КРАТКИЕ СООБЩЕНИЯ

УДК 552.1:53(479.25).

Р. С. МОВСЕСЯН

О ФИЗИКО-МЕХАНИЧЕСКИХ СВОПСТВАХ ПОРОД АРМАНИССКОГО РУДНОГО ПОЛЯ

Физико-механические свойства горных пород играют важную роль в формировании структур и локализации оруденения на эндогенных месторождениях [1, 2, 4 и др.]. Ниже рассматриваются некоторые особенности физико-механических свойств рудовмещающих пород Арманисского рудного поля.

В геологическом строении площади участвуют, с одной стороны, верхнеэоценовые вулканогенные образования, с другой—нижнемеловые карбонатные породы, участками метаморфизованные. В соприкосновение они приведены по крупному Арманисскому (Куйбышевскому по И. В. Барканову) разрывному нарушению северо-западного простирания, падающему на юго-запад под углом 40—60°. Вулканогенные породы прорваны многочисленными субвулканическими и жерловыми телами базальтов, андезитов, дацитов и липаритов. Все вышеописанные породы в различной степени пропилитизированы.

Арманисское полиметаллическое месторождение расположено в северо-западной части одноименного рудного поля, вблизи указанного разлома, в его лежачем боку. Здесь широким развитием пользуются субвулканические и жерловые породы основного, среднего и кислого составов, прорывающие туфы базальтов и андезитов. Рудные тела представлены жилами и зонами с прожилково-вкрапленным оруденением. Главными рудными минералами являются сфалерит, халькопирит, пирит, галенит и гематит.

Исследованные породы объединяются в 4 группы. В таблице приводятся средние значения: объемного веса (ρ); водонасыщения за 45 суток (W_{45}), эффективной пористости ($\Pi_{3\varphi\varphi}$); скоростей распространения продольных (V_p), поперечных (V_s) и поверхностных (V_R) упругих волн; коэфициента Пуассона (σ); модулей упругости (E) и сдвига (G).

В первую группу входят вулканогенные образования: гиалобазальты, туфы базальтов, андезито-базальтов-андезитов, андезито-дацитовдацитов. Их отличительными чертами являются высокая эффективная пористость, низкие значения упругих свойств и высокие—коэффициента Пуассона (таблица).

Неподверженность туфов хрупким деформациям обусловила развитие в них невыдержанных по простиранию и падению разрывов и соответственно жил, развитых в них. Этим же обусловлено и изменение морфологии грещин и выклинивание оруденения при переходе в туфы.

ТАБЛИЦА ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ПОРОД АРМАНИССКОГО РУДНСГО ПОЛЯ

THE														
		Порода	Минеральный состав						Упругне свойства					
№ п/п	Группа		Вкрапленники	Цемент и основная масса	Кол-во опр	p, 2/c. 113	W45, 0/0	Пэфф	Vp. M/cek	Vr. W.COK	Vs. M/cek	in	E.103, KE/C.112	G. 105, 2, c. 42
1 2 3 4 5 6 7 8 9 10 11		Гиалобазальт сильно измененный Туф базальтов, измененный Туф базальтов, сильно измененный Туф андезито-базальтов, андезитов, измененный, сильно измененный Туф андезито-дацитов, дацитов, слабо-измененный ный	Обломки базальтов и стекла основного состава Обломки андезитов, базальтов, реже дацитов, плагиоклаза	спекшиеся; псефито-псаммитовые Псефитовые, псефито-псаммитовые; гип цемен- тации контактовый	2 2 2 2 2 2	2,52 2,50 2,36 2,39 2,63 2,47 2,40 2,35	3,98 5,88 5,42 2,02 3,41 4,38 5,04	9,92 13,83 12,91 5,30 8,42 10,50 11,68	44'0° 4460° 4460° 3640° 3360° 3490 500 3480°° 3660 72760°°	1910 1740 1645 2475 1780 1650 2020	2368 2093 1979 1783 2706 1931 1788 2256	0,23 0,25 0,24 0,32 0,30 0,34 0,32 0,20	3.52 2.80 2.29 2.07 5.03 2.53 2.07 2.89	1,43 1,11 0,93 0,76 1,96 0,93 0,78 1,21
13 14 15 16 17 18 19 20 21 22 23		Оливиновый базальт, слабоизмененный, измененный Оливиновый базальт, сильно измененный Андезито-базальт 1, слабоизмененный Андезито-базальт 11, слабоизмененный Андезито-базальт 11, слабоизмененный Андезито-базальт 11, сильно измененный Андезито-базальт 11, сильно измененный Андезит неизмененный Андезит сильно измененный	Плагноклаз, оливин Плагноклаз, темноцветные Плагноклаз, темноцветные Плагноклаз, пироксен, редко миндалины	Порфировая, основная масса делеритовая, приматически-зернистая, диабазовая; массивная Масса гналиновая; массивная Масса гналиновая; массивная Масса гналиновая; массивная Масса интерсертально-порфировая, основная масса интерсертальная, призматически-зеринстая; массивная Порфировая, сернально-порфировая, гломеропорфировая; основная масса гналогилитовая, реже интерсертальная, пилотакситовая	2 2 2 2 2 3	2,70 2,70 2,67 2,82 2,74 2,70 2,53 2,53	1,76 1,99 1,90 20,42 50,73 1,86 2,07 34,17 30,98	4.07 5.30 5.07 1.1 2.00 4.65 5.57 10,5	5080 5000 6 4480 3420* 4 5440 4920* 5000 5140 4480 7 4893 4050 1 3600	2410 2245 1829 2570 2500 2450 2892 2365 2517 2305	2618 2453 2427 2785 2785 2750 2665 2935 2605	0.31 0,29 0.30 0.32 0.27 0,30 0,22 0,25	4,93 4,23 2,36 5,93 5,62 5,20 6,01 4,32 5,12 4,07	1,88 1,65 0,91 2,22 2,20 1,99 2,40 1,74 2,02 1,76
		Трахилипарит, неизмененный Липарит, неизмененный Сильно измененный Дацит, сильно измененный Туф липаритов, слабоизмененный Туф липаритов, измененный Лавобрекчия дацитов, сильно измененная Лавобрекчия дацитов, сильно измененная	Плагноклаз, кварц, КПШ, темпоцветный, магнетит Плагноклаз, темноцветный Обломки кварца, кислого плагноклаза Обломки андезитов, андезито-базальтов	Порфировая, основная масса криптокристаллическая, фельзитовая, сферолитовая, аллотриоморфнозернистая Порфировая, основная масса гиалопилитовая, микрофельзитовая; массивная Алевро-псаммитовые; цемент с криптофельзитовой структурой; тип цементации базальный Псефито-псаммитовые, псаммитовые; цемент с фельзитовой структурой; тип цементации базальный и контактовый	332 2223322	2,51 2,17 2,34 2,32 2,17 2,62 2,55 2,48 2,46 2,46 2,45	1,86 6,40 5,16 5,51 8,35 1,43 4,13 4,77 4,39	4,66 13.83 12,03 12,73 18,03 3,73 7,98 10,23 11,67 10,72	4160** 4660 3250:** 3900 73080* 3100 35160 3587 3460 23000	2470 1400 2090 1670 1785 2655 1927 1925 1905 1690	2721 1567 2307 1848 2002 2905 2129 2142 2118 1888	0.25 0.18 0.23 0.22 0.21 0.27 0.23 0.20 0.20 0.18	4,68 1,26 3,10 1,96 2,01 5,69 2,89 2,77 2,69 2,07	1,88 0,54 1,26 0,80 0,87 2,25 1,17 1,16 1,12 0,90
35 36 37 38 39	ĮV	Известняк Метаморфический сланец Тектопическая брекчия	Глаукофан, актинолит, кварц, альбит, эпидот, хлорит Обломки известняков и вулканогенных пород						55653 25060 15280 5580 13080					

Примечание: в и в графе Vp означает соответственно одно и два определения упругих свойств.

Во вторую группу входят породы субвулканической фации основного и среднего состава—оливиновые базальты, андезито-базальты и андезиты.

У слабо измененных разностей оливиновых базальтов эффективная пористость низкая (1,06%), а значения упругих свойств высокие. В связи с наложением метасоматических новообразований происходит увеличение пористости и уменьшение упругих параметров (таблица). Однако при этом увеличивается и коэффициент Пуассона. Согласно исследованиям Ю. А. Розанова и И. П. Тимченко [3] такое преобразование физико-механических свойств говорит об увеличении пластичности и уменьшении упругости и прочности пород. Следовательно, измененные оливиновые базальты превращаются в неблагоприятную среду для рудоотложения.

Слабо измененные и измененные разности андезито-базальтов I (таблица) имеют низкую эффективную пористость (1,14—2,06%) и только у сильно измененных она несколько увеличивается, доходя до 4,62%. Что касается упругих свойств, то они в обоих случаях имеют высокие значения.

В отличие от них у слабо измененных андезито-базальтов II значение пористости более чем в два раза выше (5,58%). Упругие же свойства почти одинаковы. Исключение составляет коэффициент Пуассона, который равен 0,22 (у первой разности 0,27—0,32). Здесь наблюдается уменьшение значений упругих свойств от слабо- к сильно измененным разностям. Вместе с этим увеличиваются эффективная пористость и коэффициент Пуассона (таблица).

Вследствие метасоматических изменений пористость наиболее широко распространенных пород этой группы—андезитов, так же как и в предыдущих случаях, возрастает, а упругие параметра уменьшаются. Однако существенным положительным отличием их физико-механических свойств является уменьшение при этом коэффициента Пуассона (до 0.16—0.17), которое превращает их в более хрупкие и менее прочные [3]. Этим объясняется развитие в андезитах хорошо выраженных разрывных нарушений и зон трещиноватых и брекчированных пород, что привело к локализации в них прожилково-вкрапленного оруденения. Этого нельзя сказать в отношении андезито-базальтов, которые после наложения гидротермальных изменений делаются более пластичными и менее благоприятными для рудоотложения. В них отмечаются лишь простые, реже сложные жилы.

Третья группа объединяет субвулканические и жерловые породы кислого состава. Эти образования после наложения метасоматических изменений становятся более хрупкими, что наряду с возрастанием при этом эффективной пористости (таблица) превращает их в наиболее благоприятную среду для рудоотложения. В них развиваются многочисленные разрывные нарушения и зоны трещиноватости и повышенной проницаемости, предопределившие широкое развитие прожилково-вкраплен-

ного типа оруденения. Несомненно, что при этом немаловажную роль сыграли их физико-химические свойства.

В четвертую группу входят известняки и метаморфические сланцы. Судя по приведенным в таблице данным, они являются неблагоприятной средой для локализации оруденения. Непосредственно шовная зона Арманисского разлома, по которому контактируют известняки и вулканогены, представленная тектонической брекчией, обладает высокой пористостью (18, 94%) и низкими упругими свойствами.

Таким образом, у пород рудного поля и месторождения наблюдается общая тенденция к изменению физико-механических свойств при наложении метасоматических процессов (пропилитизации). При этом возрастает эффективная пористость и уменьшаются значения параметров упругих свойств. Коэффициент же Пуассона у одних пород увеличивается (оливиновые базальты, андезито-базальты, туфы,), что выражается в увеличении их пластичности, у других он уменьшается (андезиты, группа кислых пород), вследствие чего последние становятся более хрупкими и менее упругими и прочными.

По своим физико-механическим свойствам наиболее благоприятными для рудообразования являются породы кислого состава—липариты, дациты, лавобрекчии дацитов, туфы липаритов, а также андезиты. Эти образования развиты в лежачем боку Арманисского разлома и в них локализованы рудные тела с прожилково-вкрапленным типом оруденения, представляющие основную промышленную ценность месторождения. Породы же висячего бока нарушения (известняки и сланцы) изза неблагоприятности их физико-механических свойств явились экраном для рудоносных растворов.

Институт геологических наук АН Армянской ССР

Поступила 29.ХІ.1978.

ЛИТЕРАТУРА

- 1. Вольфсон Ф. И., Лукин Л. И., Залесский Б. В., Розанов Ю. А. Роль изучения структур рудных месторождений и физико-механических свойств горных пород в выявлении условий локализации эндогенного оруденения. Тр. ИГЕМ АН СССР, вып. 41, М., 1961.
- 2. Розанов Ю. А. Роль физико-механических свойств горных пород в формировании структур месторождений и локализации оруденения. В сб. «Физико-механические свойства пород верхней части земной коры». «Наука», М., 1964.
- 3. Розанов Ю. А., Тимченко И. П. Изменение упругих свойств горных пород под влиянием постмагматических процессов. Геол. рудн. месторожд., № 6, 1965.
- 4. Роль физико-механических свойств горных пород в локализации эндогенных месторождений. «Наука», М., 1973.