А. Г. АКОПЯН, Р. Н. ЗАРЬЯН

О ПЕТРОХИМИЧЕСКИХ ОСОБЕННОСТЯХ МАГМАТИЧЕСКИХ ФОРМАЦИИ АИОЦДЗОРСКОГО РУДНОГО РАЙОНА

Айоцдзорский рудный район входит в эвгеосинклинальную область среднеальпийской складчатости Армянского геотектонического комплекса и характеризуется мощным развитием эоцен-мно-плиоценовых вулканогенных образований с подчиненной ролью экструзивной и гипабиссальной интрузивной фаций.

В рассматриваемой области выделяются три разновозрастных и отличных по фациальным условиям проявления магматических комплекса:

1. Эоценовый эффузивный комплекс, представленный андезитовой формацией.

2. Поздневерхнеэоценовый-предолигоценовый гипабиссальный интрузивный комплекс субщелочных пород габбро-монцонит-граносиенитовой формации.

3. Мио-плиоценовый эффузивно-экструзивный комплекс, представленный андезит-дацит-липаритовой формацией с синхронной фацией дацитово-липаритовых экструзий.

Д на базовые порфириты являются наиболее основными членами эоценового эффузивного комплекса. По сравнению с днабазами по Р. Дэли рассматриваемые породы отличаются слегка недосыщенностью кремнеземом и несколько более обогащены щелочами, а по среднему значению фемической составляющей относятся к сравнительно лейкократовым породам (b=17,7, против 25,9 у Дели). По сравнению со средними днабазами, изученные породы характеризуются более пониженной ролью натрия в сумме щелочей (n=68,5 против 81,7 у Дэли). По среднему значению соотношения известковости-щелочности и степени насыщенности глиноземом днабазовые порфириты относятся к породам нормального ряда.

Выведенные по Ниггли химические параметры позволяют предполагать, что диабазовые порфириты являются производными габбровой магмы известково-щелочного ряда (табл. 3).

Измененные андезиты (андезитовые порфириты) по среднему химическому составу близки к андезитам по Дэли, отличаясь от последних повышенными содержаниями трехвалентного железа и несколько более низкими значениями кремнезема, магния и кальция (С = 6.0 против 6,4 у Дэли). В измененных андезитах, как правило, окисное железо всегда преобладает над закисным в соотношении Fe Fe = 1,3, а натрий — над калием примерно в аналогичных соотношениях. По величине значения щелочности-известковистости и

Таблица 2 Средний химический состав вулканических и интрузивных пород

Среднии химическии состав				вулканических и интрузивных пород							
	Э	ффузивні	Интрузнвные								
Породы	Диабазовые порфириты	Измененные ан- дезиты (андезито- вые порфириты)	Андезиты (раз-	Эссекситы и эс-	Монцониты	Лиорит-порфи-	Сиенито-диориты	Кварцевые сиени-	Кварцевые дно-	Граносиениты	
0000000	Co	^ T.I.I.Y	Поздневерхний эоцен-предолигоцен								
возраст	Ch	Средний эоцен			-35,1	06 лет	32,106		—29,106 лет		
Число анализов	4	8	5	8	5	3	d	3	6	5	
Основные химические показатели											
SiO ₃ TiO ₃ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₃ O H ₃ O n.n.n.	51,43 0,85 19,45 3,86 2,81 0,25 3,50 9,62 3,82 2,62 0,68 1,08 99,97	0,53 16,92 5,42 3,91 0,21 2,35 4,95 3,40 2,71	59,79 0,75 16,16 3,94 2,96 0,12 1,50 4,25 4,12 3,04 1,17 1,38 99,18	1,19 19,21 4,67 2,92 0,13 3,34 9,78 4,49 3,05 0,81 0,75	4,14 2,73 0,17 2,55 5,46 3,80 3,52 0,59 0,91	0,46 15,62 3,24 2,44 0,14 2,05 4,89 3,81 3,12 0,85	0,58 15,89 3,67 2,37 0,10 1,95 4,19 3,88 3,28 0,83 1,20	0,42 15,20 3,55 2,30 0,13 1,72 3,84 3,76 3,14 1,22 1,23	0,47 15,60 2,91 3,07 0,10 1,75 3,65 4,04 3,20 0,77 1,20	0,44 15,74 3,40 1,90 0,13 1,35 3,60 4,10 3,17 1,05	
Fe ³⁺ /Fe ²⁺ Na/K Fe/Fe+Mg Na/K+Ca	1,3 1,4 0,65 0,40	1,3 1,4 0,79 0,55	1,3 1,3 0,82 0,63	1,5 1,4 0,69 0,43	1,5 1,2 0,72 0,57			_			
Числовые характеристики по А. Н. Заварицкому											
a c b s m' c' n	12,8 7,2 17,7 62,3 36,5 35,2 28,3 68,5 20,0 1,1 -8,2 1,8	12,0 6,0 3,7 68,3 65,0 31,8 3,2 65,4 36,0 0,6 6,6 2,0	12,4 3,8 9,3 74,5 61,0 25,0 14,0 67,3 32,6 0,9 14,9 3,3	15,0 5,9 19,1 60,0 36,8 30,0 33,2 65,7 21,7 1,7 15,9 2,5	13,8 5,5 13,2 67,5 53,0 36,0 11,0 62,2 30,0 0,9	13,8 5,2 13,2 67,8 44,7 33,5 21,8 62,8 22,7 0,6 2,8 2,6	13.3 4.0 10.0 72.7 55.8 33.0 11.2 63.8 32.0 0.7 13.9 3.3	13,6 3,4 10,0 73,0 50,0 36,8 13,7 60,0 35,0 0,6 15,4 4,0	13,8 3,8 9,4 73.0 57,0 35,0 65,6 26,6 0,5 14,6 3,6	13.6 3.7 8.0 74,7 59.0 32,0 9.0 66.0 36,0 0.5 18.5 3.6	

степени насыщенности глиноземом, указанные андезиты относятся к породам нормального ряда при значительно низкой величине параметра «С'» (С'=3,2 против 14,0 в андезитах). Выделенные средние значения основных параметров магм по Π . Ниггли позволяют отметить, что рассматриваемые андезиты отвечают породам кварцдиоритовой группы известково-щелочного ряда (табл. 3).

Свежне андезиты по химическому составу отвечают средним андезитам по Дэли, отличаясь от них несколько пониженным содержанием закиси железа, окислов магния и кальция (C=3.8 против 6.4 по Дэли), заметно повышенной ролью щелочей с отношением Na/K=1.3.

Соотношение между известково-щелочностью и насыщенностью пород глиноземом показывает, что среднеэоценовые андезиты и их измененные разности соответственно относятся к богатым и бедным щелочами, слабо пересыщенным кремнеземом породам нормального ряда. Выведенные основные параметры магм по Ниггли позволяют отметить, что рассматриваемые эффузивы отвечают породам кварц-диоритовой магмы известково-щелочного типа.

Интрузивные образования эоценовой магматической серии характеризуются сложным петрографическим составом и объединяют представителей габбро-монцонит-сиенитовой формации.

Породы ранней интрузивной стадии по среднему составу наиболее близки к эссекситам и эссекситовым габбро по Дэли (табл. 2) с проявлением ряда специфических вариаций в основных химических параметрах. Изученные породы характеризуются повышенным значением полевошпатовой извести (С) с одновременным понижением роли фемической составляющей (b=19,1 против 23,15 по Дэли). Кроме того, характерна пересыщенность последних как кремнеземом, так и глиноземом. Во всех случаях наблюдается преобладание окисного железа над закисным (Fe+3 Fe+2 = 1,5), а натрия над калием (Na/K=1,4). В целом породы характеризуются слегка повышенной щелочностью и относительно низким значением параметров «f'» и «m'». В эссекситах среднего состава (по Дэли) отношение параметра «а» к суммарному значению полевошпатовой извести оценивается сравнительно низким значением, чем в рассматриваемых эссекситах и эссекситовых габбро (табл. 2).

Выведенные основные параметры магм в целом показывают хорошую сходимость с нормально эссекситовым типом натрового ряда по П. Ниггли всегда со сравнительно высоким значением в них анортитовой составляющей (С=27 против 20 в нормальных эссекситах у Ниггли). Остальные параметры, кроме «К» и в некоторой степени «mg», как правило, несколько занижены. Согласно классификации П. Ниггли породы габбро-эссекситовой серии являются дифференциатами нормально эссекситовой магмы натрового ряда (табл. 3).

Монцониты и диорит-порфириты характеризуются слегка пересыщенностью кремнеземом и глиноземом по сравнению со средним соста-

Таблица 3 Основные параметры и типы магм эоценовых магматических комплексов

Основные	параме	тры и тиг	ты маг	и эоцен	ювых м	иагматі	ических	коми	лексов	
	30	ффузивны	Интрузивный							
Породы и их аналоги по Н. Ниггли	Диабитовые пор-	Изменеаные анде- зигы (андезито- вые порфиры)	Андезиты	Эссекситы и эк-	Монцониты	Диориты-порфи-	Сиенито-диориты	Кварцевые сие-	Кварцевые дио-	Граносиениты и др.
Число анализов	4	8	5	8	5	3	4	3	6	5
	Параметры магм (по П. Ниггли)									
Si al fm C alk K mg c/rui ti O h	136 31 28 27 14 0,3 0,45 1 1,7 0,27 5,5 -20	33 34 19 14 0,35	210 34 30 18 20 0,3 0,6 2,1 0,1 13,0 30	29 29 27 16 0,3 0,4 1 2,0 0,3	33 30 18 19	200 32 30 18 20 0,4 0,3 0,6 0,9 0,3 8,0 20	32 31 16 21 0,3 0,3 0,5 1,2 0,3	242 34 28 16 22 0,3 0,4 0,5 1,0 0,3 15 54	230 34 30 15 21 0,3 0,5 1,2 0,3 13 46	245 35 27 14 24 0,3 0,6 1 0,3 12,7 49
t	-10	-2	-4	-16	-4	-6	-5	4	-2	-2
Типы магм (по П. Ниггли)	Габбровая магма известково-ще- лочного ряда	CZ	щелочного ряда	Эссекситовая магма натрового ряда	магма	товая магма ка- лиевого ряда гозави выположения отонього			стково	-ще-

вом аналогичных пород по Дэли. Особенностью указанных пород является значительная идентичность средних значений отношений окислов натрия и калия в сумме щелочей (Na/K = ~ 1,2). Монцониты характеризуются постоянно высоким значением параметра «С» (5,5 против 4,7 у Дэли) и преобладанием окисного железа над закисным (Fe+3/Fe+2 = 1,5). В диорит-порфиритах средние значения двухвалентного и трехвалентного железа в целом варьируют в значительных пределах при отношении Fe+3/Fe+2 = 1,3. При этом в среднем значении индекса железистости-магнезиальности в ряду монцонит-диорит-порфирит резких отклонений не наблюдается (табл. 2). В этом же направлении на векторной диаграмме наиболее верхние части обоих проекционных плоскостей занимают точки с более высоким значением «Si» и низким значением параметра «b» при близкой величине шелочности. Указанные разновидности пород довольно резко отличаются попараметру «f'».

Талбица 4 Средний химический состав и числовые характеристики эффузивных и экструзивных пород мио-плиоценового магматического комплекс

и экс	трузивных	пород мно-п	лноценово	ro Marmai	нческого	KOMII.ICIIC			
		Экструзивные							
Породы	Андезито- базальты Изменен- ные анде- зиты анде- зиты анде- зиты анде- зиты анде- порфириты		Андезиты		Липариты	Липарито-	Липариты (липарито- вые порфи- ры)		
Возраст		Мис	пен-плног	ен	Плиоцен				
Количество анализов			3	4	4	3	4		
Основные химические показатели									
TIO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO CaO Na ₂ O K ₂ O H ₂ O n.п.п.	50,13 0,75 18,49 4,77 3,70 0,17 4,48 8,43 3,79 1,68 0,95 1,88 100,26	56,49 0,73 18,68 6,40 3,88 0,16 2,28 4,72 3,26 1,31 1,47 1,40 100,18	63,23 0,69 16,90 3,76 1,35 0,05 1,18 3,24 4,06 3,65 0,98 1,05 99,98	66,79 0,46 15,47 2,77 1,84 0,04 0,73 2,25 3,73 2,57 0,95 1,93 99,53	73,18 0,22 13,53 1,18 0,65 0,03 0,23 0,92 3,43 4,33 0,92 1,52 100,14	68,80 0,40 14,69 1,60 0,97 0,03 0,54 1,58 3,48 3,27 1,68 2,54 99,47	73,40 0,21 13,43 1,11 0,65 0,02 0,22 0,87 3,40 4,33 1,02 1,53 100,19		
Fe ³⁺ Fe ²⁺ Na/K Pe Fe+Mg Na K-Ca 1,2 1,6 2,4 0,81 0,39 0,47		2,7 1,1 0,81 0,70	1,5 1,4 0,86 0,73	1,8 0,7 0,88 0,89	1,6 1,0 0,86 0,81	1,7 0,7 0,88 0,89			
		Al>	2 Ca + N	a + K					
a b s f' m' a' n	11,4 7,4 20,0 61,2 42,0 40,1 77,2 21,9 1,1 -27,8 1,5 17,9	9,4 6,0 18,0 66,6 53,1 22,1 24,8 80,0 31,0 0,9 8,4 1,6	14.0 4.0 7.0 75.0 58.8 28.5 12.7 62.7 58.0 0.9 23.1 3.5	12,0 1,7 8,0 77,3 49,0 13,0 38,0 68,5 27,0 0,5 27,9 4,4	13,4 1,0 4,0 81,6 40,6 8,6 50,8 54,4 24,0 0,2 35,4 13,4	12,4 2,0 6,3 79,3 36,1 10,7 53,2 61,8 21,7 0,4 32,8 6,2	13,4 1,0 3,5 82,1 45,3 9,4 45,3 54,4 26,4 0,2 31,4 13,4		

Величины отношений щелочности к насыщенности пород глиноземом, а также числовые характеристики параметров магм, выведенные по П. Ниггли, позволяют отмеченные выше породы отнести к лейкомонцонитовому типу магм калиевого ряда.

Следующая по последовательности внедрения группа пород объединяет весьма близкие по основным химическим параметрам диффе-

Таблица 5 Основные параметры и типы магм мио-плиоценового магматического комплекса

налоги	Эффузивные								Экструзивные			
Породы и их анал	Андезиго-базаль- ты Габбро диориты по Ниггли	Измененные ан- дезиты (андезито- вые порфириты)	Андезиты Нормальные гра- поднориты по П. Ниггли	Лациты	Нормальные гра-	Липариты	Аплит-граниты по П. Ниггли	Липарито-дациты	Энгадинит-грани- ты по П. Ниг-	Липариты (липа- ритовый порфир)	Аплит-граниты по Нигли	
Колич. анали- зов	7	3	3 4				4		3			
	Параметры магм по П. Ниггли											
Si al fm c alk K mg c im ti O h	131 130 29 23 36 44 23 23 12 10 0,2 0,2 0,5 0,5 0,8 - 1,5 - 0,2 - 8,3 - -17 - -6 -	34 37 16 13 0,2 0,3 0,4 1,5 0,4 15,0	251 280 40 39 21 22 14 17 24 22 0,3 0,4 0,7 - 2,1 - 0,7 - 13 - 55 - 2	300 42 21 16 24 0,3 0,2 0,7 1,6 0,4 15 104 2	0,4	371 55 32 0,4 0,2 0,7 0,9 0,5 15 143 18	0,2	375 47 14 9 29 0,7 0,6 1,6 0,5 28,0 159 9	111	441 47 10 5 40 0,4 0,2 0,5 1,1 0,5 20,0 181	436 47 8 5 40 0,4 0,2	
ны магмы по Ниггли	Нормально габбро диорито- вая магма	омально имагма магма диоритов магма диоритов ди				Лейкогранитовая (аплит-гранито- вая) магма			(Энгади- нит-грани- говая) (Аплит- гранитовая)			
Типы П. Н												

ренциаты известково-щелочного ряда кварцдиоритовой магмы (табл. 3). По среднему значению щелочности и насыщенности глиноземом рассматриваемые породы относятся к нормальному типу, в целом отвечают нормальным кварцевым диоритам с отклонениями как к сиенилам, так и к граносиенитам. Характерной особенностью рассматриваемого ряда является умеренная их пересыщенность кремнеземом и глиноземом по сравнению со средним составом аналогичных пород у Дэли (табл. 2) при чувствительно заниженной роли фемических составляющих и наличии избыточного кремнезема в виде свободного кварца. Несмотря на постоянное повышение кислотности пород в ряду спенито-диорит-кварцевый диорит-граносиенит более или менее значнтельные вариации в содержании глинозема не наблюдаются. В то же время отмечается постепенное убывание значений окисного железа (за Известия, XXI, 4—3

исключением граносиенитов) при вариации отношений трехвалентного и двухвалентного железа в пределах от 0,9 до 1,5 (табл. 2). В целом породы указанной группы характеризуются значительной идентичностью средних значений основных химических параметров и представляют собой близкие дифференциаты кварцдиоритовой магмы с отклонениями крайних членов в сторону слегка недосыщенных и слабо пересыщенных разностей нормального ряда.

На векторной диаграмме упомянутые породы объединяют проекционные точки с максимально высоким значением параметра «а» и занимают наиболее верхнюю часть вариационной линии пород нор-

мального типа по Р. Дэли (фиг. 1).

Сравнительная характеристика основных петрохимических особенностей пород позволяет интрузивные образования Тексарской зоны отнести к следующим классам:

1. Эссекситы и эссекситовые габбро- ненасыщенные кремнеземом, умеренню-щелочные, лейкократовые породы натрового ряда.

2. Монцониты— недосыщенные— слабо пересыщенные кремнеземом, богатые щелочами, лейко-мезолитовые породы калиевого ряда.

3. Сиенито-диориты, кварцевые диориты, граносиениты и др.— слабо-умеренно пересыщенные кремнеземом, богатые щелочами породы известково-щелочного ряда.

Таким образом, породы интрузивного комплекса в общем характеризуются повышенной щелочностью и заниженной ролью фемической составляющей.

В пределах от ранних к поздним стадиям внедрения магм SiO₂ и Al₂O₃ проявляют обратное поведение: количество кремнезема непрерывно возрастает с одновременным уменьшением содержания глинозема в ряду эссекситы-монцониты — кварцевые диориты-граносиениты (фиг. 2). В этом отношении наблюдается почти полная идентичность в поведении CaO и глинозема. В указанном направлении, с некоторым отклонением убывают почти все фемические компоненты. При этом во всех случаях трехвалентное железо преобладает над двухвалентным. В более кислых дифференциатах в сумме щелочей наблюдается некоторое повышение содержания калия.

Обобщение результатов химических пересчетов эффузивных и интрузивных образований позволяет заключить, что изученные породы, как правило, относятся к нормальному типу. Эффузивные породы отвечают габбро-кварц-диоритовой магме известково-щелочного ряда, а интрузивные образования: нормально эссекситовой, лейкомонцонитовой, кварцдиорит-гранитовой магмам соответственно натрового, калиевого и известково-щелочного рядов.

Андезито-базальты являются крайне основными членами мио-плиоценовой эффузивной серии и по средним значениям насыщенности глиноземом и щелочности-известковистости относятся к породам нормального ряда. Породы недосыщены кремнеземом (Q=-27.8) и

30

C peduble nopodul no P. Danu

Условные обозночения

• Зффузивные породы

1º Duagasobue mappupumui

5. Виорит-порфириты

7. Пварцевые сиемиты

В - Зффузивные породы

11. Andesumoboie nopopupumu

▲ 3 KCMPY3 UBNSIC nopodoi

K. Jiunopumobale nopopupal

10. Andesumo-bosonsmu

6. Сиенито-диориты

8. Хворцевие диориты

9. граносиениты

12. Andesumu

14. Sunopumus

13. Doyumbi

2. Andesumo

3. FOCERCUMU

4. NONKOHUMN

1. Andesumobole nopopupuma

· Unmpysubnue nopodu

POLEHOBNU NOZNOM UVECKUU KONNNEKC

Мио-ппиоценовый магнатический комплекс

В - Зффузивные 17. 5030Abmb1

U. Sunapumo-dayumu

18. Andesumbi

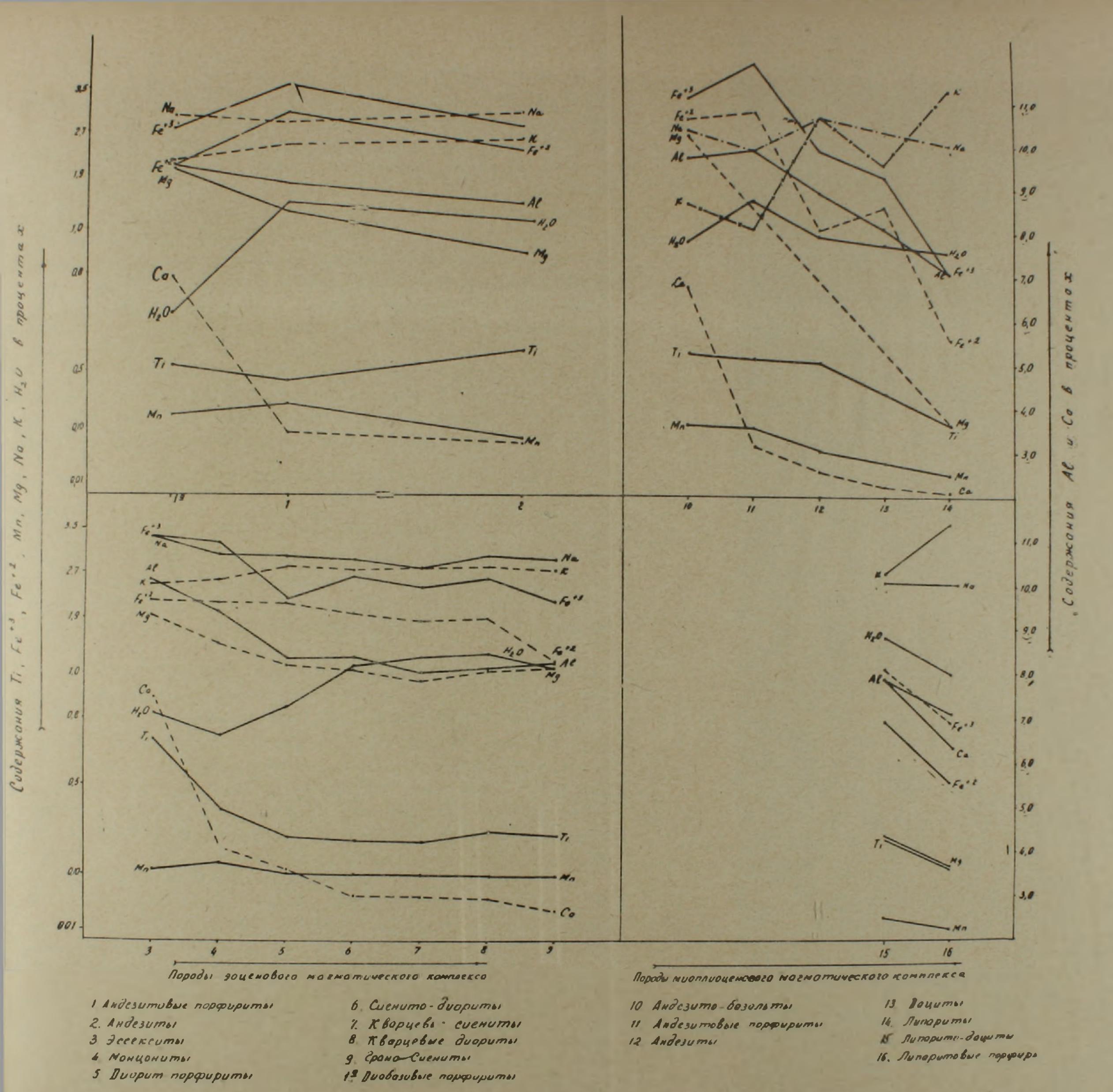
19. Doyumes

20. Nunapumu

B - Unmpusubhole

21. 3 ccexcumu

22. MOHYOHUMBI


23. Duopumbi 24. Cue Humbs

25. Trapue bure duopumer

26. гранодиориты

27. Epantimoi

Фиг 1. Векторная диаграмма срежних химических составов пород эоценового и мио-плиоценового магматических комплексов Айоцдзорского рудного района.

(на оси обецисс породы расположены в порядке возростиния киспотности)

Фиг. 2. Вариационная диаграмма средних химических составов эффузивных, экструзивных и интрузивных пород эоценового и мио-плиоценового магматических комплексов Айоцдзорского рудного района.

бедны щелочами при постоянном преобладании натрия в сумме щелочей. Характерно повсеместное преобладание окисного железа над закисным при величине индекса железистости-магнезиальности 0,65.

Измененные андезиты (андезитовые порфириты) отличаются от средного состава андезита (по Дэли) пониженной щелочностью—кислотностью и высоким значением фемической составляющей (b=18,0, против 12,0 у Дэли) и относятся к породам, пересыщенным глиноземом. В сумме щелочей наблюдается резкое преобладание натрия при среднем значении индекса щелочности-известковистости, равным 0,47. По сравнению с андезито-базальтами наблюдается значительное повышение величины железистости-магнезиальности (Fe/Fe+Mg=0,81).

Свежие андезиты от средних андезитов отличаются: 1) незначительным преобладанием натрия над калием (Na/K=1,1), в связи с чем параметр «n» имеет более низкую величину (n=62,7 против 74,3 по Дэли); 2) насыщенностью глиноземом и низким значением параметра «b»; 3) повышенной величиной щелочности ($\frac{a}{c}$ = 3,5 против 1.75 у Дэли).

Дациты по химическому составу отличаются от средних дацитов сравнительно высокой величиной параметра «а'». В сумме щелочей натрий, как правило, всегда преобладает при отношении Na/K = 1,4. Рассматриваемые дациты, по классификации А. Н. Заварицкого, относятся к пересыщенных кремнеземом и бедных щелочами классу пород.

Липариты среди эффузивов мио-плиоценового комплекса характеризуются более повышенной щелочностью и преобладанием калия над натрием с отношением Na/K=0,7. Породы по химическому составу почти не отличаются от средних липаритов по Дэли. По отношению величины щелочности-известковистости и насыщенности глиноземом рассматриваемые липариты относятся к ряду пород, насыщенных глиноземом. При эгом индекс щелочности-известковистости в липаритах повышается до максимума 0,89. Одновременно наблюдается повышение среднего значения железистости-магнезиальности (Fe/Fe+Mg=0,88 против 0,86 в дацитах).

Экструзивные липарито-дациты по среднему химическому составу являются промежуточными эквивалентами рассматриваемых выше дацитов и липаритов. В отличие от последних содержания натрия и калия одинаковые (Na/K=1,0). Породы пересыщены как глиноземом, так и кремнеземом. По соотношению щелочности-известковистости липарито-дациты относятся к породам умеренно богатым щелочами (a:c=6,2 при Q=32,8). По среднему значению индекса железистости-магнезиальности породы идентичны с дацитами (Fe/Fe+Mg=0,86). Результаты пересчетов основных параметров магм по Ниггли позволяют рассматриваемые экструзии отнести к породам

лейкогранитовой (энгадинит-гранитовой) магмы известково-щелочного ряда.

Экструзивные липариты отвечают породам, пересыщенным глиноземом и богатым щелочами при обычном преобладании калия над натрием (Na/K=0,7). В отношении насыщенности пород глиноземом и по среднему значению параметра «f'» липариты близки к кварцевым порфирам по Дэли, отличаясь от них более низкой величиной фемической составляющей и параметра «m'». В отличие от средних липаритов и кварцевых порфиров (по Дэли) породы насыщены кремнеземом (Q=36,4 против 33,0 и 33,4 у Дэли). Липариты по средним значениям основных параметров магм относятся к породам аплитгранитовой магмы известково-щелочного ряда (по Ниггли).

Анализ результатов пересчета основных химических параметров эффузивно-экструзивных образований мно-плиоценового комплекса позволяет заключить, что рассматриваемые породы, кроме андезито-базальтов, пересыщены глиноземом и в целом являются дифференциатами сравнительно кислой магмы известково-щелочного ряда.

Сравнение петрохимических особенностей пород эффузивных и интрузивных формаций эоценового и мно-плиоценового магматических комплексов позволяет отметить следующеє:

1. Эоценовые эффузивные и интрузивные образования относятся к породам нормального ряда, а мио-плиоценовые эффузивно-экструзивные породы — к типу, пересыщенному глиноземом.

В породах различных формаций, как правило, индексы железистости-магнезиальности и щелочности-известковистости постоянно возрастают. При этом, соотношения натрия и калия в сумме щелочей имеют двоякое выражение: а) в основных и средних породах натрий преобладает над калием; б) в более кислых дифференциатах калий преобладает над натрием.

С повышением кислотности и щелочности пород наблюдается понижение средних значений почти всех основных породообразующих компонентов с незначительными вариациями в пределах отдельных разностей.

- 2. Рассматриваемые магматические комплексы в отдельности являются результатом отличных по химизму исходных магм:
- а) Эоценовый эффузивный комплекс— габбро-кварцдиоритовая магма известково-щелочного ряда;
- б) Поздневерхнеэоценовый-предолигоценовый интрузивный комплекс эссексит-лейкомонцонит-кварцдиорит-гранитовая магма соответственно натриевого, калиевого и известково-щелочного рядов;
- в) Мио-плиоценовый эффузивно-экструзивный комплекс габбро-кварцдиорит-лейкогранитовая магма известково-щелочного ряда.

Институт геологических наук АН Армянской ССР

Ա. Գ. ՀԱԿՈՐՅԱՆ, Ռ. Ն. ԶԱՐՅԱՆ

ՀԱՅՈՑՁՈՐԻ ՀԱՆՔԱՅԻՆ ՇՐՋԱՆԻ ՄԱԳՄԱՏԻԿ ՖՈՐՄԱՑԻԱՆԵՐԻ ՊԵՏՐՈՔԻՄԻԱԿԱՆ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՄԱՍԻՆ

Udhnyhnid

Հայոցծորի հանքային շրջանի էոցենի և միո-պլիոցենի հասակի մագմատիկ առաջացումների մանրակրկիտ պետրոքիմիական ուսումնասիրություննեթը թույլ են տալիս նշելու հետևյալը.

- 1) Էոցենի հասակի էֆուզիվ և ինտրուղիվ առաջացումները պատկանում են ապարների նորմալ շարքին, իսկ միոպլիոցենի էֆուզիվ-էքստրուզիվ գոյացումները՝ կավահողով գերհագեցած ապարների խմբին։ Դիտարկվող ֆորմացիաները կազմող ապարների հաջորդական շարքում նկատվում է Fe/Fe+Mg և Na/K+Ca արժեքների մշտական աձւ նատրիում-կալիում հարաբերությունն ունի երկակի բնույթ՝ ա) հիմնային և միջին կազմի ապարներում գերակշռում է նատրիումը, բ) ապարների համեմատաբար թթու տարատեսակներում գերակշռում է կալիումը։ Ապարների թթվայնության և հիմնայնության բարձրացմանը զուգընթաց նկատվում է մյուս ապար կազմող գլխավոր տարրերի նվաղում։
- 2) Դիտարկվող մագմատիկ կոմպլեքսները Հանդիսանում են ինքնուրույն մագմատիկ հալոցքների դիֆերենցիացիայի արդյունք ա) էոցենի էֆուզիվ կոմպլեքսը—կրա-ալկալային շարքի գաբրո-կվարցդիորիտային մագմայի, բ) ուշ վերին էոցենյան—ստորին օլիգոցենյան հիպաբիսալ ինտրուզիվ կոմպ-լեքսը համապատասխանաբար նատրիումային, կալիումային և կրա-ալկա-լային շարքերի էսեքսիտ-լելկոմոնցոնիտ-կվարց դիորիտ-գրանիտային մագ-մաների և գ) միո-պլիոցենի էֆուզիվ-էքստրուզիվ կոմպլեքսը կրա-ալկալա-յին շարքի գաբրո-կվարցդիորիտ-լեյկոգրանիտային մագմայի։

ЛИТЕРАТУРА

- 1. Гинзберг А. С. Петрография республики Армении. Петрография СССР, серия I, выпуск 2, 1934.
- 2. Елисеева О. П. Палеогеновый вулканизм Армении и некоторые данные о его металлогеническом значении. 1962
- 3 Котляр В. Н. Геологический очерк западной части Даралагезского уезда ССР Армении. 1930.
- 4. Малхасян Э. Г. Петрография интрузивных пород Даралагяза 1958.
- 5 Фаворская М. А. и Елисесва О. П. Палеогеновый вулканизм некоторых районов Армянской ССР, 1961.
- 6 Четвериков С. Д. Руководство к петрохимическим пересчетам химических анализов горных пород и определению их химических типов. 1956.