Գիտություններ երկրի մասին

XIX, 3, 1966

Науки о Земле

ГЕОФИЗИКА

С. М. АЙВАЗЯН

к основам геомеханики*

(Сообщение второе)

11. Событие, происходящее с частицей, определяется тремя координатами, моментом времени, когда произошло событие и состоянием массы частицы—пятой координатой континуума пространство—время—масса.

Рассмотрим две системы отсчета K и K', движущиеся с постоянной скоростью друг относительно друга. Координатные оси X и X' совпадают, Y и Z параллельны осям Y' и Z' время в системах K и K' обозначим через t и t'.

Первое событие состоит в том, что сигнал отправляется в системе K из точки с массой m_1 координатами x_1 , z_1 в момент времени t_1 . Второе событие — сигнал приходит в этой же системе в точку с массой m_2 и координатами x_2 , y_2 , z_2 в момент времени

Если принять, что скорость сигнала в интервале между двумя событиями постоянна, то пройденное сигналом расстояние равно c (t_2-t_1); это же расстояние, выраженное через пространственные координаты в пятимерном континууме равно $[(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2+\gamma (m_2-m_1)^2]^{1/2}$, где γ — константа размерности. Уравнение движения сигнала выразится через зависимость между координатами обоих событий в системе K:

$$(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 + \gamma (m_2 - m_1)^2 - c^2 (t_2 - t_1)^2 = 0.$$
 (8,1)

Интервал (s_{12}) между двумя событиями имеет следующую форму:

$$S_{12} = \left[c^2 \left(t_2 - t_1\right)^2 - \left(x_2 - x_1\right)^2 - \left(y_2 - y_1\right)^2 - \left(z_2 - z_1\right)^2 - \gamma \left(m_2 - m_1\right)^2\right]^{1/2}.$$
(8,2)

Если скорость сигнала непостоянна, т. е. в момент времени t_1 сигнал распространяется со скоростью c_1 , а в момент времени t_2 — со скоростью c_2 , то пройденное сигналом расстояние равно $(c_2-c_1)^2$ $(t_2-t_1)^2$. Интервал, следовательно, примет вид:

$$S_{12} = \left[(c_2 - c_1)^2 (t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 - \gamma (m_2 - m_1)^2 \right]^{\frac{1}{2}}.$$
(8,3)

Совершенно то же самое можно сказать о двух событиях и интервале в системе K'.

Продолжение. Начало см. "Известия" АН Армянской ССР (науки о Земле). № 1—2, 1966.

Как известно, из инвариантности (неизменности) скорости света следует, что интервал является инвариантом по отношению к преобразованию от одной инерциальной системы отсчета к любой другой. Тогда, из неинвариантности скорости света (сигнала) следует, что интервал неодинаков во всех инерциальных системах отсчета, он разнится на величину, пропорциональную изменению скорости сигнала: $c_1 - c_1$.

Интервал между бесконечно близкими событиями в пятимерном континууме при условии, что скорость света в пределах интервала постоянна, равен:

$$ds^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2} - \gamma dm^{2}. \tag{8.4}$$

Если $m_1 = m_2$, то dm^2 обратится в нуль и соотношение (8,4) примет обычный релятивистский вид:

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$
.

Из соображений математического удобства можно принять:

$$\tau = ict$$
,

тогда соотношения (8,2) и (8,4) запишутся:

$$s_{12}^{2} = -\left[(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2} + \gamma (m_{2} - m_{1}) + (z_{2} - z_{1})^{2} \right],$$

$$ds^{2} = -\left[(dx^{2} + dy^{2} + dz^{2} + \gamma dm^{2} + dz^{2}), \quad (8.5) \right]$$

где ds^2 — квадрат элемента длины.

Если ds=0 в одной из инерциальных систем отсчета, то $ds'\neq 0$ в другой инерциальной системе, если скорость сигнала (c) в этих системах различна; следовательно, ds^2 и ds'^2 не будут пропорциональны друг другу:

$$ds^2 \neq ds'^2. \tag{8,6}$$

Из (8,6) следует, что при неравенстве бесконечно малых интервалов, не равны и конечные интервалы: $s \neq s'$.

Таким образом, интервал между событиями неодинаков во всех инерциальных системах отсчета, если скорость сигнала в них различна; относительно двух систем отсчета разность интервалов пропорциональна разности скоростей сигнала в этих системах.

12. Пусть в системе отсчета K произошли два события, характеризуемые вышеуказанными координатами. Зададимся вопросом, могут ли эти два события произойти в одном и том же месте пространства в системе K'.

Обозначим

$$c_2 - c_1 = c_{12}, t_2 - t_1 = t_{12}, m_2 - m_1 = m_{12},$$

 $(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 = l_{12}^2.$

Допустим, что скорость сигнала постоянна в обоих системах. Интервал между событиями в системе *К* равен:

$$s_{12} = c^2 t_{12}^2 - l_{12}^2 - \gamma m_{12}^2, \qquad (9,1)$$

а в системе K':

$$s_{12}^{'2} = c^2 t_{12}^{'2} - l_{12}^{'2} - \gamma m_{12}^{'2}. \tag{9,2}$$

В силу инвариантности интервала из (9,1) и (9,2) имеем:

$$c^2 t_{12}^2 - l_{12}^2 - \gamma m_{12}^2 = c^3 t_{12} - l_{12} - \gamma m_{12}^2$$

Если два события происходят в одной и той же точке в системе K' (т. е. $l_{12} = 0$), то:

$$s_{12}^2 = c^2 t_{12}^2 - t_{12}^2 - \gamma m_{12}^2 = c^2 t_{12}^2 - \gamma m_{12}^2 > 0. \tag{9.3}$$

Таким образом, два события могут произойти в одном и том же месте пространства в системе K', если интервал между событиями вещественный (времениподобный), т. е. если $s_{12} > 0$.

В силу ненивариантности интервала имеем:

$$c_{12}t_{12} - l_{12} - \gamma m_{12} \neq c_{12}t_{12} - l_{12} - \gamma m_{12}$$

Если потребовать, чтобы события произошли в одной точке в системе K' ($l_{12}=0$), то:

$$s_{12}^{1} = c_{12}^{2} t_{12}^{2} - l_{12}^{2} - \gamma m_{12}^{2} \neq c_{12}^{2} t_{12}^{2} - \gamma m_{12}^{2}. \tag{9,4}$$

Правая часть соотношения (9,4) может быть больше, меньше или равна нулю; важно то, что в силу неинвариантности интервала не существует такой системы отсчета, в которой оба события произошли бы в одной и той же точке пространства.

Два события могут произойти в одно и то же время в двух системах отсчета K и K', если интервал инвариантен. В силу инвариантности интервала

$$c^2 t_{12}^2 - l_{12}^2 - \gamma m_{12}^2 = c^2 t_{12}^{\prime 2} - l_{12}^{\prime 2} - \gamma m_{12}^{\prime 2}$$

и так как мы требуем, чтобы $t_{12} = 0$, то

$$s_{12}^{2} = -l_{12} - \gamma m_{12}^{'2} = -(l_{12}^{2} + \gamma m_{12}^{'2}) < 0, \tag{9.5}$$

т. е. если интервал между двумя событиями мнимый (пространственноподобный), то можно найти такую систему отсчета, в которой оба события произошли в одно и то же время. Однако если интервал не-инвариантен, то при $t_{12}=0$

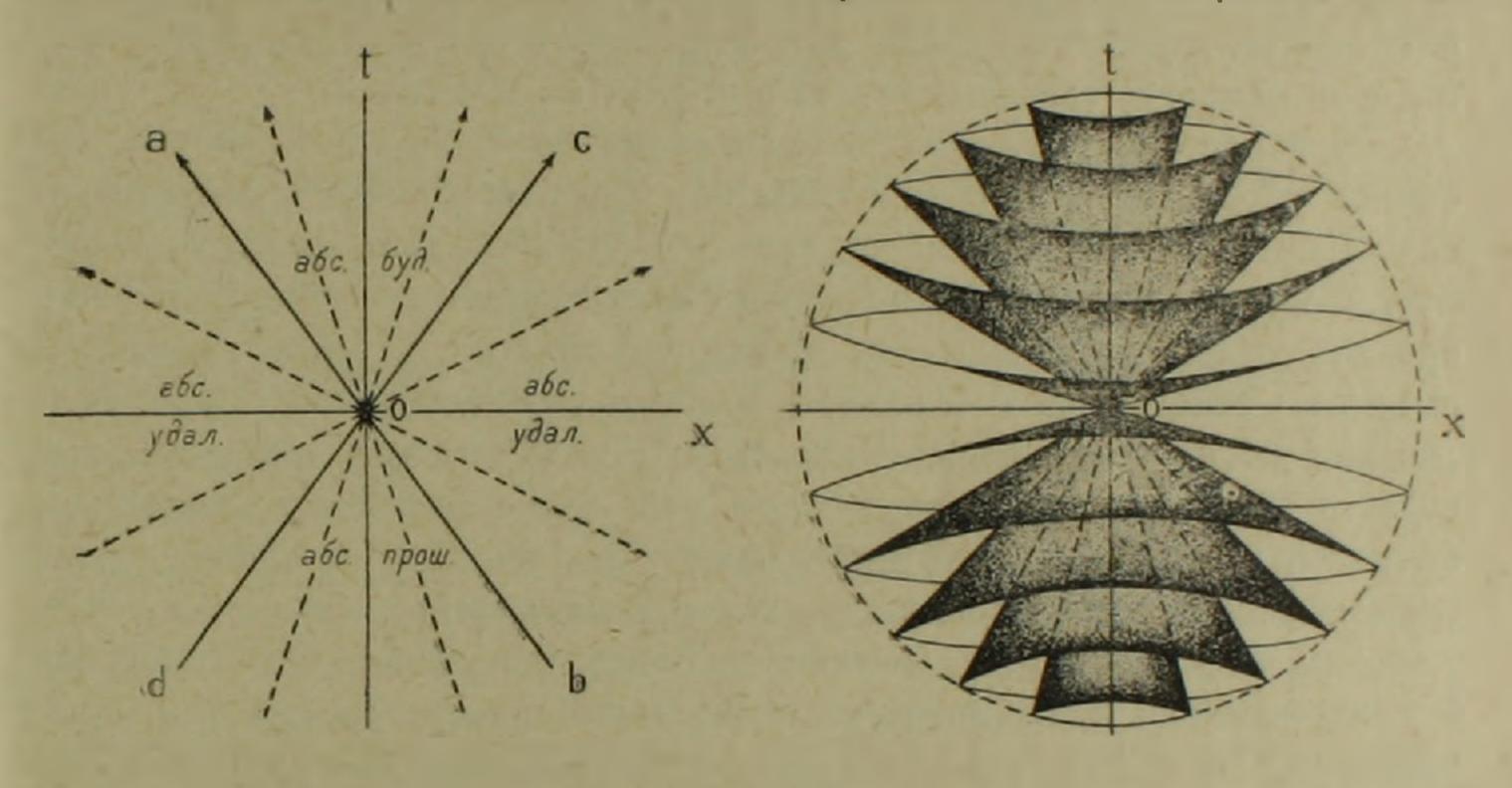
$$s_{12} = c_{12} t_{12}^2 - l_{12}^2 - \gamma m_{12}^2 = -(l_{12} + \gamma m_{12}^2), \qquad (9,6)$$

т. е. не существует такой системы отсчета, в которой два события произошли бы в одно и то же время.

Таким образом, свойство интервала быть времениподобным или пространственноподобным (вещественным или мнимым) всеце-ло зависит от выбора систем отсчета и от изменения в них скорости сигнала. В силу неинвариантности интервалов, подразделение на времениподобные и пространственноподобные не является понятием абсолютным.

13. Рассмотрим событие О в четырехмерной системе координат и отношение к нему других событий при условии, что скорость сигнала может бесконечно возрасти*. В релятивистской механике мировые линии движущейся частицы образуют "световой конус", внутренние полости которого изображают "абсолютно будущее" и "абсолютно прошедшее". При бесконечном возрастании скорости сигнала мировые линии событий примут конфигурацию "светового шара".

Пусть событие O начало временной (t) и одной из пространственных координат (x) (фиг. 1). По отношению к этому событию все остальные события (при прямолинейном равномерном движении частицы) изображаются в виде прямой линии, проходящей через начало координат под определенным углом к оси t, тангенс которого равен скорости частицы. При постоянстве скорости двух сигналов, распространяющихся в противоположных направлениях, их мировые линии



Фиг. 1.

(ab и dc) образуют некоторый наибольший угол с осью t, соответствующий постулату о существовании наибольшей скорости движения материальной частицы—скорости света; в этом случае, как отмечалось, линии образуют "световой конус".

Однако, в действительности скорость частицы (света) может возрасти неограниченно или, что то же, в природе не существует наибольшей возможной скорости распространения взаимодействий. Поэтому, мировая линия движения частицы образует в пределе прямой угол с осью t; множество мировых линий с возрастающим углом к оси t (возрастающая скорость движения частицы) при вращении вокруг начала координат образует круг.

При постоянной (максимально возможной) скорости распространения сигнала интервалы между событиями в области аОс и собы-

^{*} Такое событие должно рассматриваться, вообще то говоря, в пятимерном континууме.

тием O являются времениподобными, т. е. для всех мировых точек этой области справедливо $c^2t^2-x^2>0$ и, следовательно t>0 (все события этой области, как "абсолютно будущие", происходят после O). Два события, разделенных времениподобным интервалом. могут произойти в одном и том же месте в какой-либо из систем отсчета, но ни в одной системе отсчета не могут произойти одновременно. Поэтому, в пределах aOc нельзя выбрать такой системы отсчета, где бы событие произошло раньше, чем O.

При бесконечном возрастании скорости сигнала (отсутствии максимально возможной скорости распространения взаимодействий) наступит момент, когда линии Oa и Oc сольются с осью x, т. е. события, мировые точки которых лежат вдоль этих линий, произойдут одновременно с событием O.

Отсюда следует, что события, разделенные времениподобным интервалом, могут произойти одновременно в одной из систем отсчета, если скорость взаимодействий бесконечно возрастет.

При постоянстве скорости сигнала интервал между любым событием в области $aOd\ cOb$ и событием O является пространственно-подобным: в любой системе отсчета эти события происходят в разных местах пространства и можно найти такую систему отсчета, где они происходят одновременно. Эти области являются "абсолютно удаленными" по отношению к O и здесь понятия "одновременно", "раньше", "позже" носят абсолютный характер: "для всякого события этой области есть такие системы отсчета, где оно происходит позже события O, системы, где оно происходит раньше O, и, наконец, одна система отсчета, где оно происходит одновременно с O" [1].

При бесконечном возрастании скорости сигнала, *aOd* и *cOb* бубут сокращаться и, наконец, наступит такой момент, когда они ограничатся осью х. Тогда для всякого события этой области будет только одна система отсчета—именно та, где событие происходит одновременно с О. Следовательно, при сверхсветовых, неограниченно воврастающих скоростях исчезает различие между времениподобным и пространственноподобным интервалами, понятия "раньше" и "позже", также как и причинно-следственные понятия, не имеют абсолютного смысла.

14. Рассмотрим время пятимерного континуума в двух инерци-альных системах отсчета при постоянной скорости сигнала.

Пусть одна из систем с наблюдателем и часами покоится, другая система—с часами—движется равномерно относительно первой. Судя по неподвижным часам, движущиеся часы за бесконечно малый промежуток времени dt пройдут расстояние $\sqrt{dx^2 + dy^2 + dz^2} + \gamma dm^2$. Определим промежуток времени dt', показываемый движущимися часами.

Движущиеся часы в своей системе координат покоятся, т. е. dx = dy' = dz' = -dm' = 0. При постоянной скорости сигнала в пятимерном континууме интервал инвариантен, поэтому:

$$ds^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2} - \gamma dm^{2} = c^{2}dt^{2}. \tag{10,1}$$

$$dt' = \frac{ds}{c} = \frac{1}{c} \sqrt{\frac{c^2 dt^2 - dx^2 - dy^2 - dz^2 - \gamma dm^2}{c}}.$$
 (10,2)

Умножив и разделив подкоренное выражение на cdt, получим:

$$dt' = dt \sqrt{1 - \frac{dx^2 + dy^2 + dz^2}{c^2 dt^2} - \frac{\gamma dm^2}{c^2 dt^2}}$$
 (10,3)

Скорость движущихся часов обозначим через v; тогда, имея $c^2dt^2 = ds^2$ и $\frac{dx^2 + dy^2 + dz^2}{dt^2} = v^2$, получим:

$$dt' = \frac{ds}{c} = dt \sqrt{1 - \frac{v^2}{c^2} - \gamma \left(\frac{dm}{ds}\right)^2}$$
 (10,4)

Проинтегрировав (10,4), найдем время, показываемое движущимися часами, если по неподвижным часам пройдет время $t_2 = t_1$

$$t_{2}'-t_{1}'=\int_{t_{1}}^{t_{2}}dt\sqrt{1-\frac{v^{2}}{c^{2}}-7\left(\frac{dm}{ds}\right)^{2}}.$$
 (10,5)

Таким образом, собственное время движущейся системы меньше соответствующего промежутка времени в неподвижной системе. $\frac{dm}{ds}$ показывает изменение массы с расстоянием и ее влияние на время движущегося объекта.

15. Можно показать, что преобразования координат для пятимерного континуума инварианты по отношению к преобразованиям Лоренца при допущении, что скорость сигнала постоянна (невозможно установить какая из систем находится в абсолютном движении).

С этой целью рассмотрим две координатные системы (фиг. 2): нештрихованную XYZ и штрихованную XYZ' соответственно условно неподвижную и подвижную. Оси систем параллельны, XYZ' движется относительно XYZ вдоль оси OX со скоростью v.

Координаты у и г преобразуются (аналогично преобразованиям Галилея) соотношением:

$$y'=y$$
 H $z'=z$.

Найдем преобразования координат x и t. С этой целью запишем координату точки в начале координат подвижной системы (t=0):

$$x' + \gamma m' = 0. {(11,1)}$$

Эта точка в неподвижной системе в момент времени t (отсчитанный в неподвижной системе) имеет координату:

$$x = vt - \gamma m$$
 или $x - vt + \gamma m = 0.$ (11,2)

Из сравнения (11,1) и (11,2) следует, что оба соотношения отличаются для любых моментов времени постоянным множителем, т. е.:

$$x' + \gamma m' = \alpha (x - vt + \gamma m).$$
 (11,3)

Соответственно, точка в начале координат неподвижной системы (t=0) имеет координату:

$$x + \gamma m = 0, \qquad (11,4)$$

$$y = \sqrt{-\gamma m} \qquad x \qquad x'$$

Фиг. 2.

а координата этой же точки в подвижной системе в момент времени t' (отсчитанный в подвижной системе) равна:

$$x' = -vt' - \gamma m'$$
 или $x' + vt' + \gamma m' = 0.$ (11,5)

Из сравнения (11,4) и (11,5) имеем:

$$x + \gamma m = \alpha (x' + vt' + \gamma m').$$
 (11,6)

Если постоянный световой сигнал отправляется от начала координат обеих систем в направлении осей OX и O'X', то координаты точек, до которых дойдет сигнал в произвольные моменты времени t и t', запишутся:

$$x = ct - \gamma m; \ x' = ct' - \gamma m'.$$
 (11,7)

Перемножив (11,3) и (11,6), подставив значения x и x' по (11,7), получим:

$$c^2 = x^2 (c^2 - v^2),$$

откуда, взяв для α положительные значения корня, имеем:

$$2 = \frac{1}{1 - \frac{v^2}{c^2}}$$

Подставив значение з в (11,3) и (11,6), получим:

$$x' + \gamma m' = \frac{x - vt + \gamma m}{\sqrt{1 - \frac{v^2}{c^2}}},$$

$$x' = \frac{x - vt + \gamma m}{\sqrt{1 - \frac{v^2}{c^2}}} - \gamma m'$$
(11,8)

Соответственно:

$$x + \gamma m = \frac{x' + vt' + \gamma m'}{\sqrt{1 - \frac{v^2}{c^2}}},$$

$$x = \frac{x' + vt' + \gamma m'}{\sqrt{1 - \frac{v^2}{c^2}}} - \gamma m. \tag{11.9}$$

Из (11,8) имеем:

$$x' = \frac{x - vt + \gamma m - \gamma m' \sqrt{1 - \frac{v^2}{c^2}}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Если принять:

$$\gamma m' \sqrt{1 - \frac{v^3}{c^2}} = \gamma m,$$
 (11,10a)

(масса покоящегося тела меньше массы движущегося на $\sqrt{1-\frac{v^2}{c^2}}$), то:

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (11,16)

Таким образом, мы получили формулу преобразования координат \mathcal{J}_{0} -ренца для x'.

Соответственно, из (119,) имеем:

$$x = \frac{x' + vt' + \gamma m' - \gamma m}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

Обозначим:

$$\gamma m \sqrt{1 - \frac{v^2}{c^2}} = \gamma m'.$$
(11,11a)

$$x = \frac{x' + vt'}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (11,11)

Решая (11,10) и (11,11) относительно t и t' получим преобразования Лоренца для t и t':

$$t' = \frac{t - \frac{v}{c^2} x}{\sqrt{1 - \frac{v^2}{c^2}}}, t = \frac{t' + \frac{v}{c^2} x'}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (11.12)

16. Приведенные ранее выражения для импульса (2,6) и энергии (2,9) частицы в пятимерном континууме позволяют записать зависи-

мость между энергией, импульсом, скоростью, массой и пройденным расстоянием свободной частицы. С этой целью возведем в квадрат и сравним выражения (2,6) и (2,9):

$$p^{2} = \frac{m^{2}v^{2}}{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}} ; E^{2} = \frac{\left\{mc^{2} \left[1 - \gamma \left(\frac{dm}{ds}\right)^{2}\right]\right\}^{2}}{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}} .$$

$$\frac{v}{p} = \frac{c^{2} \left[1 - \gamma \left(\frac{dm}{ds}\right)^{2}\right]}{E} .$$

$$p = \frac{Ev}{c^{2} \left[1 - \gamma \left(\frac{dm}{ds}\right)^{2}\right]} .$$
(12,1a)

Используя (12,1а) можно найти соотношение между энергией и им-пульсом частицы. Из соображений математического удобства заменим в (2,6) и (2,9) дифференциальную форму $\frac{dm}{ds}$ через $\frac{m}{s}$:

$$E = \frac{pc^2 \left(1 - \gamma \frac{m^2}{s^2}\right)}{v}.$$
 (12,16)

Определим значение v из (2,6):

$$v^{2} = \frac{p^{2}c^{2} (s^{2} - \gamma m^{2})}{s^{2} (m^{2}c^{2} + p^{2})},$$

$$E = \frac{pc^{2} \left(1 - \gamma \frac{m^{2}}{s^{2}}\right)}{\sqrt{\frac{p^{2}c^{2} (s^{2} - \gamma m^{2})}{s^{2} (m^{2}c^{2} + p^{2})}}},$$

$$\frac{E^{2}}{c^{2}} = \frac{1}{s^{2}} (s^{2} - \gamma m^{2})(m^{2}c^{2} + p^{2}).$$
(12,2)

Выражения (12,1) и (12,2) показывают искомую зависимость.

Зависимость между энергией и импульсом — функция Гамильтона — примет вид:

$$H = \frac{c}{s} V(s^2 - \gamma m^2) (m^2 c^2 + p^2). \tag{12,3}$$

Разложим H в ряд (по степеням) и опустим члены высших порядков:

$$H \approx \frac{c}{s} \left[\left(s^2 - \frac{1}{2} \gamma m^2 \right) \left(m^2 c^2 + \frac{1}{2} p^2 \right) \right] \approx$$

$$\approx \left(s^2 - \frac{1}{2} \gamma m^2 \right) \left(\frac{m^2 c^3}{s} + \frac{c p^2}{2s} \right).$$

Полученное выражение умножим на s и разделим на mc:

$$H \approx \left(s^2 - \frac{1}{2} \gamma m^2\right) \left(mc^2 + \frac{p^2}{2m}\right).$$
 (12.4)

Таким образом, мы получили во второй скобке релятивистскую энергию покоя частицы и классическое выражение функции Гамильтона, а первая—указывает на зависимость энергии и импульса от расстояния и массы в пятимерном континууме.

17. Пятимерной скоростью (5-скоростью) частицы является вектор

$$u_i = \frac{dx_i}{ds} \tag{13,1}$$

Компонента ds согласно (10,4) запишется

$$ds = cdt \sqrt{1 - \frac{v^2}{c^2} - \gamma \left(\frac{dm}{ds}\right)^2}$$

Отсюда

$$u_{1} = \frac{dx_{1}}{ds} = \frac{dx}{cdt \sqrt{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}}} = \frac{v_{x}}{c\sqrt{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}}}$$

$$= \frac{v_{x}}{c\sqrt{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}}}$$
(13,2)

Скорости u_2 , u_3 записываются подобно (13,2). Для u_4 замечаем, что $x_4 = ict \ (i = x_4/ct)$:

$$u_{4} = \frac{i}{\sqrt{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}}}.$$
 (13,3)

Для u_5 имеем:

$$u_{5} = \frac{dx_{5}}{cdt \sqrt{1 - \frac{v^{2}}{c^{2}} - \gamma \left(\frac{dm}{ds}\right)^{2}}}$$
(13,4)

Компонента dx_5 характеризует массу частицы—пятую координату пятимерного континуума. Вторую производную пятимерной скорости

$$\frac{d^2x_i}{ds^3} = \frac{du_i}{ds} \tag{13,5}$$

можно назвать 5-ускорением.

Поскольку $dx_i^2 = -ds^2$ (согласно 8,5), то из (13,1) следует

$$u^2 = -1. (13,6)$$

а продифференцировав это отношение по независимой переменной s, получим:

 $u_i \frac{du_i}{ds} = 0. ag{13,7}$

113 (13,7) следует, что пятимерные векторы скорости и ускорения "взаимно перпендикулярны".

18. В соответствии с принципом наименьшего действия, для частицы, не находящейся под влиянием внешних сил (т. е. свободной материальной точки), действие есть интеграл (S), минимальный вдольмировой линии между заданными мировыми точками (a и b) нахож-

дения частицы. Поскольку интеграл $\int_{a}^{b} ds$ с положительным знаком

не может иметь минимума, он должен быть взят с обратным зна-ком:

$$S = -mc \int_{a}^{b} ds. \tag{14,1}$$

Здесь ds—есть интервал между начальной и конечной точками расположения частицы; для принятого нами пятимерного континуума интервал имеет форму (8,4). mc — постоянная, характеризующая данную частицу.

Вариация интеграла действия (%S) равна нулю:

$$dS = -mc^{2}\int_{a}^{b}ds = 0. \tag{14.2}$$

Подставим сюда значение $ds = V - dx_i^2$:

$$\delta S = -mc\delta \int_{a}^{b} V \overline{-dx_{i}^{2}} = -mc \int_{a}^{b} \frac{1}{2V \overline{-dx_{i}^{2}}} \delta - dx_{i}^{2} =$$

$$= mc \int_{a}^{b} \frac{1}{2V \overline{-dx_{i}^{2}}} 2dx_{i} \delta dx_{i} = mc \int_{a}^{b} \frac{dx_{i}}{ds} d\delta x_{i} =$$

$$= mc \int_{a}^{b} u_{i} d\delta x_{i} = mc u_{i} \delta x_{i} \Big|_{a}^{b} - mc \int_{a}^{b} \delta x_{i} du_{i} =$$

$$= mc u_{i} \delta x_{i} \Big|_{a}^{b} - mc \int_{a}^{b} \delta x_{i} \frac{du_{i}}{ds} ds.$$

$$= mc u_{i} \delta x_{i} \Big|_{a}^{b} - mc \int_{a}^{b} \delta x_{i} \frac{du_{i}}{ds} ds.$$

$$= (14,3)$$

Если заданы два положения частицы в точках a и b, то $(\delta x_i)_a = (\delta x_i)_b = 0$. а траектория движения частицы определяется из условия равенства нулю вариации действия $(\delta S = 0)$. Тогда из (14,3) следует, что $\frac{du_i}{ds} = 0$, т. е. в этом случае скорость свободной частицы в пятимерном континууме будет постоянной.

Если же задано положение частицы лишь в одной точке а $[(ax_i)_a = 0]$, а вторая точка b является переменной, то вариация действия есть функция от координат, поэтому интеграл в (14,3) равен нулю. Отсюда, приняв $(x_i)_b$ вместо $((x_i)_b)_b$, получим:

$$\delta S = mcu_i \delta x_i . \tag{14,4}$$

Таким образом, соотношения (14,3) и (14,4) показывают, что вариации действия частицы для четырех- и пятимерного континуума внешне совершенно аналогичны.

19. Пятимерный импульс (рі) для свободной материальной частицы является пятимерным вектором с составляющими —. Следовательно, из (14,4) значение импульса запишется:

$$p_i = mcu_i. (15,1)$$

Пятимерный вектор (g_i) есть производная импульса по ds:

$$g_i = \frac{dp_i}{ds} = mc \frac{du_i}{ds}. \tag{15,2}$$

 $g_i = rac{dp_i}{ds} = mc rac{du_i}{ds}$ (15) Согласно (13,7) $u_i rac{du_i}{ds} = 0$, поэтому компоненты пятимерной силы

$$g_i u_i = 0. \tag{15,3}$$

Из (13,6) и (15,1) следует:

$$p_i^2 = -m^2c^2. (15,4)$$

Подставив сюда значение пятимерного импульса $p_i = \frac{\partial s}{\partial s}$ получим:

$$\left(\frac{\partial s}{\partial x_i}\right)^2 = -m^2 c^2. \tag{15,5}$$

Это же выражение в развернутом виде для пятимерного континуума:

$$\left(\frac{\partial s}{\partial x}\right)^{2} + \left(\frac{\partial s}{\partial y}\right)^{2} + \left(\frac{\partial s}{\partial z}\right)^{2} + \left(\frac{\partial s}{\partial z}\right)^{2} + \left(\frac{\partial s}{\partial m}\right)^{2} - \frac{1}{c^{2}}\left(\frac{\partial s}{\partial t}\right)^{2} + m^{2}c^{2} = 0. \tag{15.6}$$

Таким образом, в уравнение Гамильтона-Якоби релятивистской механики в случае пятимерного континуума вводится дополнительная компонента ds/rdm, характеризующая состояние массы свободной частицы.

Институт геологических наук АН Армянской ССР

Поступила 29. 1965.

U. U. UBAULLBUT

ԵՐԿՐԱՄԵԽԱՆԻԿԱՑԻ ՀԻՄՔԵՐԻ ՇՈՒՐՋԸ

(Երկրորդ ճաղորդում)

Udhnyntil

Հոդվածում բննության են առնված հինգչափանի կոնտինուումի մի շարբ հիմնական առանձնահատկությունները։

Ընթացող համակարգերում ժամանակի հոսքը ավելի դանդաղ է, քան անշարժ համակարգերում և տարբերությունը հավասար է $1-\frac{v^2}{c^2}-\gamma \left(\frac{dm}{ds}\right)^2$.

Հինզչափանի կոնտինուումում կոորդինատները կերպափոխվում են Լորենցի կերպափոխություններին համաձայն, այսինքն նրանք ինվարիանտ են (անփոփոխ են) այդ կերպափոխությունների վերաբերյալ։

ЛИТЕРАТУРА

1. Ландау Л. Д. и Лифшиц Е. М. Теория поля. Москва. 1962.