КРАТКИЕ СООБЩЕНИЯ

УДК 551 243.3

Г. Р. МКРТЧЯН, М. Е. ТАНАШЯН, Э. В. АНАНЯН, А. В. ВАРДАНЯН

ЕРВАНДАШАТСКАЯ АНТИКЛИНАЛЬ (АРАРАТСКАЯ МЕЖГОРНАЯ ВПАДИНА)

Ервандашатская погребенная антиклинальная структура первого порядка расположена на берегах рр. Аракс и Ахурян, между сс. Геташен, Нор-Армавир, Кохб и входит в состав Араксинского оротектонического пояса [2]. На севере она примыкает к моноклинам южного крыла
Кармрашенской синклинали, на юге—Кохоской [5], а на востоке сочленяется с небольшим Армавирским прогибом. Значительная часть структуры расположена за пределами Армянской ССР, на территории Армянского нагорья [6]. В пределах изучаемой нами территории Ервандашатская структура почти полностью перекрыта очень слабо дислоцированным илиоцен-четвертичным континентальным чехлом, мощностью
275 м и более.

Изучение погребенного подлавового рельефа позволяет в районе выделить два типа палеорельефа плиоценового возраста— Ервандашатский денудационный склон (от совхоза Герань на запад) и Беркашатская денудационно-аккумулятивная равнина, т. е. в палеогеоморфологическом отношении район представляет переходную зону от Араратской межгорной впадины (Беркашатский участок) к Карсскому плоскогорью.

Плиоцен—четвертичные образования подстилаются породами эоцена, олигоцена и миоцена (рис. 1, 2). На центральном участке Ервандашатской структуры обнажаются породы эоцена и нижние горизонты октемберянской толщи (олигоцен). На октемберянскую толщу с угловым чесогласием залегают породы пестроцветной толщи, на пестроцветной (нижний миоцен)—соленосная (средний миоцен), а на последней—разданская толща (верхний миоцен).

В пределах Ервандашатской структуры глубоким бурением из домиоценовых образований наиболее полно вскрыты породы эоцен-олигонена и частично нижнего эоцена-верхнего мела (?). Исходя из геологического строения и истории развития обрамления Араратской межгорной впадины [2,3,4,6], здесь можно предположить широкое развитие палеогеновых и верхнемеловых комилексов, мощностью до 2500 м, полное отсутствие юрских образований и присутствие местами отложений среднего-верхнего палеозоя, мощностью не более 500 м. На это указывают и геофизические данные. Фундаментом для указанных образований является доналеозойский метаморфический комилекс.

Разданская толща распространена лишь на крыльях Ервандашатской крупной структуры. С юго-запада на северо-восток ее мощность посте-

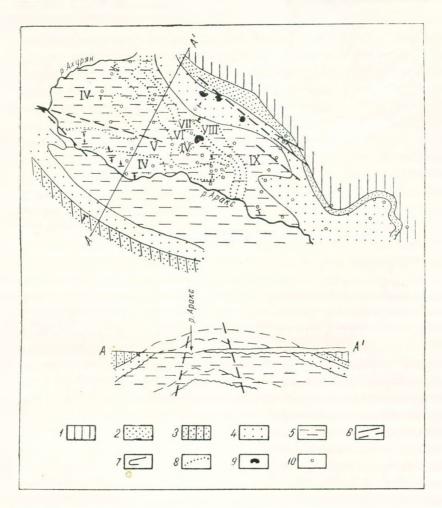


Рис. 1. Схематическая геологическая карта Ервандашатской структуры. 1. Разданская толица. 2. Соленосная толица и ее аналоги. 3. Породы среднего мноцена, нерасчлененные 4. Пестроцветная толица. 5. Октемберянская толица. 6. Разрывные нарушенил. 7. Границы толиц. 8. Границы горизонтов октемберянской толици. 9. Вулканические аппараты. 10. Скважины.

пенно увеличивается и севернее в 3—4 км современной пулевой линиа достигает 500—700 м. План развития соленосной толщи совпадает с планом распространения разданской толщи (рис. 2). Мощность соленосной толщи колеблется в пределах от нуля до 400 м и увеличивается с запада и юго-запада на восток и северо-восток. Пестроцветная толща обнажается под континентальным чехлом западнее и южнее соленосной, перекрывая всю Беркашатскую структуру, а местами залегает в присводовой части Ервандашатской брахиантиклинали. Наибольшую мощность (400 и более метров) она имеет на северо-восточном крыле этой структуры.

Сохранившаяся от денудации мощность октемберянской толщи колеблется в пределах 1000—2000 м. Наибольшую мощность она имеет на

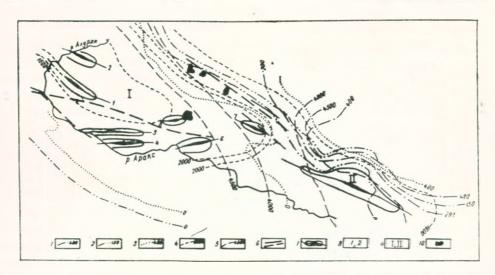


Рис. 2. Схематическая тектоническая карта Ервандашатской структуры. Изопахиты: 1) разданской толщи; 2) соленосной голщи и ее аналогов; 3) пестроцветной толщи; 4) октемберянской толщи; 5) осадочного чехла; 6) разрывные нарушения; 7) своды и оси антиклинальных структур; 8) структуры третьего порядка; 9) структуры второго порядка—1—Ервандашатская брахиантиклиналь, 1і—Беркашатская антиклиналь; 10) вулканические анпараты.

крыльях Ервандашатской брахиантиклинали, а наименьшую—в ее сводовых частях. Восточнее и северо-восточнее Беркашатской структуры в целом мощность октемберянской толши уменьшается.

Мощность осадочного чехла в изученном районе больше 4 км. Наибольшую мощность она имеет на своде и в присводовых участках Ерзандашатской брахиантиклинали второго порядка. Если нулевые линия мощностей указанных толщ достаточно четко отображают крупную антиклинальную структуру (Ервандашатская антиклиналь), то для выявления и описания структур более высокого порядка нами были выделены горизонгы, реперы и маркирующие поверхности в октемберянской толще [1]. Структурные построения люказали, что антиклиналь на территории Армянской ССР представлена собственно Ервандашатской брауиформной и Беркашатской антиклиналями второго порядка. Ниже приводится описание этих структур.

Ервандашатская антиклиналь первого порядка представляет собоч крупную линейно-вытянутую, брахиформную структуру субширотного простирания, протягивающуюся вдоль р. Аракс. Шприна структуры из менчива и колеблется от 15 до 30 км, длина—50—60 км, амилитуда полнятия преимущественно 1,5—2,0 км и более. Свод расположен между рр. Аракс и Дигот, Аракс и Ахурян и сложен породами палеогена. Форма свода и крыльев сложная. Структура асимметричная, с более крутым южным крылом (от 35 до 60°). Оба крыла сложены породами неогена и осложнены вторичной складчатостью, а также разрывными нарушениями. На крыльях доминируют крутопадающие (70—80°) разломы с амилитудами смещения до 2,0 км. Антиклиналь инъецирована вулканическими

сооружениями плиоцен-четвертичного возраста (рис. 1). Глубина залегания фундамента под антиклиналью первого порядка колеблется от 4 до 6 км. Кровля фундамента вогнутая, асимметричная. Граница «гранитного» слоя земной коры залегает на глубине 11—13 км от дневной поверхности, «переходного» слоя—около 20—21 км, а «базальтового» слоя—32—34 км.

Ервандашатская брахиантиклиналь расположена на центральном участке, на своде и присводовой части крупной одноименной антиклинати. В палеорельефе она соответствует Ервандашатскому денудационному склону. Ервандашатская брахиантиклиналь с востока ограничивается беркашатской антиклиналью, на севере примыкает к Қармрашенской, а на юге—к Қохбской синклинали. Ширина Ервандашатской брахиантиклинали около 15 км. длина—20—25 км, амплитуда поднятия—1,2—1,5 км и более. Брахиантиклиналь имеет близширотное простирание, протягивается вдоль р. Аракс. Свод расположен между рр. Аракс и Ахуряч. Ядро сложено, в основиом, породами верхнего мела—эоцена и красноцветной толщи, подстилающей октемберянскую толщу и нижними горизонтами последней. На своде обнажаются породы IV и V горизонтов октемберянской толщи.

Беркашатская линейно-эллипсовидная, асимметричная антиклипаль блиэширотного простирания расположена на левом берегу р. Аракс. В палеорельефе ей соответствует одноименная денудационно-аккумулятивная равнипа. С востока она примыкает к Армавирскому прогибу. Длина Беркашатской структуры более 16 км, ширина—4—5 км, амилитуда поднятия больше 400 м. Ось протягивается в северо-западном направлении (280°). Слои на северо-восточном крыле более осложнены и падают под углом 15—20°, а на юго-западном крыле—10—15°. В строении ядра и сводовой части антиклинали принимают участие породы олигоцен-нижнего миоцена. На своде обнажаются породы пестроцветной, на присводе—солеп сной, а на крыльях—разданской толщ. Ядро, по всей вероятности, сложено образованиями палеогена.

В составе Ервандашатской брахиантиклинали выделяется ряд антиклинальных складок более высокого порядка (рис. 2), описание которых приводится в табл. 1.

Разрывные нарушения расположены или на перегибах от свода к крыльям, или в сводовых частях Ервандашатской брахиантиклинали (рис. 2). Разрывы по элементам залегания и местоположений сгруппированы в две системы и описываются последовательно по системе, Мелкие разрывы с амплитудой менее 25—30 м, а также разрывы фундамента, выявленные только по геофизическим данным и по распределению мощностей, на рисунках не показаны и не описываются.

Севсарская система разрывов. В северных частях изученной структуры расположены три параллельных, сравнительно крупных разрыва. Длина самого северного из них около 20 км, южного—4,5 км, центрального—более 10 км. Простирание их северо-западное, соответственно: 300—305°, 308—314° и 305—310°. В зоне центрального разрыва располо-

Списание складок вигротило порядка

N 11.11,	Название структуры	Местоположение структур	Элементы залегания складок		Размеры с руктур			Формы структур	Слагающие толщи
			прост.	паление крыльев	шир.	длина	ампл.	Tologia Ciliariali	Chai attractife 10 milii
1	Ахурянская	с. Бахчалар	2 0-290°	CB-15-20° IO3-40°	1.6	4	0,5	Линейн э-вытянутая	I—IV горизонты октем- берянской толщи
2	Ерванд ашатская	с. Ервандашат	290°	CB -15-25° IO3 - 15-25°	1,5	3	0,25	Эллипсовидная	октемберянская толща
3	Асарская*	с. Асар	ёли широг- ное	Северное—50 Южное -30	0,8	6	0,4	Линейн - вытянутая	I—IV горизонты октем- берянской толщи
4	Шаварутская*	с. Шаварут	близэнирэт- ное	Северное 20 25 Южное — 25 — 35	0.6	10	0,5	Лите по-вытяну тая	-1V горизонты октем- берянской толщи
5	Элесская	г. Элес	260 – 265°	Северное—18—22 Южное—18—22	1,0	2	0,3	Вытянуто-элаписовид- ная	октемберянская и крас- ноцветная толщи
6	Араксинская	вдоль р, Аракс	близинрот- ное	Северное—15—40 Южиле—15—40	1,0		0,6	Линейн∋-вытянутая	I—IV горизонты октем- берянской толщи
7	Севсарская	восточнее г. Сев-	285°	CB 15 85° IO3 -15 -85°	1,5	5	0,4	Линсин э-эл гипсовид- ная	I—VIII горизонты октемберанской толщи

^{*} Впервые выделена А. Т. Асланяном,

жены три вулканических аппарата. Падение зон разрывов северо-восточное: элементы залегания соответственно—30—32° 60—65°, 40—45° 75—80°, 38—40° 75—80°. Амплитуда смещения по сместителям колеблется в интервале 150—180 м, вертикальные смещения не превышают 100 м, характер смещения взбросовый, что очень четко доказывается впределах отдельных горизонтов и разрезах скважин [1].

В результате южного взброса Севсарская антиклиналь расчленяется на две части, а в результате северного и центрального взбросов разданская толща приведена в контакт с пестроцветной. Все три взброса от их центральных частей в обе стороны постепенно затухают. С глубиной амилитуда вертикальных смещений уменьшается.

Приараксинская система разрывов. На юго-западном участке изученной территории расположена система разломов также взбросового характера. Простирание одного из них совпадает с направлением течения р. Аракс [2, 3, 6]. Об элементах залегания и размерах этого взброся трудно сказать что-либо определенное. Второй взброс (Бахчаларский) также имеет северо-западное простирание (280—285°). Длина разлома более 8 км, падение-юго-западное (195-260° ») 50°), амплитуда смещення—200—220 м. Вертикальная составляющая этого смещения доходит до 100 л. Взбросовый характер нарушения доказывается повторением пачек третьего и четвертого горизонтов октемберянской толици [1]. Возраст взбросов—плиоценовый. Кроме указанных разрывов в Ервандашатской антиклинали большое распространение имеют поперечные разрывы, которые, по всей вероятности, представляют собой небольшие отрывы на площадях разгрузки поперечных тектонических папряжений Возраст этих отрывов соответствует возрасту недислоцированных образований лавового покрова $N^3 - Q$.

Изложенное позволяет утверждать, что начиная с сеноман-гурона до времени образования верхних горизонтов октемберянской тольши, территория Ервандашатской антиклинали первоге порядка представляла собой вогнутый участок Октемберянского прогиба. Зарождение Ервандашатской антиклинали началось со времени образования нестроцветной тольши и совпадает по времени с савской фазой складчатости. По всей вероятности, эта структура явилась барьерным сооружением при некоплении каменной соли. Формирование крупной антиклинали произошло в мноценовое время в период аттической фазы складчатости, а ее окончательное обособление от соседних структур— в нижнем—среднем плиоцене.

Институт геологических наук АН Армянской ССР

Поступила 8. VII, 1975

ЛИТЕРАТУРА

 Аракелян Р. А., Мириджанян Р. Т., Мкртиян Г. Р. О стратиграфическом положении и расчленении октемберянской толици. Известия АН Арм. ССР, Науки о Земле № 3, 1973.

- 2. Асланян А. Т. Регнональная геология Армении. «Айпетрат», Ереван, 1958.
- Габриелян А. А. Геотектоническое районирование территории Армянской ССР. Известия АН Арм. ССР. Науки о Земле, № 4, 1974.
- Геология СССР, том XVIII, Армянская ССР, под ред. А. Т. Асланяна. «Недра», М., 1970.
- Марголиус А. М. Соленосные образования Қарсской области и Эриванской губерини.
 Изд во Кавказского Горного Упр., Тбилиси, 1909.
- 6. Освальд Ф. К истории тектонического развития Армянского нагорья. Зап. Кавк. отд. русск. геогр. сб-ва, ки. XXIX, вып. 2. 1916.