УДК 551.2

А. Т. АСЛАНЯН

ОБ ОДНОЙ ВОЗМОЖНОСТИ ОЦЕНКИ РАВНОВЕСНОЙ ТЕМПЕРАТУРЫ В ЦЕНТРЕ ЗЕМЛИ

Обозначим массу Земли M, радиус R, среднюю плотность ρ_m , центральную плотность ρ_c , гравитационную постоянную G, гравитационное ускорение на поверхности $g=GM/R^2$, плотность, молекулярный вес, температуру, гравитационное давление и тепловое давление на расстоянии r от центра соответственно ρ , μ , T, ρ , постоянную Больцмана k_0 , массу единицы атомного веса m_0 . Для гипоцентрального твердого ядра Земли примем значения массы в пределах $\left(\frac{1}{60} \div \frac{1}{40}\right)M$, радиус 0,2R, среднюю плотность в пределах 2,3 ρ_m-3 ρ_m , средневзвещенный (безразмерный) атомный вес A в пределах $56\div 84$, плотность в центре в пределах $(2,5\div 3,5)$ ρ_m , возможный верхний предел гравитационного давления в центре, согласно неравенству Маркуса

$$P_c \leqslant \frac{3 g^2}{8\pi G} \left(\frac{\rho_c}{\rho_m}\right)^{4/3}$$

в пределах 5,27-9,13 кв [см. 2].

Рассмотрим состояние вещества внутреннего ядра Земли на основе уравнения Клапейрона

$$p = \frac{k_0}{m_0} \cdot \frac{\rho}{\mu} \cdot T, \tag{1}$$

учитывая, что оно применимо к идеальному газу и что в случае использования его для оценки состояния метеоритно-минерального вещества вместо μ должен быть введен некоторый его эквивалент μ_e , характеризующий такую модель этого вещества, которое состояло бы из частиц (квазичастиц), обладающих свойствами атомов идеального газа при условии, что на заданном расстоянии от центра планеты в (1) отношение $T/\mu = const.$, т. е. при минимизации μ должен быть адекватно минимизирован также T и наоборот.

Для систем, состоящих из атомов различных элементов, в статистической физике пользуются понятием средневзвешенного (репрезентативного) безразмерного атомного веса, равного отношению числа всех нуклонов системы к числу всех атомов, включающих эти нуклоны (например, для ортооливина, формульная единица которого $FeO \cdot MgO \cdot SiO_2$ включает 7 атомов и соответственно 172 нуклона, репрезентативный атомный вес \overline{A} равняется 172/7 = 24,57, т. е. взамен 7 разнотипных атомов вводятся 7 однотипных атомов с усредненным весом 172/7). Изо-

бражая систему (молекулу, кристалл, породу и др.) в виде совокупности изолированных нейтральных атомов одного сорта, за молекулярный вес системы принимается репрезентативный атомный вес ее формульной единицы $\overline{A} = \mu$. Соответственно понятию репрезентативного атомного веса (массовому числу) вводится понятие эквивалентного зарядного числа (порядкового номера) \overline{Z} (для формульной единицы того же ортооливина зарядное число равняется отношению всех 84 электронов к 7 атомам, к которым принадлежат эти электроны, т. е. $\overline{Z} = 84/7 = 12$).

Пользуясь указанными упрощающими понятиями и выражая молекулярный вес системы в виде соотношений

$$\mu = \frac{N_n + N_p}{N_a + N_e} \,, \tag{2}$$

$$\mu = C_{\mu}/C_{\nu}, \tag{3}$$

представим уравнение (1) в следующих двух выражениях

$$\bar{p} = \frac{N_a + N_e}{N_n + N_p} \cdot \frac{k_0}{m_0} \cdot \rho T, \tag{4}$$

$$p = \frac{C_v}{C_{\mu}} \cdot \frac{k_0}{m_0} \cdot \rho T, \tag{5}$$

где N_a и N_a —число атомов и свободных электронов, N_a и N_a — число нейтронов и протонов в системе (в ядре планеты), C_v —удельная теплосмкость, а $C_{\perp} = C_{A}$ — мольная (атомная) теплоемкость моделируемой системы. Для полностью ионизированного атома $N_p = N_a Z$. Поскольку вещество Земли состоит из тяжелых элементов, для которых $N_n +$ $+N_p=2$ (N_a+N_e), то для этого вещества в состоянии полной ионизации $N_e = N_a \cdot Z$ (2) дает $\mu_{\min} = 2$. Равным образом, по экспериментальным данным, для изверженных пород в согласии с законом Дюлонга-Пти в (3) $\mu C_v = C_u = C_A = 6 \kappa \alpha \Lambda/(\epsilon. aтом. град)$, причем здесь первый предельный случай $\mu = 2$, $C_v = 3 \kappa a n/(\epsilon r)$, соответствует состоянию полной нонизации атомов, а второй предельный случай ($N_{
m s}=$ =0, $N_a u = N_n + N_n$) соответствует полному отсутствию ионизации атомов и согласно экспериментальным данным характеризуется для указанного выше оливинового вещества и всех тяжелых изверженных пород величинами порядка $\mu = 20-24$, $C_n = 0.3-0.25$ кал/(г. град) [см. 6]. С геофизической точки зрения, в первом предельном случае ($\mu \simeq 2$, $2Z \simeq A$) атомы подвергаются ионизации под воздействием высоких давлений, если температура ниже критического значения [см. 2].

$$T_{kp} = \frac{p_0 m_0 \mu p Z^{1/3}}{k_0 A^2} \simeq 15.000 Z^{1/30} K. \tag{6}$$

Если центральное ядро Земли состоит из тяжелых элементов, например, железа, то полагая в (6) A=56, Z=26, $\rho=13~e/cm^3$, $\mu=2$, $\rho=5,07\cdot 10^{12}~\partial u \mu/cm^2$ (универсальная постоянная в модели вырожден-

ного газа Томаса-Ферми), получаем $T_{kp} \simeq 45.000$ °K (для модели Z=36. $T_{kp}=50.000$ °K).

Предположим, что температура в центральном ядре Земли значительно ниже, чем это следует из уравнения (6) и допустим, что экспансивное тепловое давление ядра уравновешивает гравитационное давление

$$p = \frac{1}{2} \rho \frac{GM}{R} \left(1 - \frac{r^2}{R^2} \right). \tag{7}$$

Сравнивая попарно (4), (7) и (5), (7) и полагая P=p, получим равновесную температуру $T_e=T$ в гипоцентральном твердом ядре Земли на расстоянии r от его центра

$$T_{e} = \frac{N_{n} + N_{p}}{N_{a} + N_{e}} \cdot \frac{m_{0}}{k_{0}} \cdot \frac{GM}{2R} \left(1 - \frac{r^{2}}{R^{2}}\right), \tag{8}$$

$$T_{e} = \frac{C_{\mu}}{C_{v}} \cdot \frac{m_{0}}{k_{0}} \cdot \frac{GM}{2R} \left(1 - \frac{r^{2}}{R^{2}} \right). \tag{9}$$

В соответствии с бышеуказанными соображениями, полагая первые множители в (8) и (9) равными 2 и подставляя известные значения $k_0/m_0=8,314\cdot 10^7~\text{spe}/(\text{град.моль})$ (универсальная газовая постоянная) и значение для Земли $GM/R=63\cdot 10^{10}~\text{сm}^2/\text{сек}^2$ (квадрат первой космической скорости), получим для центра Земли (r=0) значение равновесной температуры $(T_e)_c=7500^\circ\text{K}$, а для поверхности центрального ядра, на расстоянии $0,2~R=1280~\kappa m$ от центра, $T_e=7200^\circ\text{K}^*$.

Согласно (1) и (7) температура $T_c = 7500^{\circ}\mathrm{K}$ соответствует давлению в центре Земли $P_c = 4,03\cdot 10^{12}~\partial u h/c m^2$ и плотности $\rho_c = 12,87~c/m^2$ и не противоречит также модели Земли с $\rho_c = 19,31~c/m^3$ и $P_c = 6,08\cdot 10^{12}~\partial u h/c m^2$

Согласно теореме вириала Земля сжимается [см. 1]. Если сжатие происходит в основном за счет уплотнения верхней половины мантии, занимающей половину объема планеты, а объем ядра меняется в незначительной мере [см. 3], то указанные значения равновесной температуры ядра должны быть близки к реальным их значениям.

Обращаясь к особенностям модели земного ядра с параметром $\mu=2$, следует отметить, что все атомы в этой модели полностью ионизированы, электронный газ находится в вырожденном состоянии и ре-

Формулы (8), (9) могут быть записаны для центра Земли в виде $T_c = \nu m_0 GM/2$, R а формула (7) в виде $P_c = \rho_c GM/2$ R.

В геофизической литературе для оценки центральной температуры планет иногда привлекается заимствованная из астрофизической литературы формула $T_c = \mu m_0 \; GM/k_0 R$, которая выводится из предположения, что гравитационное давление в центре звезды равняется $4 \; GM \; \rho_m/R = P_c \; (\rho_m - \text{средняя плотность звезды})$ и уравновешивается газовым давлением $k_0 \; \rho_c \; T_c/m_0 \mu = P_c$, т. е. здесь в очень грубом приближении положено $\rho_c = 8 \; \rho_m$, что при $\mu = 2$ приводит для Земли к значению $T_c = 15 \; 000 \, ^{\circ} \mathrm{K} \; (\mathrm{см.}, \; \mathrm{например}, \; 4, \; \mathrm{стр.} \; 46)$.

шающий вклад в тепловое давление вносят голые атомные ядра, которые в море вырожденного электронного газа ведут себя наподобие атомов (квазичастиц) идеального газа, обладающих тремя степенями свободы поступательного движения (C_v = 3; формулы 3, 5, 9). При этом имеется в виду, что вырожденный электронный газ лишен способности аккумулировать тепло и приходящаяся на его долю тепловая эпергия распределена по вкрапленным в него атомным ядрам [см. 4]. Использование уравнения Клапейрона в рассматриваемой задаче становится правомерным лишь для модели, состоящей из частиц типа невзаимодействующих атомов идеального газа.

Институт геологических наук АН Армянской ССР

Поступила 26.Х.1976.

u. s. ԱՍԼԱՆՅԱՆ

ԵՐԿՐԱԳՆԴԻ ԿԵՆՏՐՈՆԻ ՀԱՎԱՍԱՐԱԿՇՌՎԱԾ ԶԵՐՄԱՍՏԻՃԱՆԻ ԳՆԱՀԱՏՄԱՆ ՄԻ ԵՂԱՆԱԿԻ ՄԱՍԻՆ

Unfinhnis

որվածում ապացուցվում է, որ երկրագնդի կենտրոնում <mark>Հավասա</mark>րահշռված ջերմաստիձանը պետք է գնահատվի

$$T_e = \frac{C_v}{C_v} \cdot \frac{m_0}{k_0} \cdot \frac{GM}{2R}$$

நயம்யக்டி செய்யக்யும்:

Տեղադրելով մոլյար ջերմունակության (C_μ) , տեսակարար ջերմունա-կության (C_μ) , ջրածնի ատոմի մասսայի (m_0) , Բոլցմանի հաստատունի (k_0) , երկրի զանգվածի (M), շառավղի (R) և գրավիտացիոն հաստատունի արժեք-ները և, ելնելով Դյուլոնգի-Պտիի բանաձևից բխող $C_\mu/C_\nu=2$ արժեքից, ստանում ենք $T_\mu=7500\,\mathrm{K}$.

ЛИТЕРАТУРА

1. Асланян А. Т. Термо-гравитационный критерии изменения объема Земли. Известия АН Арм. ССР, Науки о Земле, № 3, 1976.

2 Вильдт Р. Внутреннее строение планет. В сб. «Планеты и спутники». Изд-во ИЛ, М., 1963.

3. Джеффрис Г. Земля. Изд-во ИЛ., М., 1960.

4. Каплан С. А. Физика звезд. Изд-во «Наука», М., 1970.

5. Schatz J. F., Simmons G. Thermal conductivity of earth materials at high temperatures. Journ. Geophys. Res., 77, 1972.