Известия АН Армянской ССР, Науки о Земле, 6, 62-69, 1971.

УДК 552.16

С. О. АЧИКГЕЗЯН

ПАРАГЕНЕТИЧЕСКИИ АНАЛИЗ МИНЕРАЛЬНЫХ АССОЦИАЦИИ ОКОЛОРУДНЫХ ПРОПИЛИТОВ ТАНДЗУТСКОГО И ЧНБУХЛИНСКОГО КОЛЧЕДАННЫХ МЕСТОРОЖДЕНИИ

В пределах Тандзутского (серноколчеданного) и Чибухлинского (серно-медноколчеданного) месторождении широко распространены минеральные фации околорудных пропилитов, сформированных в результате метасоматического преобразования рудовмещающих липарито-дацитов (т. н. «кварцевые порфиры») и андезитовых порфиритов, при воздействии на них поствулканических газогидротермальных растворов.

В развитии отдельных фаций околорудных пропилитов отмечается достаточно четко выраженная горизонтальная и вертикальная зональность по отношению к участкам распространения вторичных кварцитов, которые расположены среди полей развития пропилитов и образовались в условиях наиболее сильного кислотного выщелачивания [1].

Фации околорудных пропилитов представлены следующими характерными равновесными ассоциациями новообразованных минералов (по мере приближения к участкам развития вторичных кварцитов):

1. Актинолит-эпидотовая фация: актинолит - эпидот + альбит + хлорит ± (карбонаты, кварц, гидромусковит),

2. Эпидот-хлоритовая фация: эпидот + хлорит + альбит + гидромусковит + кварц ± карбонаты,

3. Хлорит-карбонатовая фация: карбонаты (кальцит, доломит) + хлорит + альбит + гидромусковит + кварц,

4. Хлорит-гидромусковитовая фация: хлорит + гидромусковит + +кварц ± альбит,

5. Кварц-гидромусковитовая фация: кварц + гидромусковит.

Все фации пропилитов в том или ином количестве содержат рутил и пирит. Меньше всего они обнаружены в актинолит-эпидотовых метасоматитах, а их большие скопления можно наблюдать в породах хлоритгидромусковитовой и кварц-гидромусковитовой фаций; в последних иногда присутствуют также халькопирит, сфалерит, галенит и другие рудные минералы.

Выявление особенностей пространственного размещения отдельных фаций пропилитов проводилось путем изучения многочисленных характерных опорных разрезсв, представляющих собой сравнительно полные и разнообразные по минеральным ассоциациям метасоматические ко-

ЛОНКИ.

В таблицах 1-4 отображены некоторые из этих колонок, охватывающих почти все узловые участки развития околорудных пропилитов на

Минеральные ассоциации околорудных пропилитов

Таблица 1

63

Разрез через карьер Тандзутского месторождения (длина равреза 1800 м. вертикальная амплитуда 100 м)

Nº 301	Минеральные парагенезисы	Инертные компоненты	Вполне подвижные компоненты
1	ак+эп-ка+аб+хл+кв	Al ₂ O ₃ Fe, Na ₂ O, MgO, CIO	H ₂ O, CO ₂ , S, K ₃ O, SIO ₂
2	аб+хл + гс + кв - пр	Al ₂ O ₃ , Fe, Na ₂ O, MgO	H2O, CO2, S, K.O, S1O2, CaO
3	аб+гс+кв+пр	Al ₂ O ₃ , Fe, Na ₂ O	H ₂ O, CO ₂ , S, K ₂ O, SiO ₂ , CaO, MgO
4	гс+кв+пр	Al ₂ O ₃ , Fe	H ₂ O, CO ₂ , S, K ₂ O, SiO ₂ CaO, MgO, Na ₂ O
	Минеральн	ные фации вторичных ква	рцитов
5	гс+кв-пр	Al ₂ O ₃ , Fe	H2O, CO, S, K2O, SIO, CaO, Na2O, MgO
6	хл+гс+кв+пр	Al ₂ O ₃ , Fe, MgO	H ₂ O, CO ₂ , S, K ₂ O, SiO ₂ , CaO, Na ₃ O
7	эп+аб-хл+гс+кв+пр	Al ₂ O ₃ , Fe, MgO, Na ₂ O, CaO	H2O, CO2, S, K2O, SIO2

Разрез через восточный фланг Андраникского участка Тандзутского месторождения (длина разреза—1400 вертикальная амплитуда—250.«)

№ зон	Минеральные парагенезисы	Инертные компоненты	Вполне подвижные компоненты
12	ак+эп+дл+ка+аб+хл дл+ка—аб+хл+гс+кв	Al2O3, Fe, MgO, Na2O, CaO	H ₂ O, CO ₂ , S, K ₂ O, SiO ₂
3	аб хл+гс кв+пр	Al ₂ O ₃ . Fe, MgO, Na ₂ O	H ₂ O, CO ₂ , S, K ₂ O, S ₁ O ₂ , CaO
4	хл+гс+кв+пр	Al ₂ O ₃ , Fe, MgO	$H_2O_1 CO_2$, S. $K_2O_1 SiO_2$, CaO, Na ₂ O
5	гс ∔кв⊢пр	Al ₂ O ₃ , Fe	H,O, CO., S, K2O, SIO, CaO, Na2O, MgO

Минеральные фации вторичных кварцитов

6	гс+кв+пр	Al_2O_3 , Fe	H ₂ ,O, CO., S, K ₃ O, SiO ₄ , CaO, Na ₂ O, MgO
7	аб+хл+гс+кв	Al ₂ O ₃ , Fe, MgO, Na ₂ O	H.O., CO2, S, K2O, SiO2, CaO
8	ак+ка +аб+хл+гс+кв	Al ₂ O ₃ , Fe, MgO, Na ₂ O, CaO	H ₂ O, CO ₂ , S, K ₂ O, SiO ₂

разных месторождениях. В этих таблицах приводятся парагенетические ассоциации минералов, образующих отдельные зоны метасоматических колонок, а также произведено разграничение слагающих эти минералы инертных компонентов от вполне подвижных для каждой из зон. Последовательность минеральных парагенезисов в таблицах приведена по направлению снизу—вверх. В таблицах и на фиг. 1 применены следующие сокращенные обозначения минералов: ак—актинолит, эпРазрез через центральную часть Чернореченского участка Чибухлинского месторождения

(длина разреза-1200 м, вертикальная амплитуда-330 м)

Ne 3011	Минеральные парагенезисы	Инертные компоненты	Вполне подвижные компоненты
1	эп – дл – аб + хл – гс + кв	Al ₂ O ₃ . Fe, MgO, Na ₂ O CaO	H ₂ O, CO ₂ , S, K ₂ O, SiO ₃
2	аб-; хл+гс кв+пр	Al ₂ O ₃ , Fe, MgO, Na ₂ O	H ₃ O, CO ₂ , S, K ₂ O, Si ₂ O, CaO
3.	rc+KB+IIp	Al ₂ O ₃ , Fe	N2O, CO1, S, K2O, SIO2, CaO, Na2O, MgO

Минеральные фации вторичных кварцитов

+	гс+кв+пр	Al_2O , Fe	H.O. CO. S. K.O. SI.O. CaO. Na.O. MgO
5	аб+хл+гс+кв+пр	Al ₂ O ₃ . Fe. MgO. Na ₂ O	H ₂ O, CO ₂ , S, K ₂ O, Si ₃ O, CaO
6 7	дя + аб хя гс - кв пр эп + дя ка аб + хя кв	Al ₂ O ₃ Fe, MgO, Na ₂ O, CaO	H2O.CO2. S. K2O2. SIO2

Таблица 4

Разрез через центральную часть Желтореченского участка Чибухлинского месторождения

(длина разреза - 800 м, вертикальная амплитуда - 300 м)

№ зон	Минеральные парагенезисы	Инертные компоненты	Вполне подвижные компоненты
12	эп ка -аб+хл+гс+кв ка+аб-хл+гс+кв+пр	Al ₂ O ₃ , Fe, Na ₂ O, MgO, CaO	H ₂ O, CO ₂ , S, K ₂ O, SiO
	аб-хл-т кв-н-пр	Al2O3, Fe, Na2O, MgO	H ₂ O, CO ₂ , S, K ₃ O, Si ₂ O, CaO
	аб+іс-кв пр	Al ₂ O ₃ , Fe, Na ₂ O,	H.O. CO3. S. K2O, SiO3. CaO, MgO
5	хл іс кв пр	Al ₂ O ₃ , Fe, MgO	H ₂ O. CO ₂ , S, K ₂ O, SiO ₂ , CaO, Na [®] O
6	ГС — КВ	Al ₂ O ₃	H2O, CO2, S, K2O, SIO2. CaO, Na2O, MgO, Fe

Минеральные фании вторичных кварцитов

 7
 лс+кв+пр
 Аl₂O₃. Fe
 Н₂O, CO₂, S, K,O, SiO₂, CaO, Na₂O, MgO

 Эпидот, дл-доломит, ка-кальцит, аб-альбит, хл-хлорит, гс-гидро

слюда, кв-кварц, пр-пирит, ру-рутил.

В результате изучения парагенезисов минералов в отдельных зонах метасоматических колонок был установлен следующий ряд инертности —

подвижности компонентсв, слагающих минеральные фазы пропилитов (в порядке повышающейся подвижности): Al₂O₃, Fe₂O₃, FeO, MgO, Na₂O, CaO, SiO₂, K₂O, S, CO₂, H₂O. Этот ряд обращает на себя внимание более подвижным поведением CaO по отношению к Na₂O. Следует также отметить вполне подвижный характер H2O, CO2, S, K2O, SiO2 на всем протяжении метасоматических колонок околорудных пропилитов.

Принимая за основу анализ данных метасоматических колонок. переидем к рассмотрению диаграммы состояния многокомпонентной системы, составленной для формации пропилитов, с целью установления относительных пределов устойчивости тех или иных равновесных минеральных парагенезисов, в зависимости от вариации значений химических потенциалов воды и углекислого газа, участвующих в составе минеральных фаз изучаемой системы и, в первом приближении, являющихся почти однозначными индикаторами изменения температуры и давления¹ метасоматического минералообразования.

Днаграмма химических потенциалов воды и углекислого газа (фиг. 1) построена для шестикомпонентной ((Al, Fe)₂O-—(Mg, Fe)O— Na₂O—CaO—H₂O—CO₂] десятифазовой (актинолит, эпидот, доломит, кальцит, альбит, хлорит, гидрослюда, кварц, рутил, пирит) системы, солержащей кварц, как избыточный вполне подвижный минерал, а также рутил (и не всегда пирит)—в виде обособленного минерала.

Наличне семи главных фаз (ак, эп, дл, ка, аб, хл, гс) при четырех виртуальных инертных компонентах [(Al, Fe)₂O₃, (Mg, Fe)O, Na₂O, CaO] предопределяет составление моноварнантной мультисистемы, т. е. системы, обладающей одной отрицательной ($\Pi = K + 2 - \Phi = 4 + 2 - 7 = -1$) степенью свободы [2, 3], соответствующей совокупности семи нонвариантных систем, из коих три (безактинолитовый, безгидрослюдистый и бездоломитовый пучки) являются стабильными (фиг.1).

Для расчета моновариантных реакций была составлена матрица (табл. 5), отображающая содержания виртуальных инертных (левая часть таблицы) и вполне подвижных компонентов в минеральных фазах пропилитов.

Реакции, соответствующие линиям моновариантных равновесий стабильных нонвариантных пучков, и углы наклона моновариантных линий по отношению к оси абсцисс приведены в таблице 6.

Диаграмма составлена на основанни допущения сосуществования шестиминеральных безактинолитовых (эп + дл + ка + аб + хл + гс) и безгидрослюдистых (ак + эп + дл + ка + хл + аб) нонвариантных парагенезисов. Правильность выбсра данного субстрата полтверждается геологическими наблюдениями (отсутствие широко развитых парагенетических ассоциаций между актинолитом и гидрослюдой). Моновариантная линия (ак, гс, аб) совпадает с направлением температурного вектора в системе

¹ Увеличение химического потенциала СС₂ указывает на повышение давления, а из уменьшения химического потенциала H₂O можно сделать вызод о повышении температуры и наоборот [3].

Известия, XXIV, № 6-5

 μ H₂O— μ CO₂ [3], причем продвижение по этой линии винз и влево указывает на относительное повышение температуры, где мы имеем (поля V, VI) безгидрослюдистые ассоциации с актинолитом (ак + эп + дл + ка, ак + + эп + ка + аб, ак + эп + дл + хл, ак + дл + эп + аб, ак + эп + аб + хл и др.), а в направлении вправо-вверх (понижение температуры) встречаются

66

Фиі І Диаграмма минеральных парагенезисов околорудных пропилитов в зависимости от химических потенциалов воды и углекислого газа.

безактинолитовые (поля VIII, IX, X) ассоциации с гидрослюдой (эп + + дл + хл + гс, эп + дл + ка + гс, дл + ка + аб + гс, дл + ка + хл + гс и др.).

При построении вышеупомянутых двух пучков оказалось возможным наличие третьего стабильного—бездоломитового пучка, в трех полях (I, II, III) которого возможны ассоциации актинолита с гидрослюдой. Положение этих полей в системе μ H₂O— μ CO₂ указывает на сравнительно небольшие глубины образования, причем ассоциация ак+гс в условиях относительно высоких температур превращается в парагенезис эп + аб + Минеральные ассоциации околору ных пропилитов.

Таблица 5

Мицарал		Компоненты					
	1 2 (.Al, Fe),0,	(Mg. Fe)O	Na ₂ O	CaO	CO,	H ₂ O	
ак эп дл ка аб хл гс	0 6 0 2 4 6	10 0 1 0 0 6 0	1 0 0 1 0 0,33		0 0 2 1 0 0 0	1 1 0 0 0 5	
Символы нонва- рнантных пучков	Реакции лини	н моновариант	пых равн	овесий	Ta Yr Ha F	блица б лы накло- а монова- онантных линий	
[aĸ]	(эп): 24дл + 3гс + (5H (дл, хл): 8эп + 3аб + (ка): 24эп + 13аб + 16 (аб, гс): 2эп + 18дл +	эп): $24 дл + 3rc + (5H_2O) = 24 ка + a6 + 4 кл + (24CO_2)$ дл. хл): $8 эп + 3a6 + (37H_2O + 32CO_2) = 32 ка + 9rc$ ка): $24 эn + 13a6 + 16 кл + (91H_2O + 192CO_2) = 96 дл + 39rc$ а6, rc): $2 эn + 18 дл + (13H_2O) = 26 ка + 3 кл + (10CO_2)$				78 14 40°50 -64°40 37°30	
[rc]	(ак. a6) : $2 \Im n + 18 g \pi + (13 H_2 O) = 26 \kappa a + 3 \kappa \pi + (10 CO_2)$ (эп) : $2 a \kappa + 18 \kappa a + \kappa \pi + (34 CO_2) = 26 g \pi + 2a6 + (7 H_2 O)$ (дл) : $9 a \kappa + 13 \Im n + (53 H_2 O + 88 CO_2) = 88 \kappa a + 9a6 + 15 \kappa \pi$ (ка) : $13 a \kappa + 9 \Im n + (13 H_2 O + 176 CO_2) = 88 g \pi + 13a6 + 7 \kappa \pi$ (кл) : $3 a \kappa + \Im n + 14 \kappa a + (46 CO_2) = 30 g \pi + 3a6 + (4 H_2 O)$				37°30 78°22 59°00 85°47 85°02		
[дл]	(ак, хл): 8эп + 3аб + (эп): 24ак + 39гс + (96)(ка): 12ак + 33гс = 12(аб): 9ак + 37эп + (164)(гс): 9ак + 13эп + (53H)	$(37H_2O + 32CO_2)$ $5CO_2) = 96\kappa a + 3$ 3n + 23a6 + 20x J + 3 $H_2O + 184CO_2) = 32$ $2O + 88CO_2) = 82$) = 32ка + 7аб + 40хл + (98H ₂ O) = 184ка + 1 8ка + 9аб +	9гс + (19H ₂ O) 5хл+27гс - 15хл		10°50 78°48 0 18~20 59°00	

67

+ хл, а при сравнительно низких температурах дает ассоциацию ка + аб + + хл, что не противоречит известным положениям.

Из днаграммы вытекает, что в условнях сравнительно низкого потенциала углекислого газа парагенезис ак + эп при поглощении H₂O и СО2 разлагается на ассоцнацию ка + хл + гс, в то время, как при увеличении РСО2 (глубинности) он дает ассоциации ка + аб + хл, либо дл + аб + + хл, что подтверждается геологическими наблюдениями.

Если в породах эпидот-хлоритовой фации в относительно глубоких горизонтах встречаются ассоциации эп + дл + ка + аб и эп + дл + ка + хл, то уже в более верхних горизонтах наблюдаются парагенезисы эп + ка + +хл+гс и эп+ка+аб+гс, что находит свое подтверждение на приведенной диаграмме (соответственно—поля V, VI, VII, VIII, IX и поля I, II, III). В тех же метасоматитах, по нашим наблюдениям, парагенезисы эп + дл + хл и эп + дл + ка кверху переходят в ассоциацию эп + ка + хл, что отчетливо отображено на диаграмме (соответственно—поля, лежащие вправо и вниз от моновариантной линии (ак, гс, аб), и поля, расположенные выше и влево ог этой линии).

Для низов хлорит-карбонатовых метасоматитов характерен парагенезис ка + аб + хл, кверху нередко сменяющийся ассоциацией ка + хл + гс, что также можно наблюдать на диаграмме (соответственно — поля XIII, XIV и поле I); следует также отметить, что в иромежуточных условиях глубинности обе ассоциации могут сосуществовать (поля XI и XII), что и отмечается нами в зоне перехода от хлорит-карбонатовой фации в фацию хлорит-гидромусковитовую. Парагенезис дл + ка + хл был встречен в условиях умеренных глубин, это отражено и на диаграмме; причем можно сделать вывод о сравнительно низко- и среднетемпературной обстановке образования этой ассоциации, ибо при более высоких температурах сгановятся устойчивыми парагенезисы ак + ка + хл и ак + дл + хл.

Хлорит-гидрослюдистые метасоматиты развиты в условиях сравнительно небольших и умеренных глубин; ассоциации аб + хл + гс на диаг-

рамме попадают именно в поля (I, III, XI, XIV), соответствующие этим условным пределам. Диаграмма указывает также на сравнительно низкои среднетемпературные условия формирования этого парагенезиса.

Таким образом, можно утверждать, что приведенная диаграмма в большинстве случаев достаточно четко отображает результаты, полученные при геологических наблюдениях; более того, она нередко указывает на относительные пределы устойчивости той или иной минеральной ассоциации и дает возможность делать предположения о примерных значениях температуры или глубины формирования того или другого парагенезиса при отсутствии у нас данных о них.

Институт геологических наук

АН Армянской ССР

Поступила 6.1V.1971.

U. 2. USP\$95023UV

ՏԱՆՉՈՒՏԻ ԵՎ ՉԻՔՈՒԽԼԻԻ ԿՈԼՉԵԴԱՆԱՅԻՆ ՀԱՆՔԱՎԱՅՐԵՐԻ ՄԵՐՉՀԱՆՔԱՅԻՆ ՊՐՈՊԻԼԻՏՆԵՐԻ ՄԻՆԵՐԱԼԱՅԻՆ ԱՍՈՑԻԱՑԻԱՆԵՐԻ ՊԱՐԱԳԵՆԵՏԻԿ ՎԵՐԼՈՒԾՈՒԹՅՈՒՆԸ

Ամփոփում

_ողվածում լուսարանված են Տանձուտի և Չիբուխլիի կոլչեղանային հանբավալութի մերձհանքային պրոպիլիտներին բնորոշ միներալային ֆացիաների և նրանց միներալային ասոցիացիաների տարածական տեղաբաշխման Հարցերը։

^Պրոպիլիտների ֆորմացիալի Համար կառուցված է վեցակոմպոնենտ [(Al, Fe)₂O₃—(Mg, Fe)O—Na₂O—CaO—H₂O—CO₂], տասը ֆաղանոց (ակտինոլիտ, էպիզոտ, պոլոմիտ, կալցիտ, ալբիտ, թլորիտ,

Հիդրոփայլար, քվարց, ռուտիլ, պիրիտ) սիստեմի դրադրամ՝ հիմնված ջրի և ածխաββու գաղի քիմիական պոտենցիալների փոփոխության վրա, որոնք բըհորոշում են միներալառաջման ընթացքում չերմաստիճանի և ճնշման որակական տատանումները։

Համադրվում են դիազրամի հետարուման չնորհիվ և երկրաբանական ու մնասիրություններից առացված տվյալները և առատատվում է նրանց եմանությունը, ընդ որում, րերված դիագրամը հնառավորություններ է ընձեռում գաղափար կազմելու այս կամ այն միներալային առաջիացիայի առաջացման ջերմաստիճանի ու ձնշման պայմանների մասին,

ЛИТЕРАТУРА

- I. Ачикгезян С. О. Метасоматические образования на Тандзутском серноколчеданном месторождении. Известия АН Арм. ССР, Науки о Земле, т. XVII, № 3-4, 1964
- 2. Жариков В. А. Вопросы общей теории диаграмм состояния мультисистем Сб «Физико-химические проблемы формирования горных пород и руд», т. І. Изд. АН СССР. М., 1961.
- 3. Коржинский Д. С. Физико-химические основы анализа парагенезисов минералов. Изд. АН СССР, М., 1957.

