уДК 553,6

Г. С. АВАКЯН, С. Х. МИРОЯН

ОБ УСЛОВИЯХ ФОРМИРОВАНИЯ АГАТОВ САРИГЮХСКОГО МЕСТОРОЖДЕНИЯ

Апат представляет собой чередование тончайших слоев различно окращенного халщедона, макроволожнистой разновидности кварца, характеризующегося радиально-воложнистым строением, отрицательным удлинением волюкон и низким коэффициентом преломления света.

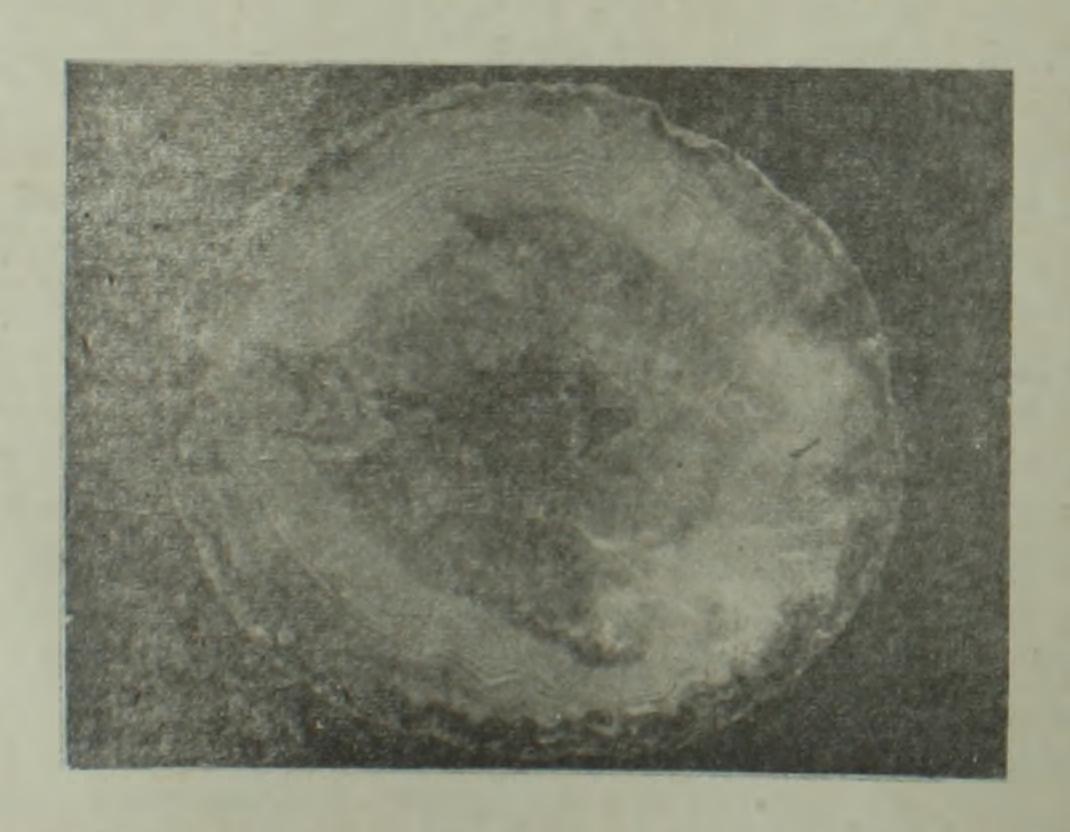
В зависимости от расположения полос халцедона выделяют две разновидиюсти апата: а) бастиснный агат с концентрически-зональным округлоизогнутым грасположением полос, которые повторяют очертания полости, и б) уругвайский агат с плоскопараллельным расположением слоев.

На Саригюхском месторождении агат представлен почти исключительно бастионным типом, механизму формирования которого и посвящается данная статья. По нашему мнению, процесс формирования агата этого типа намного сложнее, чем агата уругвайского типа.

Агат уругвайокого типа образуется вследствие обычной коагуляции геля кремнезема и оседания на дне полости под влиянием силы тяжести. Образование агатовых тел бастионного типа не может быть объяснено процессом обычной коагуляции, так как этот процесс не в силах объяснить концентрически-зональное их строение.

Необходимо напомнить что на Саригюхском месторождении агат представлен тремя морфологическими гипами—миндалевидным, гнездовидным и прожилковым.

В первых двух случаях (миндалевидный и онездовидный) агат представлен бастионным типом, т. е. характеризуется концентрическизональным расположением слоев халцедона. В третьем случае агат представлен уругвайским типом с плоскопараллельным расположением слоев халцедона, однако со следами роста слоев в направлении от обеих стенок трещины к центру. Это обстоятельство говорит о том, что и при прожилковом морфологическом типе агат образовался не просто вследствие коагулящии и оседания геля кремнезема на дне полости, а в результате более сложного физико-химического процесса. В противном случае слои халцедона были бы расположены перпендикулярно или косо к стенкам трещины, а не параллельно им (трешины на месторождении в основном кругопадающие).


Источниками кремнезема явились нижние горизонты вмещающих пород (андезито-базальтовых и андезитовых порфиритов), которые пол воздействием щелочных гидротермальных растворов превращены в бентонитовые глины (монтмориллониты). Избыток кремнезема при этом в растворенной (понной) и коллоидной формах выносился на более верх-

ние горизонты [1].

По данным И. И. Гинзбурга [3], из общего количества кремнезема, перешедшего в раствор при разложении пород, около 80—90% находится в растворимой (ионной) форме, а 10—20%-коллоидной. Однако, это соотношение в дальнейшем, при достижении растворов близповерхностных горизонтов, изменяется. Уменьшение количества растворенного и, наоборот, увеличение количества коллоидного кремнезема происходят вследствие потери растворителя перенасыщения растворов и образования молекул кремнезема путем соединения ионов кремния и кислорода. Об этом говорит тог факт, что на самом нижнем горизонте месторождения агатов, непосредственно в переходной зоне от бентонитовых илин к зоне агатовой минерализации, преобладающим минеральным образованием кремнезема является кристаллический кварц (горный хрусталь), а на более высоких горизонтах—халцедон, из комх, как известно, первый образуется из истинных, а второй—из коллоидных растворов.

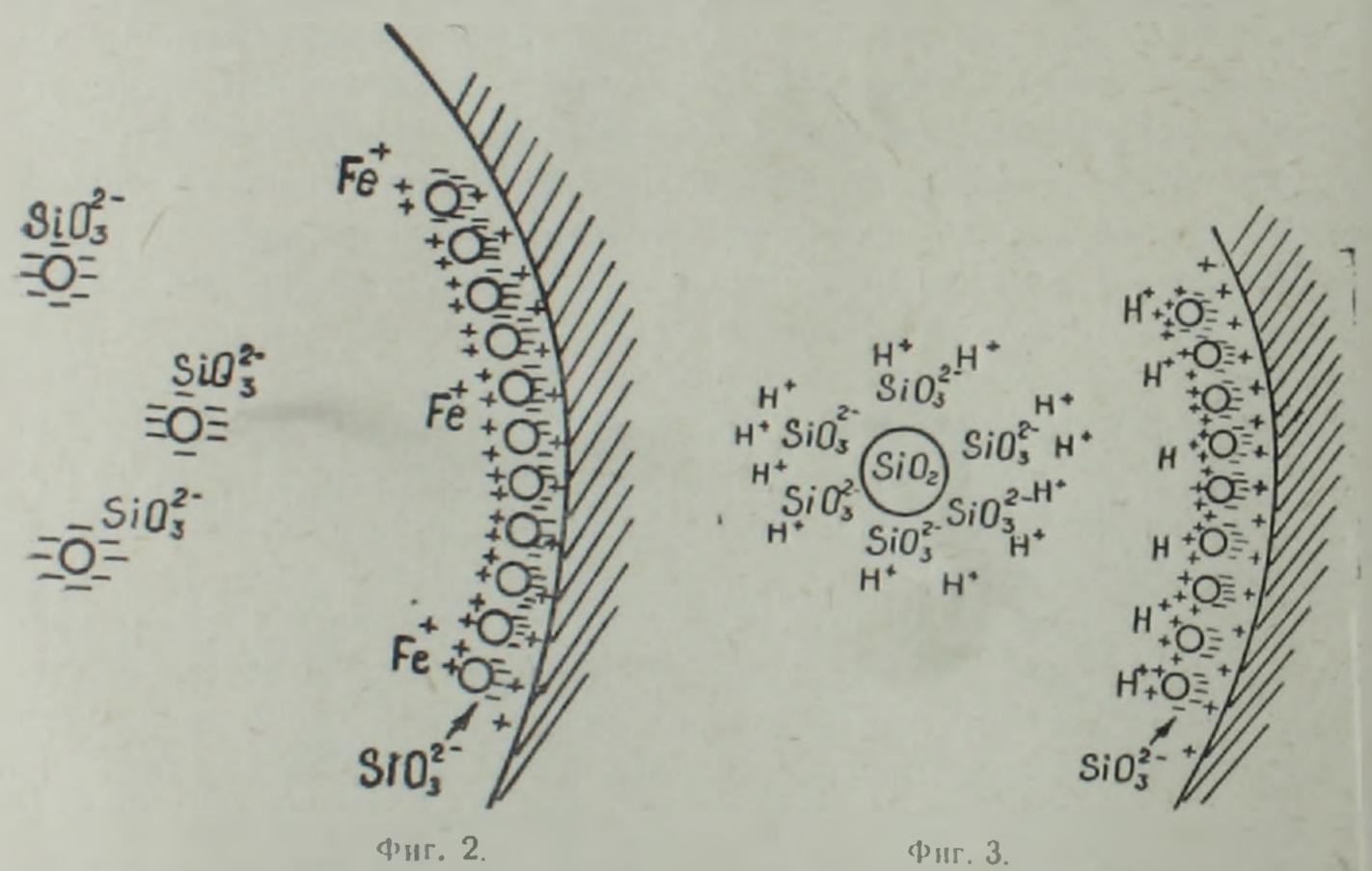
Коллондные частицы кремнезема заряжены отрицательным зарядом, вследствие адсорбции на поверхности ядра коллонда ионов стабилизатора. Доказано, что заряд всех коллондных частиц одного и того же материала одинаковый (в данном случае отрицательный), вследствие чего исключается их агрегация в растворе и оседание (коагуляция) без воздействия электролита [2].

Как уже сказано, агат на Саригюхском месторождении представлен исключительно бастионным типом (фиг. 1), и несомненно этот морфологический тип не может образоваться вследствие коагуляции геля кремнезема и выпадения его под действием силы тяжести, как это считает Б. Н. Шаронов.

Фиг. 1. Агат бастионного типа с не очень четко выраженными каналами гидротерм.

Механизм образования агата бастионного типа представляется нам следующим образом.

Материнские породы бентонитовых глин, андезито-базальтовые смоляно-черные вигрофировые и частично андезитовые серые порфириты, являющиеся одновременно основными поставщиками кремнезема, омываются (по разломам, трещинам остывания и микропорам) щелочными пидротермальными растворами. Последние растворяют и выностт избытки (для бентонитов) окислов (Al₂O₃—120 кг на 1 кбм породы, FeO-59 κε, TiO₂-4 κε, CaO-93 κε, MgO-17 κε. MnO-2 κε, K₂O-27 κε. Na₂O—25 кг), в том числе и большое количество кремнезема—320 кг на 1 кбм породы (как в растворенном, так и коллоидном виде). В этих растворах, кроме ионов кремния и кислорода, находятся также ионы других элементов (в оснювном элементов породообразующих минералов) — Fe⁻⁺, Mg²⁺, Mn²⁺, Ca²⁺, K⁺, Na⁺, Ti²⁻ и др. Коллонды кремнезема на горизонте растворения (превращения материнских пород в бентониты) находятся в агрегативно-устойчивом состоянии (стабильны). Это объясняется, во-первых, тем, что на поверхности их ядер адсорбируется определенный сорт потенциалопределяющих ионов (стабилизаторов) с одинаковыми зарядами, при этом на ядре коллоида адсорбируются те ионы стабилизатора, которые содержат элементы, общие с ядром (SiO2-). Вовторых, высокая температура пидротерм поддерживает коллоидные частицы в состоянии постоянного броуновского движения. В-третьих, условия для формирования агата являются неблагоприятными. К этим условиям на более глубоких горизонтах относятся отсутствие значительных по размерам пустот и сравнительно высокое давление, обусловившее продвижение тидротерм через микропоры и микротрещины с большой скоростью, при которой коллоиды всегда удерживаются в растворе.


При достижении открытых и крупных трещин, видимых газовых полостей и камер растворения, давление, температура и скорость продвижения продуктивных гидротермальных растворов быстро падают, наступает период относительного покоя и с этого же момента начинается формирование агатовых тел.

Поверхность газовых полостей, камер растворения и трещин заряжена положительно вследствие потери электронов поверхностными атомами. Здесь уже нетрудно представить, что гранулы кремнезема (ядро с адсорбщионным слоем), заряженные отрицательно, в процессе броуновского движения приближаются к поверхности вышеотмеченных пустот а пригяпиваются ими. Нетрудно также представить, что при микроскопических размерах гранул кремнезема (меньше 1 микрона) и большом их числе, количество ударов таких частиц об стенку пустот на каждую единицу площади приходится почти равным, что и приводит к образованию слоя халцедона почти одинаковой толщины в любой точке сфероида или на стенке трещины.

После того, как положительно заряженная поверхность пустоты покрывается слоем отрицательно заряженных коллондных частиц кремнезема, что происходит за короткий промежуток времени и почти одновременно на всей площади сфероида, миновенно происходит перераспределение (притягивание) отрящательно заряженных ионов SiO_3^{2-} в сторону положительно заряженных ионов стеньи (в силу того, что связь положительных ионов поверхности пустоты с самой породой сильней, чем связь подвижных ионов SiO_3^{2-}). Получается, что противоположная (от стеньи) поверхность ядра коллоида освобождается от отрицательно заряженных ионов, где адсорбируются (притягиваются) положительно заряженные ионы (находящиеся в растворе) тех петрогенных элементов, которые были вынесены из материнских пород. Их в дальнейшем мы (впервые) будем называть потенциалопределяющими ионами II порядка (фиг. 2).

Таким образом, поверхность первого слоя халцедона опять приобретает положительный заряд и притягивает новые порции потожов коллондных частиц. Аналогичная картина повторяется многократно, до тех пор, пока полностью не залечивается пустота халцедоновыми слоями, или не прекращается поступление пидротермальных растворов.

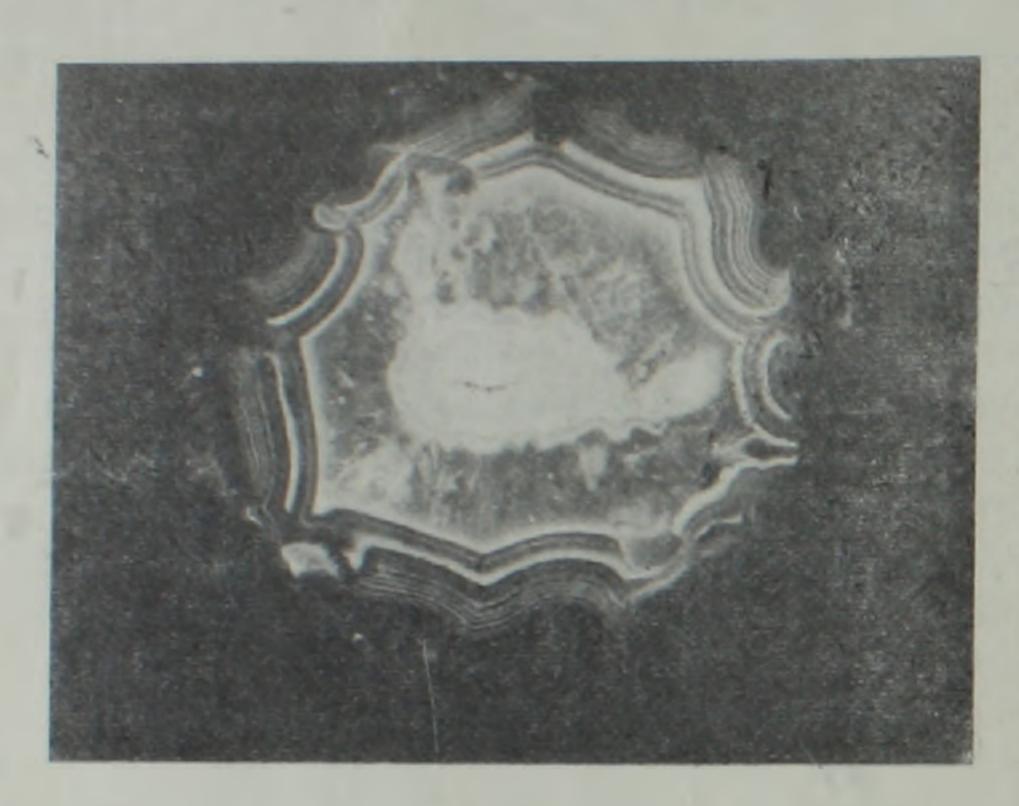
На Саригюхском месторождении в одном и том же агатовом теле часто разноцветно окрашенные слои халцедона чередуются друг с другом. Так, например, молочно-белые слои халцедона чередуются с бурыми, а бурые—с серыми, коричневыми и т. д.

Фиг. 2. Перезаряжение ядра коллондов кремнезема на поверхности камеры (жеода).

Фиг. 3. Перераспределение ионов мицеллы на поверхности камеры (жеода).

По нашему представлению, такое чередование слоев халцедона связано с тем, что положительно заряженные потенциалопределяющие ионы П порядка одних элементов (например, Fe^{2+}) замещаются другими (например, Ca^{2+} или Al^{3-} и др.), которые в данной порции гидротермальных растворов являются более активными и преобладающими по количеству.

Аналогичным путем на Саригюхском месторождении образовались яшмы, состоящие из плоскопараллельных и концентрически зональных слоев кремнезема. Окраска этих яшм находится в прямой зависимости от цвета вмещающих пород, так, например, в охристо-зеленых измененных порфиритах яшмы имеют зеленый, охристо-зеленый цвет; в коричневых порфиритах—бурый, коричневый и коричнево-красный цвет и т. д.


Такая прямая зависимость цвета яшмы от цвета окружающих пород является прямым доказательством того, что окраска халцедона тоже связана с наличием в них примесей того или иного элемента. Не исключается, что на ядре коллоидных частиц кремнезема возникает двойной электрический слой следующим образем: молекулы SiO2, взаимодействуя с дисперсионной средой, гидратируются и образуют кремнекислоту. способную ионизироваться—H2SiO, SiO-+2H, причем силикатные ионы SiO3- остаются на поверхности частицы, обусловливая ее отрицательный заряд, а ионы водорода находятся в растворе. В этом случае получается мищелла в целом электронейтральная (фиг. 3). Однако и в этом случае мицелла, под воздействием ударов молекул растворителя (воды), будет двигаться в сторону стенки камеры и войдет в зону действия отталживания одинаково заряженных нонов (противононов на гранулы коллоида и положительных нонов на поверхности полости). В этом случае, если скорость движения частицы (мицеллы) большая, то она, преодолевая онлу отталкивания, приблизится и прикрепится к стенке. где произойдет переракпределение нонов. Противононы (Н), как сравнительно слабо связанные с пранулой, отталкиваясь накапливаются на обратной стороне гранулы, а потенциалопределяющие ионы (SiO2-)— на стенке. В силу притяжения положительно заряженных частиц стенки и по причине отрицательного заряда потенциалопределяющих ионов кол лоида, последние останутся прикрепленными к стенке и приведут к образованию слоев халцедона.

В коллондной химин доказано, что скорость движения коллондных частиц црямо пропорциональна температуре растворов и обратно пропорциональна величине (массе) коллондных частиц. В расоматриваемом случае температура растворов на Саригюхском месторождении была очень высокой (порядка 300°), что доказано А. Х. Хакимовым методом гомогенезации газово-жидких включений.

О размере коллондных частиц можно судить из следующего примера. В одном сантиметре толщины агатов Саригюхокого месторождения содержится около 7000 слоев халцедона, что несомненно связано с днаметром коллондных частиц. Он должен составлять около 0.0014 мм или около 1 микрона.

Питание открытых полостей пидротермами происходит через приоткрытые мелкие трещины, сообщающиеся между собой, поры и иг по каналам удалившихся газов. Трудно представить, что коллондные частицы (пранулы) произжали в газовые полости или камеры растворения путем диффузии, так как эти же растворы превратили онглообразную залежь смоляно-черных порфиритов размерами 1000×400×100 м в бет-

тониты самого высокого качества. Несомненно высокая пористость и трещиноватость материнских (они же рудовмещающие) пород создали благоприятные условия для проникновения гидротерм и образования агатовых тел непосредственно из этих растворов. Доказательством этому служит и то, что на поперечном сечении агатовых тел (миндалин) даже макроскопически видны каналы (инстда несколько), по которым поступали и удалялись ридротермальные коллондные растворы (фиг. 4,5).

Фиг. 4.

Фиг. 5. Фиг. 4 и 5. Агаты бастионного тила с четко выраженными каналами гидротерм.

Чередование разноцветно окрашенных полосок халцедона и непрерывный рост агатовых тел в одном случае доказывают непрерывное по-

ступление пидротерм, в другом чередование агата с кварцем (кристаллическим), пересечение одних агатовых тел другими и наличие включений кальцита (исландокого шпата) в агате обнаруживают перерывы в процессе образования некоторой части агатовых тел. Эти факты говоря го том, что циркуляция пидротермальных растворов по вмещающим породам происходила непрерывно и длительно, прерывистым же было их поступление в отдельные пустоты, пути которых были залечены продуктами ранних порций пидротерм. Лишь при повторных тектонических подвижках, когда происходит приоткрывание путей к этим камерам, возобновляется послойное отложение геля кремнезема.

Иногда эти прощессы повторяются неоднократно. Вследствие закупорки подводящих жаналов в большинстве случаев, образуются агатовые тела с пустотами, внутри которых отмечаются пирамидальные кристаллы кварца и аметиста, игольчатые кристаллы пиролюзита и родохрозита, призмы жальщита и т. д., которые кристаллизовались из истинных
растворов, замкнутых в полости, и, частично, путем диффузии через
слои халцедона.

Управление геологии СМ Армянской ССР

Поступила 13.ПП.1972.

Հ. Ս. ԱՎԱԳՅԱՆ, Ս. Խ. ՄԻՐՈՅԱՆ

ՍԱՐԻԳՅՈՒՂԻ ՀԱՆՔԱՎԱՅՐԻ ԱԳԱՏՆԵՐԻ ՉԵՎԱՎՈՐՄԱՆ ՊԱՅՄԱՆՆԵՐԻ ՄԱՍԻՆ

Ամфոфում

Հողվածում հեղինակները, կիրառելով կոլոիդային քիմիայի հանրահայտ օրենքները, փորձել են բացատրել Սարիգյուղի հանքավայրի ագատի մարմինների ին ձևավորման պայմանները, կապելով այն կոլոիդալ մասնիկների մակերեկույին և միջավայրի լիցքավորված մասնիկների փոխադարձ ձգման հետ։ Դրա ապացույցը հանդիսանում է այն, որ ապատի բոլոր տեսակի (նշաձև, զընդաձև և երականման) մարմիններն ունեն կոնցենտրիկ դոտևորված շերտիկներ, որոնք ամել են պատերից դեպի ներս և որոնց հղորությունը այդ մարմինների ցանկացած տեղում համարյա նույնն է։

ЛИТЕРАТУРА

^{1.} Авакян Г. С. Некоторые эсобенности образования и закономерности размещения Саригюхского месторождения агата. Известия АН Арм. ССР, Науки о Земле, т. XXI, № 6, 1968.

^{2.} Воюцкий С. С. Курс коллондной химин. «Химия», М., 1964.

^{3.} Гинзбург И. И. Некоторые физико-химические моменты в образовании глин. Исследование и использование глин. Изд. Львовского университета, 1958