых являются магнетит и титаномагнетит. TRM возникла в геомагнитном поле эпохи образования пород и, следовательно, она отражает существование магнитного поля Земли прямой и обратной полярности.

Термомагнитные исследования позволили определить величину напряженности древнего геомагнитного поля. Изучение напряженности геомагнитного поля представляет несомненный интерес как для теории земного магнитного поля, так и для решения чисто прикладных задач корреляции одновозрастных палеомагнитно-стратиграфических горизонтов.

При определении $H_{\rm ap}$ использованы те образцы, ферромагнитная фракция которых представлена магнетитом с точкой Кюри от 525 до 600° С (тип б, рис. 1). Определение величины $H_{\rm ap}$ основывается на одной из главных характеристик TRM—ее пропорциональности приложенному полю:

$$\frac{H_{\rm ap}}{H_{\rm ab6}} = \frac{J_{H_{\rm ap}}}{J_{H_{\rm ab6}}} = K.$$

Величина К вычислена для тех температурных интервалов, где предлагается стабильность минералогического состава. В табл. 1 приведены значения К, вычисленные для различных температурных интервалов.

						Таблица!
27	100 - 200	100 400°	100 -500	100-600	200-500	200 -600
/1	2	4	14	11	8	15
K	1,02	1.04	0,87	0,98	0.97	0,76
n ·	— число образ	впов		1.		*

Подобне экспериментального распределения К нормальному оценивалось с помощью критерия согласия Р(х) А. Н. Колмогорова [3]. Средняя величина К определялась по формуле

$$K = \sum_{m=1}^{s} P_m \cdot K_m,$$

где S—число выбранных температурных интервалов значений (в нашем случае 6);

т-номер интервала;

 K_m —среднее значение K для каждого температурного интервала; P_m —эмпирическая вероятность, равная отношению числа значений K, приходящихся на данный интервал (N_m) , к общему числу K (N=51).

Среднее квадратическое отклонение и средняя квадратическая ошибка оценены по следующим формулам:

$$\sigma_{k} = \sum_{m=1}^{\infty} P_{m} \left(K_{m} - K \right); \qquad \sigma_{k} = \frac{\sigma_{k}}{1 - n}.$$

Для эффузивов палеогена К = 0,972.

$$s_k = 0.5$$
 и $s_k = 0.07$.

Напряженность древнего магнитного поля Земли определялась по формуле:

$$H_{\rm ap} = (\bar{K} \pm s_{\bar{R}}) \cdot H_{\rm 186}.$$

Величина лабораторного магнитного поля

$$H_{115} = 0,479$$
 3pcmed

$$H_{ij} = (0.972 \pm 0.07) \cdot 0.479$$

$$H_{ab} = 0.462 \pm 0.03$$
.

Эта величина напряженности поля близка современной.

Выводы

- 1. Носителем J_n эффузивов палеогена являются магнетит и титанс-магнетит.
- 2. N и R намагниченные эффузивные породы обладают стабильной остаточной намагниченностью термоостаточного происхождения Она первична и синхронна времени образования эффузивов.
- 3. Напряженность геомагнитного поля в палеогене была близка современной величине и ее можно с успехом применять для корреляции и характеристики палеомагнитных зон.

Институт геофизики и инженерной сейсмологии АН Арм. ССР

ՀԱՑԱՍՏԱՆԻ ՊԱԼԵՈԳԵՆԻ ԷՖՈՒԻԶԻՎՆԵՐԻ ԳԵՐՄՈՄԱԳՆԻՍԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆՆԵՐԸ

Udhahaid

կատարված է պալեոգենի հասակի հրաբիսածին ապարների թերմոմագնիսական անալիզ այդ ապարների բնական մնացորդային մագնիսականության կրողները որոշելու նպատակով։

երը ապարների հիմնական ֆերրոմագնիսական միներալները հանդիսա-Նում են մագնետիտը և տիտանոմագնետիտը։

Ապացուցված է այդ ապարների J_n-ի թերմոմնացորդային բնույթը և տարբեր ֆնէամագնիսական ղոնաների համար որոշված է հնադույն գեո<mark>մագ</mark>նիսական դաշտի լարվածությունը։

A. K. KARAKHANIAN

THERMOMAGNETIC INVESTIGATIONS OF PALEOGENE EFFUSIONS IN ARMENIA

Abstract

On the basis of thermomagnetic analysis of l_r , (t) and l_s (t) curves the main natural residual magnetization carriers of Paleogene effusions are revealed. Those are magnetite and titanomagnetite. The thermoresidual nature of l_n of investigated effusions is proved and on the basis of K coefficient calculation the intensity of the ancient geomagnetic field is determined for different paleomagnetic zones of Paleogene. The H_{gp} quantity may be used for the characterization of paleomagnetic zones and their correlation.

ЛИТЕРАТУРА

- 1. Петрова Т Н. Лабораторная оценка стабильности остаточной намагниченности горных пород. Изд. АН СССР, М., 1961.
- 2. Телье Е., Телье О. Об интенсивности магнитного поля Земли в историческом и геологическом прошлом. Известия АН СССР, серия геофизическая, № 9, 1959.
- 3 Шиголев Б M Математическая обработка наблюдений. «Наука». М., 1959.