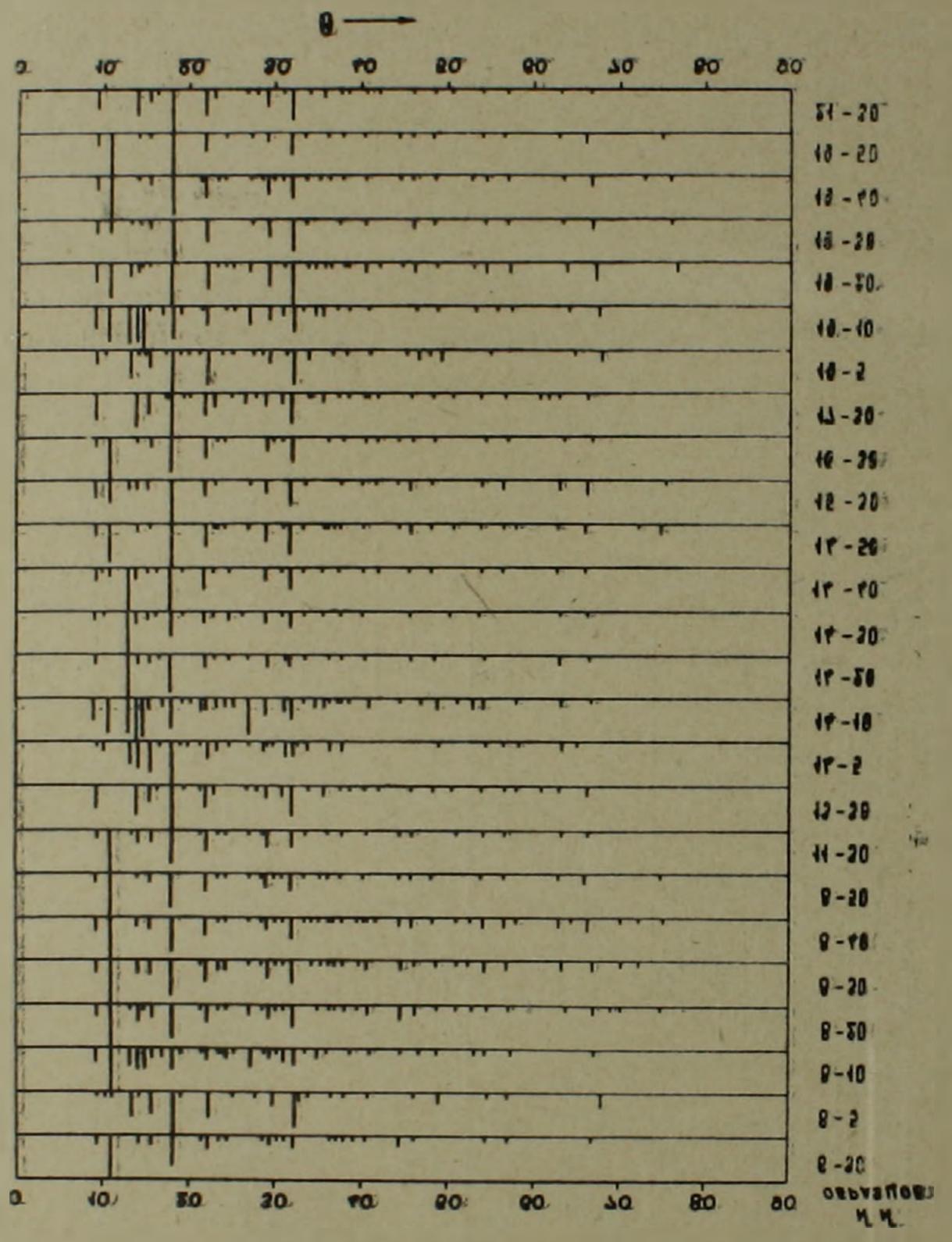
УДК 552.1

С. Г. ГАМБАРЯН, С. Д. ЧЕТВЕРИКОВ

ЗАКРИСТАЛЛИЗОВАННЫЕ РАСПЛАВЫ В СИСТЕМЕ $MgO-Al_2O_3-SiO_2$ С ДОБАВКОЙ Cr_2O_3

Химический состав исследуемых образцов в системе MgO—Al₂O₃— SiO₂ с добавкой Cr₂O₃ получен путем замещения содержания кордиерита на 5, 10, 20, 30, 40 и 50 мол. % нормативным хромовым кордиеритом— Mg₂Cr₄Si₅O₁₈ [1, 2] в опорных составах, расположенных в системе MgO—Al₂O₃—SiO₂ в поле первичной кристаллизации кордиерита и в пограничных с инм участках полей первичной кристаллизации других фаз.

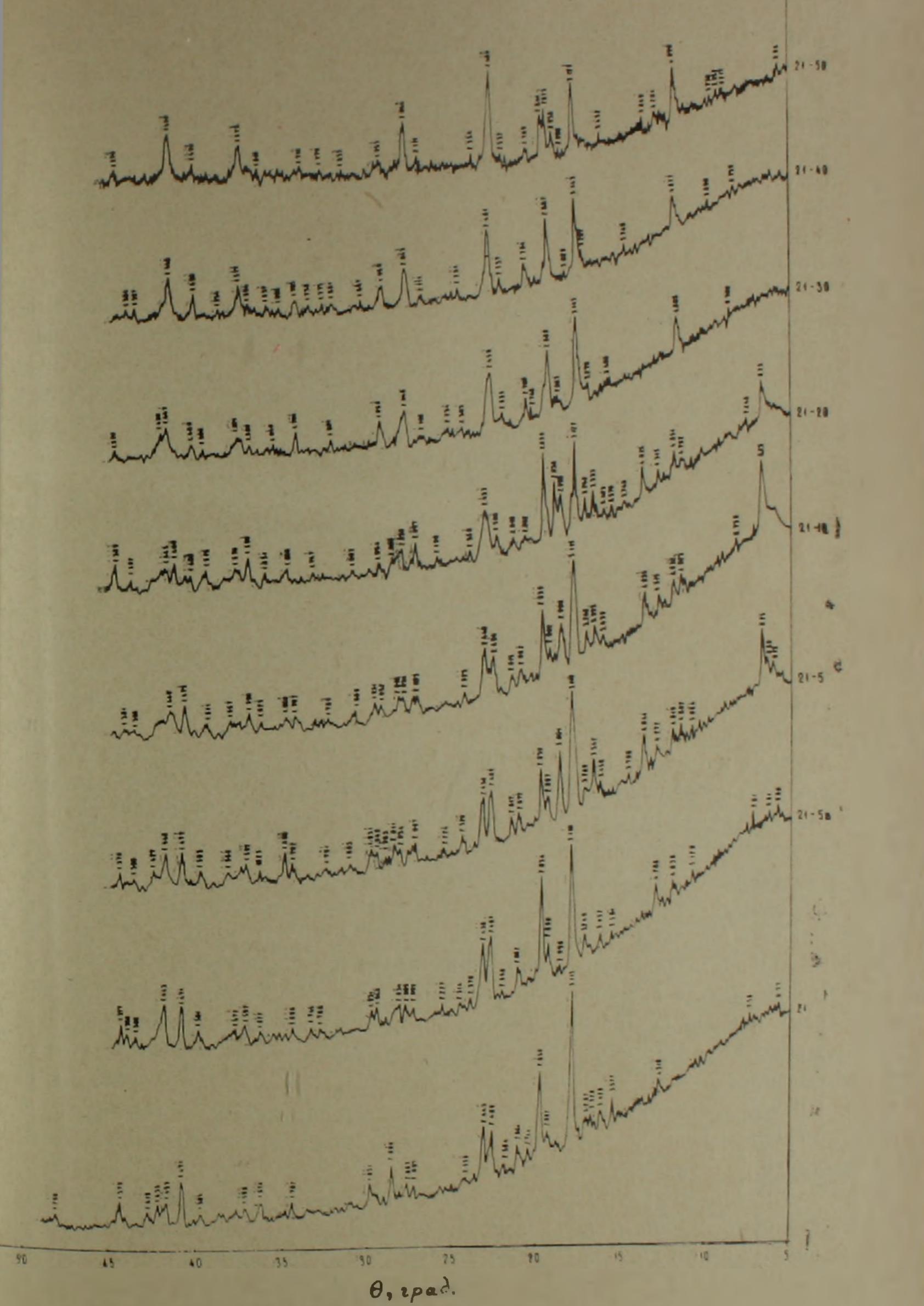
Расчетный минеральный состав исходных образцов и весовые количества окиси хрома, при замещении в составах минимального (5%) и максимального (50%) количеств магниевого кордиерита на хромовый кордиерит, приведены в табл. 1.


Таблица I Расчетный минеральный состав исследуемых образцов

№ образцов	Расчетный минеральный состав, мол'0/0						Содержание Cr ₂ O ₃ (вес. %). при замещении Mg—Cord	
№ 06J	Cord	En	Q	Fo	Sp	Muli	на 5º/o Cr—Cord	на 50°% Cr—Cord
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	52,31 69,70 92,00 63,24 58,67 65,56 52,17 64,39 74,78 51,24 63,29 75,57 50,42 62,17 74,29 86,61 61,15 72,94 85,10 97,66 59,60 68,00 76,50 85,45	1,98 19,82 36,67 3,53 28,83 14,20 38,95 24,51 9,91 48,47 34,64 20,23 5,68 22,95 17,16 11,58 1,38	30,91 19,00 21,41 24,29 9,81 12,20 14,52 1,11 3,19 5,48 7,71	4,50 16,94 4,66 	0,30	1,03	1,36 1,74 2,41 1,66 1,56 1,63 1,87 1,34 1,63 1,87 1,34 1,63 1,87 2,21 1,63 1,87 2,21 1,63 1,87 2,21 1,63 1,87 2,21 1,63 1,87 2,21 2,52 1,62 1,83 2,03 2,24	13,03 16,53 22,51 16,12 14,89 15,58 12,88 15,58 17,75 12,88 15,58 17,81 12,88 15,58 17,81 20,82 15,58 17,81 20,82 15,58 17,81 20,82 15,58 17,81 20,82 15,58

Химический состав хромсодержащих образцов в исследуемой области системы $MgO-Al_2O_3-SiO_2$ варьирует в пределах (вес. % %): MgO-9,41-29,34; $Al_2O_3-8,62-32,91$; $SiO_2-44,66-67,63$ и $Cr_2O_3-1,62-23,42$. Известия, XXII, 3-3

Кристаллизация хромсодержащих расплавов осуществлялась путеми понижения температуры в силитовой печи со скоростью 12—13° в час после выдержки при максимальной температуре 1550°С в течение 1 часа.


Закристаллизованные хромсодержащие расплавы подвергались микроскопическому исследованию. Для некоторых образцов проведен также рентгенофазовый анализ, на основании чего построена днаграмма межплоскостных расстояний продуктов кристаллизации этих образцов: (рис. 1). На рис. 2 приводятся результаты рентгенофазового анализа:

Фиг. 1. Диаграмма межплоскостных расстояний продуктов кристаллизации в системе MgO-Al₂O₃-SiO₂-Cr₂O₃ (СuK₂-излучение).

хромсодержащих образцов состава 21 с целью обнаружения изменения фазового состава хромсодержащих образцов в зависимости от исходного соотношения Mg- и Cr-кордиеритовых составляющих.

Микроскопические и рентгенографические исследования закристаллизованных образцов показывают, что уже небольшие добавки окиси хрома способствуют образованию в них твердого раствора шпинелы:

Фиг. 2. Влияние Ст.О. на фазовый состав образцов в системе MgO-Al₂O₃-SIO₂ (FeK₂-излучение).

90

(MgAl₂O₄) и пикрохромита (MgCr₂O₄). Присутствие небольших добавок окиси хрома способствует образованию относительно равновесных условий кристаллизации исследуемых расплавов. Фазовый состав закристаллизованных расплавов при 5%-ном замещении кордиерита на нормативный Сг-кордиерит близок к расчетному минеральному фазовому составу. Помимо шпинелевой фазы в них присутствуют кордиерит (α-форма) и энстатит (обе фазы во всех образцах), кристобалит (в обр. 6—5)*, форстерит (21—5), муллит и небольшое количество стекла (9—5, 16—5 и 20—5).

Увеличение в образцах Сг-кордиеритовой составляющей увеличивает содержание шпинелевой фазы, что сопровождается постепенным уменьшением и исчезновением последовательно форстеритовой, кордиеритовой и энстатитовой фаз и появлением кристобалита в образцах исследуемой области системы MgO—Al₂O₃—SiO₂—Cr₂O₃. Установление равновесия в системе, при образовании твердого раствора Mg(Al, Cr)₂O₄, можно представить в виде следующих реакций:

$$Mg_2SiO_4 + Cr_2O_3 \rightarrow MgSiO_3 + MgCr_2O_4$$

 $Mg_2Al_4Si_2O_{18} \rightarrow 2MgAl_2O_4 + 5SiO_2$
 $MgSiO_3 + Cr_2O_3 \rightarrow MgCr_2O_4 + SiO_2$
 $MgAl_2O_4 + MgCr_2O_4 \rightarrow 2Mg(Al, Cr)_2O_4$

Состав твердого раствора шпинели легко определяется рентгенофавовым анализом по промежуточным значениям межплоскостных расстояний некоторых основных линий крайних членов ряда твердого раствора шпинель-пикрохромит (d=4.66; 2,43; 2,01; 1.55; 1,426 Å, для $MgAl_2O_4$ и d=4.80; 2,51; 2,08; 1,602; 1,473Å, для $MgCr_2O_4$, [3]). Результаты такого определения показывают, что в исследуемой области системы $MgO-Al_2O_3-SiO_2-Cr_2O_3$ содержание пикрохромита колеблется в пределах от 15 до 60 мол. %.

Приведенные в работе рентгенограммы четко фиксируют изменение фазового состава образцов в зависимости от соотношения в них составляющих Mg- и Cr-кордиеритов (фиг. фиг. 1 и 2).

Область образцов шпинель-кристобалитового состава начинается в составах со сравнительно большим расчетным содержанием кремнезема и расширяется при увеличении в образцах содержания Ст-содержащей кордиеритовой составляющей, охватывая область составов с большим расчетным содержанием форстерита и энстатита. Образцы с 50%-ным замещением Мд-кордиерита на хромовый можно разбить на 3 группы: 1. шпинель-кристобалитовая, 2. шпинель-энстатит-кристобалитовая, 3. шпинель-энстатитовая.

Шпинель-кристобалитовая группа образцов занимает область составов, лежащих в верхней и правой частях поля кордиерита и пограничных с ним участках полей муллита и кристобалита (составы 6, 2, 9.

В номерах образцов цифра через черточку обозначает расчетное замещенное количество кордиерита в исходных составах на нормативный Сг-кордиерит (в мол. 0/с).

8, 7, 12, 15, 16, 19, 20, 3 и 24). Образцы второй шпинель-энстатиткристобалитовой группы занимают небольшой участок в области составов I, 10, 11 и 14. Третья—шпинель-эстатитовая группа образцов занимает область составов, лежащих вблизи эвтектических составов 4 и 5, в полях первичной кристаллизации клиноэнстатита, форстерита, шпинели и кордиерита.

Кристаллические фазы, образующиеся в исследуемой области системы MgO—Al₂O₃—SiO₂—Cr₂O₃, характеризуются следующими основными данными:

Плинель-изотропные зерна розового цвета, n=1,750-1,950 (фиг. 3a, б, д).

Фиг. 3. Микрофотографии фазового состава продуктов кристаллизации в части системы $MgO-Al_2O_3-SiO_2-Cr_2O_3$: а — мелкие зерна шпинели (николи —, ув. $44\times$); б — кордиерит с мелкими включениями шпинели; в — длиннопризматические кристаллы форстерита с энстатитом; г — радиально-лучистые и призматические образования энстатита (б, в, г—николи +, ув. $21\times$); д — чешуйки кристобалита в массе шпинели (николи +, ув. $44\times$).

Кордиерит (индиалит) — ксеноморфные зерна, двуосный, отрица- тельный; $2V \approx 0^\circ$, $n_g = 1,528$, $n_p = 1,524$ (фиг. 36).

Форстерит—встречается в виде длиннопризматических кристаллов, двуосный, положительный; $2V \approx 90^\circ$; $n_g = 1,670$, $n_p = 1,638$ (фиг. 3в).

Энстатит—образует радиально-лучистые и перистые формы роста, а также мелкие призматические кристаллы, двуосный, положительный; $25V \approx 75^\circ$, r < V (четкая); $n_g = 1,666$, $n_p = 1,659$ (фиг. 3в, г).

Кристобалит-встречается в виде мелких зерен и крестообразных

двойников; $n_g = 1.487$, $n_p = 1.484$ (фиг. 3д).

Выводы

1. Синтезирован ряд образцов в системе $MgO-Al_2O_3-SiO_2$ с добав-кой Cr_2O_3 .

2. На основании микроскопического и рентгенофазового анализов обнаружено, что добавка окиси хрома в исследуемой области системы приводит к образованию непрерывного ряда твердых растворов шпинель-пикрохромит, а также кристобалита. Образование этих фаз сопровождается постепенным уменьшением и исчезновением в образцах форстерита, кордиерита и энстатита.

3. Полученные результаты могут быть использованы для идентификации фазового состава четырехкомпонентной системы MgO—Al₂O₃—SiO₂—Cr₂O₃, имеющей важное петрогенетическое значение для ультрабазитов, габброидов, чарнокитов и роговиков, а также в ряде отраслей промышленности алюмосиликатных технических материалов (новообразования шпинелидов при влиянии катионов хрома могут быть нуклеаторами при кристаллизации алюмосиликатного расплава).

Институт химин ЕРНИИХИМ

Поступила 20.11.1968,

Ս. Գ. ՂԱՄԲԱՐՅԱՆ, Ս. Դ. ՁԵՏՎԵՐԿՈՎ

ԲՅՈՒՐԵՂԱՑՐԱԾ ՀԱԼՈՑՔՆԵՐԸ $MgO-Al_2O_3-SiO_2$ ՍԻՍՏԵՄՈՒՄ $Cr_2O_3-\hbar$ ԱՎԵԼԱՑՈՒՄՈՎ

Ulfphhhrif

էջսպերիմենտալ եղանակով ուսումնասիրված են Cr₂O₃-ի ավելացման արդյունջները այն բաղադրություններում, որոնջ MgO-Al₂O₃-SiO₂ սիստեւնում գտնվում են կորդիերիտի առաջնային բյուրեղացման դաշտում, ինչպես նաև ուրիշ ֆազաների առաջնային բյուրեղացման դաշտերի կորդիերիտին սահմանակից տեղամասերում։

Միկրոսկոպիկ և ռենտգենաֆազային անալիզների հիման վրա հայտնաբերված է, որ Cr₂O₃-ի ավելացումը MgO—Al₂O₃—SiO₂ սիստեմի ուսումնասիրված հատվածում պատճառ է հանդիսանում շպենել-պիկրոբրոմիտ անընդսել շարբի պինդ լուծույβների ինչպես նաև կրիստորալիտի առաջացմանը։

ЛИТЕРАТУРА

- 1. Гамбарян С. Г., Батанова А. М., Четвериков С. Д. Исследование стекол в системе MgO—Al₂O₃—SiO₂. «Промышленность Арменин», № 3, 1967.
- 2 Warshaw G., Keith M. L. Solid solution and chromium oxide loss in part of the system MgO-Al₂O₃-Cr₂O₃-SiO₂. J. Amer. Ceram. Soc., 37, no 4, 161-168, 1954.