Գիտություններ Երկրի մասին XVIII, № 3-4, 1965

Науки о Земле

научные заметки

Э. А. КЮРЕГЯН

О ПРИМЕНЕНИИ МАЛЫХ НАВЕСОК ПОЧВ ПРИ ГИДРОХИМИЧЕСКИХ ПОИСКАХ НИКЕЛЯ И КОБАЛЬТА

В последнее время при гидрохимических поисках месторождений полезных ископаемых стало получать широкое применение изучение состава водных вытяжек из почв, отбираемых при поисковых съемках с мест, лишенных выходов воды.

Водные вытяжки готовятся обычно из 100-200 г почвы с пятикратным количеством воды. В результате получаются большие объемы.

Фильтрация водных вытяжек не всегда протекает нормально: если почва богата воднорастворимыми соединениями различных солей, то вытяжки фильтруются быстро; если же почва бедна ими или же содержит глинистые частицы, то поры фильтра засоряются и затрудняется фильтрация, это ведет к изменению объема вытяжки и к искажению результатов анализа.

Часто вытяжки получаются сильно окрашенными, что не дает возможности применять чувствительные колориметрические методы анализа. Методы обесцвечивания водных вытяжек не всегда дают положительные результаты.

В данной статье мы предлагаем при гидрохимических поисках никеля и кобальта применять малые навески почв (такие работы были проведены нами при гидрохимических поисках свинца и цинка) [2].

Не все соединения никеля и кобальта, находящиеся в почве водорастворимы. Сравнительно легко растворяются их сульфаты.

По данным С. С. Смирнова [3] растворимость NiSO₄ составляет 274,8 г/л при t°-22°C, а растворимость CoSO₄-265,8 г/л при t°-20°C. Сульфатная форма соединений никеля и кобальта, являясь наиболее подвижной, создает благоприятные условия для миграции этих элементов.

Прямым путем обнаружения никеля и кобальта в почвах может явиться адсорбция ионов никеля и кобальта тонко дисперсными веществами-глинами: адсорбция эта ионного характера (адсорбируются катио. ны никеля и кобальта). Одновременно здесь происходит и другая адсорбция — обменная, когда вместо адсорбированных ионов никеля и кобальта в растворе могут появиться какие-либо другие катионы. Катионы поглощаются почвой, для вытеснения их нужны растворы солей сильных оснований и сильных кислот, но уже не с этим вытесненным катионом, а с другим.

В качестве солеобразующего вещества для получения наиболее подвижной и растворимой формы соединений никеля и кобальта и их сульфатов, мы применили 10%-ый раствор сернокислого натрия, на котором готовились вытяжки.

Определения никеля и кобальта проводились в пробах почв, ото бранных с Шоржинского хромитового месторождения Армянской ССР

Вначале никель и кобальт определялись в обычных водных вытяжках, где соотношение $T: \mathcal{K} = 1:5$ (твердая фаза и жидкая фаза); результаты анализа показали либо незначительное содержание никеля и кобальта (порядка 0,002—0,007 мг/100 г почвы) либо, в подавляющем большинстве—полное отсутствие их.

Затем, из новых навесок почв были приготовлены вытяжки на 10%-ном растворе Na_2SO_4 с соотношением $T: \mathcal{K}=1:10$, так как чем больше соотношение $T: \mathcal{K}$, тем больше должна повышаться растворимость нонов.

Содержание никеля в этих вытяжках колебалось в интервале 0,002—0,12 мг/100 г почвы, а кобальта 0,002—0,08 мг/100 г почвы.

Вытяжки готовились следующим образом: к 10-ти граммам воздушно-сухой почвы, просеянной через сито с отверстиями d=3 мм, приливалось 100 мл 10%-ого раствора Na_2SO_4 . После 3-х минутного встряхивания вытяжка фильтровалась Фильтрация протекала быстро, а фильтраты получались прозрачными. В аликвотной части определялись никель и кобальт.

Определения никеля и кобальта проводились чувствительными аналитическими методами: никель — методом экстракции хлороформом комплекса никеля, осажденного спиртовым раствором диметилглиоксима. Колориметрирование проводилось методом стандартных серий.

Определения кобальта проводились осаждением его раствором нитрозо — Р—соли. После выделения гидроокисей железа и алюминия, полученная окраска сравнивалась со шкалой стандартных растворов.

Проведенная повторная (двухкратная) обработка полученных на фильтре остатков показала полное отсутствие ионов никеля и кобальта.

Чувствительность определения никеля и кобальта составляет 0,001—0,002 мг/100г почвы (проверено на стандартных растворах соленникеля и кобальта).

Ниже приводятся сравнительные данные содержания никеля и кобальта в водных вытяжках и в вытяжках, приготовленных на растворе Na₂SO₄.

Объем статьи не позволяет привести полностью все данные (500 проб).

Таким образом, 1) в вытяжках, при соотношении $\Gamma: \mathcal{K} = 1:10$ никель и кобальт извлекаются в больших количествах.

2. При полном отсутствии никеля и кобальта в водных вытяжках, вытяжки, приготовленные на растворе Na₂SO₄, показывают значительное содержание никеля и кобальта.

Таблица 1 Сравнительные данные содержания монов никеля и кобальта в вытяжках

N.N. npo6	Водные вытяжки		Вытяжки на 10°/, растворе Na ₂ SO ₄	
	Содержание в мг/100 г почвы			
	Ni	Co	Ni	Со
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0,006 0,007 0,003 0,003 0,003 H H H H H H H H H	0,005 0,005 0,003 0,002 H H H H H H H H H	0,010 0,130 0,120 0,017 0,015 0,010 0,008 0,006 0,012 0,008 0,009 0,015 0,015 0,011 0,015 0,020 0,140 0,180 0,190 0,200	0,100 0,036 0,060 0,050 0,050 0,010 0,015 0,010 0,002 0,004 0,011 0,012 0,013 0,100 0,150 0,150 0,180

- 3. Применение малых навесок почв обеспечивает полную прозрачность и быструю фильтрацию вытяжек.
- 4. Вытяжки из уменьшенных навесок возможно готовить в полевых условиях.

Институт геологических наук АН Армянскон ССР

Поступила 26. ХІ. 1964.

ЛИТЕРАТУРА

- 1. Гедройц К. К. Химический анализ почвы. Л., 1932.
- 2 Кюрегян Э. А. О применении малых навесок почв при гидрохимических поисках свинца и цинка. Журн «Разведка и охрана недр» № 7, 1961.
- 3. Смирнов С. С. Зона окисления сульфидных месторождений Изд. АН СССР 1951.
- 4. Соколов И. Ю. Методическое руководство по определению микрокомпонентов в природных водах при понсках рудных месторождении. Госгеолтехиздат. М., 1961.