удк 552.16 551 251

Э Н. КУРГИНЯН

КАТАГЕНЕТИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ В ПАЛЕОГЕНОВЫХ ОТЛОЖЕНИЯХ ОКТЕМБЕРЯНСКОГО ПРОГИБА

Изучение процессов, преобразующих осадочные породы в метаморфические, и выяснение закономерностей этих превращений имеют важ ное теоретическое и практическое значение [1, 2, 3, 4].

Немаловажна роль катагенеза в решении ряда вопросов нефтяной геологии. Как отмечает А. В. Копелиович [2], некоторые процессы катагенетических изменений (диккитизация биопита и полевых шпатов, замещение обломков минералов кальцитом и др.) приводят к улучшению коллекторских свойств пород. Одним из условий, препятствующих развитию вторичных процессов на значительной глубине, является присутствие нефти в песчаных породах.

К. Р. Чепиков и др. [6] используют результаты изучения условий и последовательности образования аутигенных минералов на месторождениях Волго-Уральской области для установления времени появления нефти в коллекторах.

В связи с вышеизложенным нами при петрографических исследованиях терригенных отложений октемберянской свиты особое внимание уделялось вторичным преобразованиям, фактической основой для изучения которых явилось выявление генетических и структурных взаимо-отношений минеральных компонентов.

Палеогеновые отложения октемберянской свиты имеют широкое развитие в пределах Октемберянского прогиба, слагающего юго-западную часть Араратской депрессии. Свита сложена в основном, глинами, алевролитами и песчаниками с подчиненным значением карбонатных пород.

Поскольку постседиментационные процессы преобразования пород наиболее четко прослеживаются в составе и особенностях цемента и кластического материала алеврито-песчаных разностей пород, описание этих процессов нами приводится, в основном, по кластогенным компонентам и цементирующей маюсе алеврито-песчаных пород свиты.

Основные катагенетические изменения выражены в следующих процессах: хлоритизации (наиболее ярко выраженный процесс), кальцитизации, перекристаллизации обломочного материала и цемента песчаников, гидратизации биотита, структурных преобразованиях.

1. Хлоритизация. Среди постседиментационных преобразовании имеет наиболее интенсивное развитие и хорошо прослеживается в алеврито-песчаных разностях пород. Хлорит замещает следующий ряд ми-

нералов: полевые шпаты (плагиоклаз), вулканическое стекло, биотит, иногда амфиболы, глинистые минералы. Наиболее часто аутигенный хлорит развивается по первично-глинистому цементу, а местами цементирующей массой служит новообразованный хлорит. Хлоритизация охватывает также кластогенные компоненты: вокруг многих зерен часто отмечается каемка хлорита, которая как бы обволакивает и подчеркивает контур зерен. Хлорит развивается также по тонким прожилкам, трещинам спайности в обломках кристаллов. Особенно интенсивно хлоритизируются плагиоклазы, которые иногда замещаются хлоритом вплоть до распада на разобщенные зерна с одновременным угасанием. Зерна биотита и роговой обманки корродируются хлоритом в различной степени. Интенсивной хлоритизации подвержены вулканические стекла. Отмечаются зерна с отторочкой из хлорита. В глинах хлорит, очевидно, развивается по глинистым минералам и вулканическому стеклу.

Не исключена также частичная аутигенная хлоритизация обломочных зерен эффузивных пород основного состава. Об аутигенном характере хлорита зеленокаменно-перерожденных обломков пород мы судим по сходству процесса хлоритизации в них с таковым в осколках кристаллов и цементирующей массы.

- 2. Кальцитизация. Этот процесс получил немалое развитие, однако по интенсивности уступает процессу хлоритизации. В песчаниках и частично алевролитах с карбонатным цементом наблюдается разъедание обломочных зерен кальцитом, проникновение последнего во внутры зерна. Часто отмечается проникновение карбонатного цемента в кристаллические зерна плагиоклазов с полисинтетическим двойникованием и в обломки эффузивных пород (микролиты плагиоклазов). Интенсивность коррозии зерен кальцитом различна, одни зерна корродированы лишь с краев, другие замещены до состояния реликтов, а иной раз разобщены цементирующим кальцитом. Иногда кальцит выполняет поры и пустоты, а также представлен тонкими прожилками, секущими породу.
- 3. Перекристаллизация. Наблюдается часто в песчаниках с карбонатным цементом. Цементирующая масса тонкозернистого кальцита участками перекристаллизована и образует крупнозернистый агрегат. Можно полагать, что первичный кальцитовый цемент в песчаниках образовался не только в результате привноса извне, но и путем перекристаллизации содержащихся седиментогенных известковых продуктов. Так, среди мелкозернистого кальцита, образующего базальный цементизредка попадаются реликты, представленные пелитоморфным кальцитом.

Процессы перекристаллизации особенно хорошо прослеживаются в известняках, основная тонкозернистая масса которых очень тонко перекристаллизована с образованием микрозернистого агрегата кристаллического кальцита, а местами замещена и пропитана глинистым веществом. Органогенные остатки также выполнены перекристаллизованным кальцитом.

- А. В. Копелиович процесс перекристаллизации относит к завершающему этапу эпигенетической стадии преобразования пород, вместе с тем отмечая, что частичное растворение седиментогенного кальцита и выпадение аутигенного карбоната, сопровождающееся некоторым замещением зерен кальцита, имело место уже в стадии начального эпигенеза. Завершающий этап характеризуется полной перекристаллизацией карбоната.
- 4. Гидратизация биотита. Биотит относится к числу минералов, наименее устойчивых в термодинамических условиях, что приводит к стадийному переходу его в различные глинистые минералы. Начальной стадней преобразования биотита является процесс гидратизации, неплохо выраженный в биотитовых пластинках алеврито-песчаных пород. Биотит обычно составляет незначительный процент от общего количества обломочного материала. В большинстве случаев листочки и чешуйки биотита меняют свою первоначальную форму, деформируются. Пластинки часто изгибаются, окаймляя обломочные зерна. Приобретенная форма их иногда веерообразная и гармошковидная. Изменение формы сопровождается изменением оптических свойств, выражающимся частичным обесцвечиванием пластинок, ослаблением плеохронзма, светопреломления и яркости интерференционной окраски. Однако характерная для бистита схема адсорбции не нарушена. Нормальные оптические свойства сохраняются в участках, зажатых между зернами. В гидробиотите сохранились реликты биотита в виде тонких волокон. Обычно часть листочков биотита, заключенная между прилегающими друг к другу обломочными зернами, не изменена или изменена слабо, а свободные концы пластинок, расположенные в порах, интенсивно преобразованы. Вероятно возможность разбухания благоприятствует гидратизации биотита.
- 5. Структурные преобразования. Выражены в слабой форме. Отмечаются исключительно в участках, где содержание цементирующей массы незначительное и обломки пород или кристаллов вплотную примыжают друг к другу. В таком положении, при воздействии физико-механических факторов происходит некоторое вдавливание одного зерна в другое без какого-либо механического раздробления или взаимного растворения зерен. С глубиной интенсивность структурных преобразований не возрастает. Структурные преобразования (новообразования), характерные для этапа глубинного катагенеза, в отложениях свиты отсутствуют.

Изучение постседиментационных превращений отложений свиты в целом показало, что последние не отличаются широжим развитием вторичных изменений. В целях выяюнения стадий этих изменений, нами использованы также глинистые минералы как индикаторы глубинного изменения терригенных пород.

По установленным аутигенным новообразованиям—хлоритизации, кальципизации перекристаллизации, гидратизации биотита, структурным преобразованиям, а также по характерной для свиты ассоциации

глинистых минералов (пидрослюда-каолинит-монтмориллонитовои) мы считаем, что породы октемберянской свиты претерпели этап начального катагенеза. Этот этап характеризуется поликомпонентностью состава глин-монтмориллонит является единственным породообразующим минералом, постоянно и в большом количестве присутствуют гидрослюда и каолинит. Химическая однородность монтмориллонита иногда нарушается появлением промежуточной фазы в системе преобразования гидрослюда-монтмориллонит. Под электронным микроскопом отчетливо видно, как пластинки пидрослюды размываются по краям, переходя в монтмориллонит. Присутствие смешанно-слойных образований характерно лишь для стадии начального катагенеза. Л. Г. Коссовская, В. Д. Шутов [5] образование смешанно-слойных фаз связывают с биотитовыми слюдами, являющимися основным сырьем для их развития. Возможно, некоторое количество глинистых минералов образовалось из биотитовых слюд. В основном же глинистые минералы синтезируются за счет разложения вулканогенных и обломочных продуктов. Монтмориллонит, совместно с каолинитом, относится к числу опраниченно-устойчивых минералов. Не испытывая изменений в зоне начального катагенеза, они в стадии глубинного катагенеза должны существенно изменяться с превращением в диоктаэдрическую гидрослюду типа IM. Однако с глубиной монтмориллонит не исчезает, а устойчиво сохраняется как породообразующий минерал. Что касается диоктаэдрической гидрослюды и хлорита, они относятся к группе устойчивых минералов и сохраняются. начиная от стадин завершения диагенеза и кончая стадией метаморфизма. Содержание хлорита с глубиной возрастает.

Установлено также, что постседиментационные процессы не сопровождаются глубоким изменением изначальных структурных форм пород и на протяжении всего разреза свиты сохраняются структурные особенности, свойственные нормально-осадочным образованиям.

Резюмируя вышеизложенное, можно заключить:

- 1. Катагенетические преобразования в отложениях октемберянской свиты соответствуют начальной стадии катагенеза (этап преобразования слюд и формирования глинистых минералов по А. В. Копелиовичу) и стадии, переходной от начального к глубинному этапу катагенеза. Можно также полагать о незавершенности стадии, переходной от начального катагенеза к глубинному.
- 2. Интенсивному и глубокому развитию катагенетических преобразований в отложениях октемберянской свиты, залегающих на значительных глубинах (2000 м и более), могло препятствовать возможное присутствие нефтяных битумов в алевро-песчаных пластах свиты, тормозящих процессы растворения, переноса и кристаллизации вещества.

Институт геологических наук АН Армянской ССР

Поступила 17, XII.1971.

է. Ն. ԿՈՒՐՂԻՆՅԱՆ

ՀՈԿՏԵՄԲԵՐՅԱՆԻ ՃԿՎԱԾՔԻ ՊԱԼԵՈԳԵՆԻ ՀԱՍԱԿԻ ՆՍՏՎԱԾՔՆԵՐԻ ԿԱՏԱԳԵՆԵՏԻԿ ՎԵՐԱՓՈԽՈՒՄՆԵՐԸ

Kuhndinid

Հոկտեմբերյանի ձկվածքի պալեոգենի նստվածքների կատագենետիկ վեդափոխումները համապատասխանում են կատագենեզի սկզբնական (ըստ Ա. Վ. Կոպելիովիչի փայլարների վերափոխման և կավային միներալների ձևավորման էտապ) փուլին և նրա սկզբնականից դեպի խորքայինին անցնելու փուլին։ Կարելի է ենթադրել նաև, որ անցողիկ փուլն անավարտ էւ

Մեծ խորություններում տեղադրված (2000 մ և ավելի) Հոկտեմբերյանի դանդաղեցնող նավթային բիթումների հնարավոր առկայությունն այդ շերտաիրող էին արգելակել լուծման, տեղափոխման և բյուրեղացման պրոցեսները Հերտախմբի այևրո-ավաղաքարին բիթումների հնարավոր առկայությունն այդ շերտա-

ЛИТЕРАТУРА

- 1. Копелиович А. В Особенности эпигенеза песчаников могилевской свиты юго-запада Русской платформы и некоторые вопросы, с ними связанные Изв АН СССР, серия геол № 11, 1958
- 2. Копелиович А. В Эпигенез древних толщ юго-запада Русской платформы «Наука», М., 1965.
- 3. Коссовская А. Г., Шутов В. Д. Зоны эпигенеза в терригенном комплексе мезозойских и верхнепалеозойских отложений Западного Верхоянья. ДАН СССР, т. 103, № 6, 1955.
- 4. Коссовская А. Г., Шутов В. Д Характер и распределение минеральных новообразований в разрезе мезо-кайнозойских отложений Западного Верхоянья Тр геол. инт та АН СССР, вып 5, 1956
- Коссовская А. Г., Шугов В. Д. Глинистые минералы—индикаторы глубинного изменения терригенных пород. В кн. «Геохимия, петрография и минералогия осадочных образований». Изд. АН СССР, 1963
- 6. Чепиков К. Р., Ермолова Е Л., Орлова Н. А Эпигенные минералы как показатели прихода нефти в песчаные промышленные коллекторы. ДАН СССР, т. 225, № 5. 1959.