Известия АН Армянской ССР. Науки о Земле, 1-2, 95-102, 1968

В А. АГАМАЛЯН

РЕГИОНАЛЬНЫМ ДИАФТОРЕЗ В АРЗАКАНСКОМ КРИСТАЛЛИЧЕСКОМ МАССИВЕ

Арзаканский кристаллический массив обнажается в ядре верхнемеловой антиклинали общекавказского простирания на южном склоне Цахкуняцкого хребта в р-не сс. Арзакан, Бжни и Агверан, занимая площадь в 120 км². Он отделен от расположенного севернее и северо-западнее Апаран-Анкаванского метаморфического массива естественными орографическими и геологическими границами — гребнями Шахсуварского и Зинджерлинского отрогов. сложенных верхнемеловыми, третичными и четвертичными образованиями.

Снизу-вверх массив сложен мигматитами и инъекционными гнейсами, различными кварц-слюдистыми и кварц-слюдисто-хлоритовыми кристаллическими сланцами с пачками доломитов и мраморов, зеленосланцевыми порфиритоидами и порфироидами, увенчанный сверху мощными мраморами с пропластками метапсамитовых зеленых сланцев. Интрузивные образования имеют широкое распространение и представлены породами от ультраосновных до ультракислых, размещенных в различных частях разреза Арзаканского кристаллического массива и поэтому дислоцированных и метаморфизованных в различной степени. Район был охвачен геологическими исследованиями Н. Г. Казнаковой, К. Н. Паффенгольца, В. Н. Котляра, Г. П. Багдасаряна, Р. А. Аракеляна и других исследователей. Однако вопросы петрографии и метаморфизма сланцев остаются слабо изученными. С 1963 г. автором проводится подробное крупномасштабное картирование, петрографическое и минералогическое изучение сланцев и интрузивов Арзаканского кристаллического массива, на основании которого составлена новая крупномасштабная геологопетрографическая карта. дается новое расчленение сланцев и интрузивов, и уточняются вопросы геологии и метаморфизма района. Впервые обнаружены и изучены явления регионального диафтореза в нижней серии Арзаканского кристаллического массива, чему и посвящена настоящая статья.

Как известно, диафторез или ретроградный (регрессивный) метаморфизм может иметь место только при наличии предшествующего ему метаморфизма более высокой ступени. Этот процесс для своего развития требует наличия метаморфических пород более высокой фации и выражается в смене минеральных парагенезисов высокой ступени более низкими. Распознаются явления диафтореза преимущественно микроскопическими методами по признакам заме-

В. А. Агамалян

щения высокотемпературных минералов низкотемпературными. Следовательно, распознавать явления диафтореза возможно только при сохранении реликтов минералов и структур высоких фаций в более низкотемпературных псевдоморфозах по ним [1].

Хорошим примером диафторитов могут служить пятнистые сланцы, широко развитые в Арзаканском кристаллическом массиве в северной части гребня Бжну-ял, на правобережье р. Даллар, в верховьях оврага Агдаши-дзор и др. участках. Пятнистые сланцы слагают выдержанный стратиграфический горизонт, являясь основанием разреза Арзаканского кристаллического массива. Они на различных участках интенсивно гранитизированы с переходом через инъекционные гнейсы в типичные гранитные мигматиты (гранитогнейсы).

Пятна, по наличию которых сланцы получили свое название, как будет показано ниже, являются не чем иным, как псевдоморфозами по порфиробластам граната и андалузита развитыми ретроградно. Петрографические исследования пятнистых сланцев позволяют установизь два этапа регионального метаморфизма.

Пятнистые кварц-слюдистые сланцы характеризуются наличием многочисленных более густо окрашенных пятен — включений размером от 2 до 5—10 мм, обычно вытянутых по линейности сланцев. Окраска сланцев серо-зеленая, а пятен — темно-серая или зеленая, обычно более темная, чем у вмещающей массы. На блестящей поверхности сланцеватости пятна резко выделяются своим матовым блеском.

96

Текстура породы слоисто-кристаллическая с высокой степенью развития кристаллизационной сланцеватости, мелко-плойчатая с отчетливой линейностью. Последняя выражена в виде тонкой параллельной штриховки на плоскостях сланцеватости, образованной гребешками плоек. Четко развит поперечный (к линейности) кливаж в виде грубых параллельных трещин отдельности, без заметных следов движений по ним. Иногда окраска сланцев становится более светлой, до зеленовато-кремовой, или наоборот, более темной, густо серо-зеленой. В первом случае пятна выделяются резче, а во втором слабее. При выветривании, пятна рельефно выступают на плоскостях сланцеватости в виде бугорков.

Под микроскопом пятнистые сланцы обнаруживают грано-лепидобластовую структуру, сильно развитую сланцеватость и резко плойчатую микротекстуру.

На этом фоне выделяются более крупные выделения — пятнапорфиробласты, часто сохраняющие правильные кристаллографи ческие очертания.

В составе иятнистых сланцев установлены следующие минералы главные—кварц, мусковит, хлорит и биотит; второстепенные альбит, серицит и гранат: акцессорные—ильменит, магнетит, турмалин, апатит, рутил и циркон.

Размер зерен основной ткани колеблется от 0,2 до 0.7 мм, составляя в среднем 0.5 мм, тогда как пятна-порфиробласты имеют размер от 1 мм до 10—15 мм. Пятна сложены мелкочешуйчатым агрегатом с размером зерен 0.01 мм.

По форме и материалу заполнения можно различить по меньшей мере 2 типа пятен:

1) пятна округлой формы, сложенные преимущественно хлоритом и серицитом;

2) пятна таблитчатой формы, сложенные в основном серицитом, в которых хлорит может совершенно отсутствовать.

1) Пятна округлой формы преобладают и, как показали наблюдения над большим количеством шлифов, являются хлорит-серицитовыми псевдоморфозами, развитыми ретроградно по синкинематическим порфиробластам граната. В некоторых шлифах, отобранных, по совету проф. Е. А. Кузнецова, из слабо нарушенных участков сланцев (ядра мелких складок, будины), в пятнах этого типа удалось обнаружить реликты альмандина, сохранившегося от замещения, а в одном случае (шл. 538а)—почти целый порфиробласт бледно-розового изотопного альмандина ($n=1.810\pm5$) пойкилобластического гелицинового строения, только с периферии частично затронутый замещением тонкочешуйчатым агрегатом се-

рицита и хлорита (фиг. 1).

Фиг. 1.

Фиг. 1а.

Фиг. 1. Крупный порфиробласт альмандина пойкилобластического гелицинового строения. Видно плавное огибание порфиробласта лепидо-гранобластовой основной тканью и паралелльная ориентировка включений в гранате. Объ. 3.5^x, б/а. Фиг. 1а. Фрагмент фиг. 1. Белос — кварц, серое гранат, черное — биотит. Заметно более мелкий размер кварца в порфиробласте по сравнению с кварцем основной ткани. Более крупнозернистый неориентированный агрегат кварц + биотит на стыке порфиробласта и основной ткани представляет собой заполнение «тени давления» порфиробласта. Объ. 9^x, б/а.

Даже при полном замещении часто сохраняется пойкилобластическое гелициновое строение порфиробласта. что позволяет легко установить принадлежность его к гранату (фиг. 2). Дифференциальные движения, сопровождавшие диафторез. в большинстве

случаев разбивают ставшие неустойчивыми (вследствие замещения) порфиробласты, смещая и растирая их (фиг. 3).

Судя по форме и составу граната, его отношению к дислокациям прогрессивного этапа метаморфизма. порфиробласты альмандина имеют синкинематический характер и росли в обстановке регионального метаморфизма фации альмандиновых амфиболитов. Как

Фиг. 2. Перфиробласт граната (пятно), полностью замещенный агрегатом хлорита и серицита. Видно изгибание включений кварца направо и вверх. Порфиробласт вращался по часовой стрелке. Объ. 3,5×, б/а.

Фиг. З. Полностью замещенный мелкочешуйчатым агрегатом хлорита и серицита пойкилобластический порфиробласт граната деформирован и разбит дифференциальными подвижками при диафторезе на З отдельные части. Темно-серое — псевдоморфоза по гранату, серое в листочках — мусковит, белое в зернах — кварц. Объ. 9 ×, б/а.

видно на фиг. 1 и 2, заложение порфиробластов граната происходило тогда, когда порода в целом уже была рассланцована. Об этом свидетельствует параллельная ориентировка включений кварца внутри граната. Порфиробласты росли в обстановке дифференциальных движений, перетерпев некоторое вращение (ориентированные вкючения изогнуты по отношению к плоскости сланцеватости). Рост порфиробласта сопровождался дальнейшим бластезом основной ткани, о чем говорит более крупный размер зерен кварца основной ткани по сравнению с кварцем включений. И, наконец, плавное огибание порфиробластов основной тканью породы и наличие «тени давления» на их стыке (фиг. 1, 1а) подтверждают синкинематический характер гранатовых порфиробластов.

2) Пятна таблитчатой формы, существенно серицитового состава, в отличие от апогранатовых псевдоморфоз, не содержат хлорита. Иногда оба типа пятен могут встречаться одновременно, нередко во взаимном срастании (фиг. 4), но, как правило, первые распространены в темноокрашенных, а вторые в более светлоокрашенных разностях пятнистых сланцев. Реликтов первичного минерала в этом типе пятен обнаружить не удалось, однако судя по таблитчатой форме и посткинематическому характеру, их следует отнести к апоан-

далузитовым псевдоморфозам. Этот вывод основан на факте нахождения посткинематических метакристов андалузита в графитоносных сланцах (фиг. 5), залегающих стратиграфически несколько выше пятнистых сланцев в единой серии, где они также ретроградно замещаются агрегатом тонкочешуйчатого серицита и имеют аналогичную форму кристаллов.

Фиг. 4.

Фнг. 5

Фиг. 4. Таблитчатой формы серицитовая псевдоморфоза по андалузиту в срастании с округлым зерном граната. Видно посткинематический характер андалуита. Черный-гранат, белый-псевдоморфоза по андалузиту. Объ. 9, ник + Фиг. 5. Свежий посткинематический андалузит таблитчатой формы в срастании с синкинематическим порфиробластом граната. Объ. 9, б/а.

Фиг. ба. Фиг. 6. Фиг. 6. Апоандалузитовое пятно-псевдоморфоза таблитчатой формы (левая часть снимка). Видны правильные кристаллические формы и посткинематический характер. Плойчатый структурный рисунок сланца «просвечивает» через псевдоморфозу. Темно-серое — пятно, серое — мусковит, белое — кварц (в зернах). Объ. 3.5%, б/а.

Фиг. 6а. Фрагмент фиг. 6. Пятно-слева, основная ткань справа. В центре видно продолжение зерна кварца из основной ткани в псевдоморфозу, а выше продолжение бнотита из основной ткани в псевдоморфозу. Заметно тонкочешунчатый характер серицита, заместившего андалузит. Объ. 9. б/а.

Посткинематический характер кристаллизации андалузита (ныне представлен серицитовыми псевдоморфозами) виден на фиг. 6.метакрист «накладывается» на микроплойчатый рисунок сланца На фигурах 6 и ба видно, как ориентированные зерна кварца и био-

тита свободно продолжаются из основной ткани в метакрист, а структурный рисунок сланца свободно «просвечивает» через псевдоморфозу.

Правильные кристаллографические ограничения апоандалузитовых псевдоморфоз сохраняются в исключительно редких случаях и встречаются только в шлифах. взятых из центральных частей будин и ядра складок. Однако, они угадываются по более мелкочешуйчатому сложению и образуют вытянутые и изогнутые полосы и струики, деформированные под воздействием повторного рассланцевания. сопровождающего днафторез (фиг. 7).

100

Фиг. 7. Сильно деформированные и растянутые дифференциальными подвижками при днафторезе аподистеновые псевдоморфозы — пятна (серое). Объ. 3.5*, б/а.

Основная ткань пятнистых сланцев полнокристаллическая, среднезернистая, липидо-гранобластовой структуры и микроплойчатой текстуры. Состоит преимущественно из кварца, мусковита, хлорита и биотита. При этом с увеличением содержания хлорита соответственно уменьшается количество биотита, по которому хлорит развивается, часто в виде гомосных псевдоморфоз с выделением сагенитового рутила.

Полевые шпаты для пятнистых сланцев не характерны и их появление, особенно микроклина. знаменует начало гранитизации, с усилением которой порода может полностью перейти в типичный очковый гнейс-мигматит.

Приведенные факты свидетельствуют о наличии по меньшей мере двух этапов регионального метаморфизма в нижней серии Арзаканского кристаллического массива: прогрессивного и регрессивного. Минеральные парагенезисы прогрессивного этапа в настоящее время можно восстановить только по единичным реликтам минералов и многочисленным псевдоморфозам по ним, описанным выше. Минеральные парагенезисы второго этапа (регрессивного) легко распознаются по диафторитическим новообразованиям псевдоморфоз.

Таким образом, равновесной ассоциацией первого этапа является: кварц + альмандин + андалузит + биотит (ильменит, магнетит), э второго этапа — кварц + хлорит + серицит (турмалин).

Первая из них соответствует фации альмандиновых амфиболитов, а вторая фации зеленых сланцев регионального метаморфизма [2].

Абсолютный возраст первого этапа метаморфизма сланцев Арзаканского кристаллического массива не может быть датирован радиологическими данными ввиду наложения второго, регрессивного этапа. Наиболее вероятно, что данные К/Аг определений по кварцслюдистым сланцам Арзакана в 159—171 млн. лет [3] отражают возраст второго, регрессивного этапа метаморфизма, точнее — время последнего поднятия Арзаканского кристаллического массива выше геоизотермы 300° [4].

Заключение

Пятнистые сланцы Арзаканского кристаллического массива перетерпели по меньшей мере два этапа регионального метаморфизма, первый из которых имел прогрессивный характер и достиг фации альмандиновых амфиболитов, а второй — регрессивный — фации зеленых сланцев с абсолютным возрастом 159—171 млн. лет (ранне альпийский). Первый этап метаморфизма отделен от второго значительным промежутком времени, в течение которого данный участок земной коры перетерпел поднятие, эрозию. вновь погружение и повторный метаморфизм.

Институт геологических наук АН Армянскон ССР

Поступило 8.ХП 1967 г.

վ. Ա. ԱՂԱՄԱԼՅԱՆ

ՌԵԳԻՈՆԱԼ ԴԻԱՖՏՈՐԵՉ ԱՐՉԱՔԱՆԻ ԲՅՈՒՐԵՂԱՅԻՆ ՉԱՆԳՎԱԾՈՒՄ

Ամփոփում

Արզաքանի բյուրեղային զանգվածի սահմաններում տարված մանրակրրկիտ երկրաբանական հանույթի և ապարների հատուկ պետրոգրաֆիական ուսումնասիրության հիման վրա հեղինակը առանձնացնում է քվարց-փայլարալին կազմի բծավոր թերթաքարերի շերտախումբ, որպես ամենահինը շրջանի կտրվածքում։ Միկրոսկոպիական հետազոտությունները ցույց են տալիս, որ այդ թերթաքարերի մեջ նկատվող բծերը ներկայացված են սերիցիտի և սերիցիտի ու քլորիտի մանրահատիկ կուտակումներով, որոնք հահախ հանդես են բերում որոշակի բյուրեղային սահմանափակումներ։ Այդ կուտակումների մեջ ի հայտ են բերված ալմանդինի և անդալուղիտի մնացորդներ, որոնց ներկայությունը և կուտակումների ձևը վկայում են այն մասին, որ նշված բծերը հան գիսանում են պսեզոմորֆողներ ըստ ալմանդինի և անդալուզիտի։ Միաժամանակ նկատվում է քլորիտով բիոտիտի խորը տեղակալում։

Ալմանդինի և անդալուզիտի ներկայունյունը Չնարավորունյուն է տալիս եղրակացնելու, որ բծավոր ներնաքարնրը իրենցից ներկայացնում են տիպիկ կանաչ քարային դիաֆաորիտներ ըստ խորո մետամորֆիզացված այմադինամֆիբոլիտային ֆացիայի բյուրեղային ներնաքարերի։

Նշված հանգամանքը Թույլ է տալիս եզրակացնելու, որ Արզաքանի ըծավոր ԹերԹաքարերը, ինչպես ամբողջ շնրտախումբը և ընդհանրապես Արզաքանի բյուրեղային զանգվածի ստորին սերիան (ըստ հեղինակի տվյալների), ապրել է ռեղիոնալ մետամորֆիզմի 2 շրջան, առաջին և երկրորդ։

Առաջին շրջանում ռեգիոնալ մետամորֆիզմի աստիճանը հասել է ալմանղինային ամֆիբոլիտների ֆացիային [2], իսկ երկրորդում, որը համադրվել է արդեն կոնսոլիդացված բյուրեղային ԹերԹաքարերի վրա, մետամորֆիզմի ատոիձանը չի անցել կանաչ-քարային ֆացիայից։

Քանի որ ռաղիոլոգիական տվյալները արտացոլում են միայն վերջին մետամորֆիզմի հասակը, հետևարար գրականունյան մեջ բերվող ներնաքարևրին վերաբերող տվյալները (159—171 մլն. տարի) [3], տալիս են նշված դիաֆտորեղի հասակը, ավելի հիշտ դանդվածի վերջին անդամ 300°-ի գետիղոներմից վեր բարձրանալու ժամանակը [4]։

Առաջին մետամորֆիզմը երկրորդից սահմանադատված է ժամանակ մի նշանակալից հատվածով, որի ընթացքում շրջանը ապրել է բարձրացում, էրոդիա, ընկզմում և նոր մետամորֆիզմ։

ЛИТЕРАТУРА

- 1. А. Харкер. Метаморфизм. Т., ОНТИ, 1937.
- У. Файф, Ф. Тернер и Дж. Ферхуген. Метаморфические реакции и метаморфические фации. Изд. ИЛ. М., 1962.
- З. Г. П. Багдасарян и Р. Х. Гукасян. О возрасте палеозойских интрузий Армянской ССР. Изв. АН Арм. ССР, сер. геол. и геогр. наук, XIV, № 4, 1961.
- Evernden J. F., Curtis G. H., Kistler R. W., Obradovich J. Argan diffusion in glauconite, microcline, sanidine, leucite and phlogopite. Am. Journ. Sci., 258, 1960