20.34U.4U.6 UUR ЧРЅПРЕЗПРБЪР Ц4U.РЬГРИЗР ЅЬДЬ4U.ЧРГИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

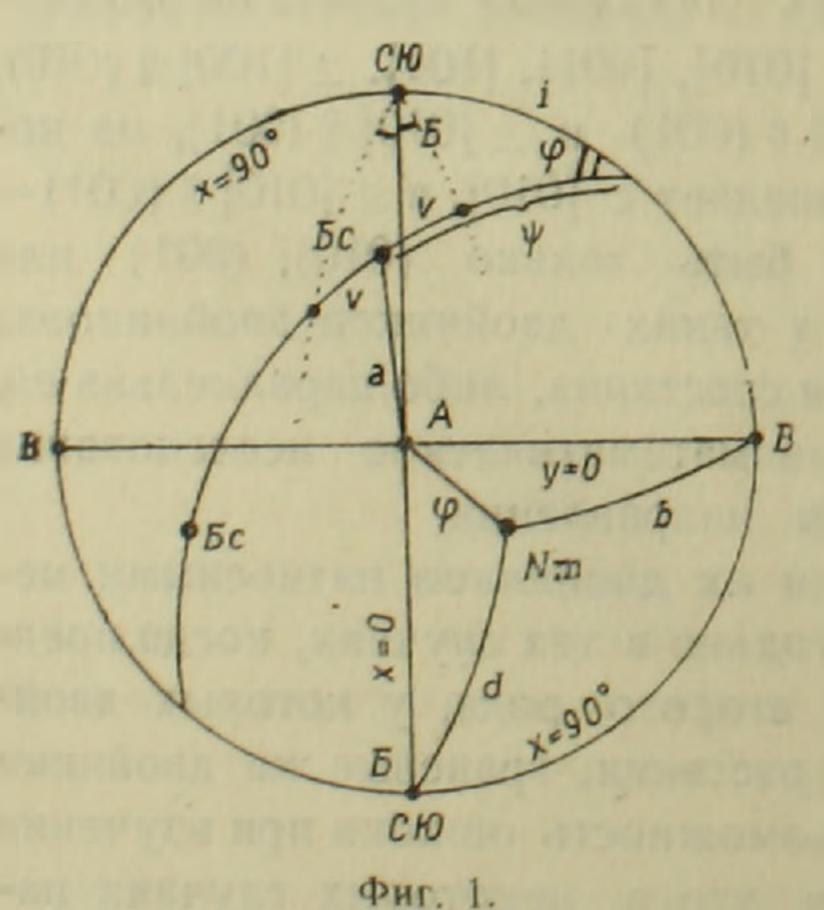
огугшр. L шурштвшат. арш. ивтрш XI, № 5, 1958 Серия геологич. и географич. наук

КРИСТАЛЛООПТИКА.

Л. А. ВАРДАНЯНЦ

ГЛАРНОЕ НАПРАВЛЕНИЕ ДЕОЙНИКОВ ПЛАГИСКЛАЗА (Теория главного направления в применении к исследованию плагиоклазов)

В научно-методических работах по федоровскому методу, вышедших в свет после 1950 г. [4, 6], было указано, что при определении плагиоклазов и их двойников пятиосными методами главное направление двойника может быть причиной ошибки, так как при некоторых условиях оно неотличимо от двойниковой оси. Детальное исследование этого вопроса, выполненное автором данной статьи, показало, во-первых, что возможность ошибок исключена полностью, если исследователь знаком с элементарными положениями теории главного направления двойников плагиоклаза и теорией его триад, и во-вторых, что шестиосный столик совершенно не нужен, поскольку он предназначен исключительно для распознавания главного направления двойника. В этой статье решение задачи дано на основе теории главного направления двойников.


Сейчас уже вполне доказано, что в простых и обычных полисинтетических двойниках плагиоклаза, как и в его основных триадах, двойниковыми осями могут быть лишь следующие кристаллографические векторы: \pm (010), \pm (001), [100] [010], [001], [101], \pm [100] || (010), \pm [001] || (010), \pm [100] || (001) и \pm [010] || (001), из которых \pm [100] || (001) практически совпадает с [010], а \pm [010] || (001) — с [100]. Плоскостью срастания могут быть только (010), (001) или ромбическое сечение. Следовательно у таких двойников двойниковая ось либо перпендикулярна к плоскости срастания, либо параллельна ей. Это обстоятельство позволяет провести математическое исследование интересующего нас вопроса о главном направлении.

При исследовании плагноклазов и их двойников пятносными метолами затруднения могут возникать только в тех случаях, когда предметом изучения являются двойники второго рода, у которых двойниковая ось параллельна плоскости срастания, граневые же двойники определяются всегда безошибочно. Возможность ошибки при изучении двойников второго рода связана с тем, что в некоторых случаях параллельно плоскости срастания располагаются одновременно и двойниковая ось второго рода и ее главное направление. Поэтому решение задачи сводится к тому, чтобы огличить главное направление от

двойниковой оси. Это может быть выполнено двумя способами. Вопервых, посредством особых приемов работы на федоровском столике можно, в каждом отдельном случае, проверить найденный вектор. Соответствующие рекомендации изложены в статьях В. А. Заварицкого [5] и Л. А. Варданянца [3]. Во-вторых, можно путем математического анализа найти те особые признаки ориентировки индикатрисы, наличие которых при измерении плагиоклазов сразу же показывает, что главное направление двойниковой оси второго рода тоже расположено в плоскости срастания. Для такого анализа может быть использовано общее уравнение стереоконоскопических фигур, являющееся основой математической теории федоровского метода [1, 2].

Примем, как на фиг. 1, что плоскость срастания совпадает с плоскостью проекции двойника. Вектор A, проектирующийся в центре проекции, является нормалью к плоскости срастания; вектор Б, совмещенный с осью север-юг (СЮ), есть главное направление, а перпендикулярный к нему вектор В в плоскости срастания—двойниковая ось второго рода. Оптическая индикатриса и ее ориентировка определяются углами φ , i, ψ и v, из которых:

- угол между плоскостью шлифа и плоскостью оптических осей, равный углу между осью Nm и нормалью к плоскости срастания;
- *i*—угол между осью север-юг и линией пересечения плоскости проекции (или плоскости шлифа) с плоскостью оптических осей, считая по часовой стрелке;
- угол между биссектрисой (Бс) и линией пересечения плоскости проекции (или плоскости шлифа) с плоскостью оптических осей;
- v—половина угла оптических осен по отношению к той биссек-

трисе для которой принято значение угла т значение угла т принимается от нуля до 90, независимо от знака минерала.

Элементарная теория главного направления, выведенная еще Е. С. Федоровым, показывает, что главное направление лежит в плоскости, перпендикулярной к двойниковой оси, и что плоскость, проведенная через главное направление и двойниковую ось, делит пополам двугранный угол, образуемый плоскостями, проведенными через главное направление и оптические оси кристалла.

Выясним теперь взаимоотношение между двойниковой осью второго рода, ее главным направлением и нормалью к плоскости сраста-

$$2F_{1} = 2arctg\infty + arctg \qquad \frac{\sin\varphi}{ctg(\psi + v)\sin i - \cos i\cos\varphi} + arctg \qquad \frac{\sin\varphi}{ctg(\psi - v)\sin i - \cos i\cos\varphi}$$
 (1)

где $tg2F_1 = 0$.

Для двойниковой оси A главное направление лежит в плоскости осей B и B, и в его стереоконоскопическом уравнении нужно принимать x=90, При этом условии уравнение главного направления, получает следующий вид:

$$2F_{2} = 2arctg0 + arctg \frac{\sin\varphi}{ctg(\psi + v)\cos(y - i) - \sin(y - i)\cos\varphi} + arctg \frac{\sin\varphi}{ctg(\psi - v)\cos(y - i) - \sin(y - i)\cos\varphi}$$

$$(2)$$

где tg $2F_2=0$.

Преобразуя эти уравнения, получаем

$$\sin\varphi\sin i\left[ctg\left(\psi+v\right)+ctg\left(\psi-v\right)\right]-2\sin\varphi\cos\varphi\cos i=0 \tag{3}$$

$$\sin\varphi\cos(y-i)\left[ctg(\psi+v)+ctg(\psi-v)\right]-2\sin\varphi\cos\varphi\sin(y-i)=0.$$
 (4)

Решая уравнение (3) и (4) совместно, находим, что ctgi = tg(y-i) и y = 90. Следовательно, главное направление двойниковой оси второго рода может совместиться с плоскостью срастания только в таких случаях, когда оно совпадает с главным направлением граневого двойника, т. е. если в триаде главного направления одна из двух сопряженных с ним двойниковых осей перпендикулярна к плоскости срастания триады.

Проведенное нами исследование показывает, что у плагиоклаза триада главного направления может возникать лишь в следующих единичных случаях, при которых главное направление двойника второго рода совпадает с плоскостью срастания (табл. 1). В подобных триадах вектор, являющийся общим главным направлением граневого двойника и двойника второго рода, всегда совпадает с тем или иным из важнейших кристаллографических элементов, показанных на диаграмме В. В. Никитина, и тоже может быть двойниковой осью. Поэтому его координатами можно с полным правом пользоваться для определения состава плагиоклаза. Зная теорию двойниковых триад, можно по координатам этого вектора определить и закон двойникования.

Триады главного направления плагиоклазов

Плоскость срастания	Двойниковая ось второго рода	Главное направление	Состав
(010)	[100] [100] (010) [101] [101] [101] (010)	1. [100] (010) [100] 1. [001] (010) [001] [101] (010] [101]	№ 21±3
(001)	$[100] \approx Np$ $[010] \approx Ng$	$[010 - [100] \parallel (001)$ $[100] = \bot [010] \parallel (001)$	№ 34 № 17-18
Ромбиче- ское сечс- ние	[010] ≈ Ng	[100]≈Np	№ 17—18

Положение главного направления в том случае, когда оно совмещено с плоскостью срастания, определяется посредством уравнения (3), которое дает несколько решений, в зависимости от значения переменных φ , ψ , i и v. Из них решающее значение имеет переменная ψ , так как сумма котангенсов может изменяться неограниченно и с любым знаком.

- 1. Если $\psi = v$, то $ctg(\psi v) = \infty$. Поэтому должно быть одновременно $\sin i = 0$ и $\sin \varphi = 0$, так как $\sin 0 \cdot ctg 0 = 1$. Плоскость оптических осей совпадает с плоскостью срастания, а биссектрисы совпадают: одна с двойниковой осью, а другая—с главным направлением. Этому случаю соответствуют периклиновые двойники при составе плагиоклаза около № 17—18, у которых двойниковая ось [010] почти совпадает с осью Ng, а главное направление—с осью Np. Ось Nm совпадает с нормалью к плоскости срастания.
- 2. Если $\psi = 0$ или $\psi = 90^\circ$, то одна из биссектрис при любом значении угла 2v лежит в плоскости срастания. Сумма котантенсов равна нулю, поэтому уравнение имеет три возможных решения: $i = 90^\circ$, $\varphi = 90^\circ$ и $i = \varphi = 90^\circ$. Рассмотрим каждое из них.
- 2A. Если $i=90^\circ$, то одна из биссектрис совпадает с двойниковой осью. У плагиоклаза это возможно в двух случаях:
- а) при составе около № 17—18 в двойниках со срастанием по третьему пинакоиду. Двойниковой осью является [010], почти совпадающая с осью Ng а главное направление составляет с осью Np угол около 9° и совпадает с вектором \bot [010] \parallel (001), который почти совпадает с \bot [100];
- б) при составе около № 34 в двойниках со срастанием по третьему пинакоиду. Двойниковой осью является [100], почти совпадающая с осью Np, а главное направление совпадает с \bot [100] \parallel (001), который почти совпадает с [010] и составляет с осью Ng угол около 17°.

- 2Б. Если $\varphi = 90^\circ$, то одна из биссектрис, Ng или Np, совпадает с нормалью к плоскости срастания. У плагиоклазов это возможно только при срастании индивилов по второму пинакоиду и при составе около № 21, т. е. только у олигоклаза. Положение и наименование двойниковой оси остаются, как правило, неопределенными, так как любой вектор в плоскости срастания ведет себя при проверке так, как и двойниковая ось. Точное решение можно получить по взаиморасположению главных кристаллографических элементов.
- 2В. Если $i = \varphi = 90^\circ$, имеем частный случай решения 2Б, когда одна из биссектрис совпадает с двойниковой осью, а другая—с нормалью к плоскости срастания. Главное направление должно совпадать с осью Nm. У плагиоклаза близкое к этому положение занимает двойник олигоклаза (около \mathbb{N}° 25) по закону [100] со срастанием по второму пинакоиду.
- 3. Решением уравнения можно считать также и тот случай, когда приравнено нулю все выражение в фигурных скобках. В этом случае должио быть:

$$ctg(\psi + v) + ctg(\psi - v) - 2\cos\varphi ctgi = 0$$
 (5)

где угол ψ может иметь любое значение между $\psi=0$ и $\psi=90^\circ$. Уравнение (5) решается очень просто, если выразить переменные φ , i и ψ через координаты биссектрисы (той, для которой взято значение угла v) и оси Nm по отношению к осям триады главного направления. По фиг. 1 найдем, что

$$\sin \psi = \frac{\cos a}{\sin \varphi}$$
; $\cos i = \frac{\cos b}{\sin \varphi}$; $\sin i = \frac{\cos d}{\sin \varphi}$; $tgi = \frac{\cos d}{\cos b}$

где a — угол между биссектрисой и нормалью к плоскости срастания; b — угол между осью Nm и двойниковой осью;

d — угол между осью Nm и главным направлением;

ç — угол между осью Nm и нормалью к плоскости срастания.

Указанные координаты можно взять с диаграммы В. В. Никитина. С помощью простых построений можно найти значения углов ф, і и ф непосредственно на диаграмме В. В. Никигина.

Проведенная нами проверка показала, что уравнение (5) может дать только те решения, которые уже описаны выше в пунктах I и 2. Если плоскость срастания представлена третьим пинакоидом, то уравнение соблюдается только при $\psi = 0$ и $\psi = 90^{\circ}$ (см. выше пункт "2"). В сростках по второму пинакоиду уравнение соблюдается только при условии $\varphi = 90^{\circ}$ и $\psi = 0$ или $\varphi = 90^{\circ}$ и $\psi = 90^{\circ}$ (см. выше пункт "2Б"). При этом в обоих случаях (как для второго, так и для третьего пинакоида) должно быть $i = 90^{\circ}$.

Сопоставление всех полученных решений показывает, что у плагиоклаза главное направление двойников второго рода располагается в плоскости срастания лишь в следующих трех случаях:

во-первых, когда одна из биссектрис, Ng или Np, почти совпадает с плоскостью срастания;

во-вторых, если ось Ng почти перпендикулярна к плоскости срастания;

B-третьих, когда ось Nm почти перпендикулярна к плоскости срастания.

Основываясь на этом можно сформулировать следующие практические правила:

- 1. Если ось Ng почти совпадает с плоскостью срастания и ин дикатрисы почти параллельны друг другу, то двойниковая ось совпадает с осью Ng. Плоскостью срастания является третий пинакоид, а двойниковой осью—[010], состав плагиоклаза около \mathbb{N} 17. Главное направление совпадает с осью [100].
- 2. Если ось *Np* почти совпадает с плоскостью срастания и индикатрисы почти параллельны друг другу, то двойниковая ось совпадает с осью *Np*. Плоскостью срастания служит третий пинакоид, а двойниковой осью—[100]; состав плагиоклаза около № 34. Главное направление почти совпадает с осью [010].
- 3. Если ось Ng совпадает с нормалью к плоскости срастания, то таковая является вторым пинакоидом, а состав плагиоклаза близок к олигоклазу (от N 17-18 до N 24). Закон двойникования остается в большинстве случаев неопределенным.
- 4. Если ось *Nm* перпендикулярна к плоскости срастания (т. е. когда обе биссектрисы почти совпадают с этой плоскостью), то двойник образован по периклиновому закону, а двойниковая ось [010] почти совпадает с осью *Ng*. Главное направление совпадает с [100] и осью *Np*. Состав плагиоклаза около № 17—18.

Будучи очень простыми, правила эти могут быть легко усвоены даже мало опытным работником и тем самым гарантируют от какихлибо ошибок в отношении главного направления. Ошибка может произойти только тогда, когда исследователь, не обратив внимания на то, что имеет дело с граневым двойником, будет искать в его плоскости срастания двойниковую ось второго рода. Например, если объектом изучения был альбитовый двойник, и если он был принят по невнимательности за двойник второго рода, то исследователь определит главное направление альбитового двойника как ось [001] Карлсбадского закона и сделает вывод, что либо она в данном кристалле расположена аномально, отклоняясь от соответствующей кривой на диаграмме В. В. Никитина на 8—10°, либо же что измерение было сделано мало точным методом. Оба вывода будут, конечно, ошибочными.

լ. Ա. ՎԱՐԴԱՆՑԱՆՑ

ՊլևԳԻՈԿԼԱԶԻ ԿՐԿՆԱԲՅՈՒՐԵՂՆԵՐԻ ԳԼԽԱՎՈՐ ՈՒՂՂՈՒԹՅՈՒՆԸ (Գլխավոր ուղղության տեսության կիրառումը պլագիոկլազների հետազոտությունում)

Udhnhnzd

Հոդվածում ստերեսկոնոսկոպիկ պատկերների ունիվերսալ հավասարու-Թլան օգնությամբ մաթևմատիկորեն ապացուցված է, որ պլադիոկլազներում 2-րդ կարդի կրկնաբլուրեղի գլիսավոր ուղղությունը կարող է դանվել անհատների աճման հարթություն միայն հետևյալ չորս դեպքերում։

- 1.— Երբ Ng առանցքը համարլա համընկնում է աճման հարթության հետ և ինդիկատրիսները համարլա զուգահեռ են միմյանց։ Կրկնաբյուրեղային առանցքի հետ և հանդիսանում է |010| առանցք, իսկ դլիսավոր ուղղությունը համընկնում է |100| առանցքի հետ։ Աճման հար- թությունը համընկնում է |100| առանցքի հետ։ Աճման հար- պես № 17-ն է։
- 2.— Եթե Np առանցքը համարյա համընկնում է ածման հարթության հետ և ինդիկատրիսները համարյա զուգահնո են միմյանց։ Կրկնաբյուրեղային առանցքը համընկնում է Np առանցքի հետ և հանդիսանում է |100| առանցք, իսկ գլիսավոր ուղղությունը համընկնում է |010| առանցքի հետ։ Ածման հարթությունը հանդիսանում է պինակոիդը, իսկ պլագիոկլադի կաղմը մոտավորապես 1 34-ն է։
- 3.— Երը Ng առանցքը համընկնում է աճման հարթության նորմալի հետ, որը այս դեպքում հանդիսանում է պինակոիդը, պլադիոկլազը ըստ կազ-մի մոտ է օլիդոկլազի (№ 17-ից մինչև № 24-ը)։ Կրկնաբլուրեղացման օրենքը միծ մասամը հնում է անորոշ։
- 4 Երր Nm առանցքը համարյա ուղղահալաց է աճման հարթությանը։ Այս դեպքում կրկնարյուրեղացման օրենքը պնրիկլինային է։ [010] կրկնաիսավոր ուղղությունը՝ [100] առանցքի և Np-ի հետ։ Պլադիոկլագի կազմը 17 — 18 է։

Մլագիոկլազների կրկնաբյուրհղային երկրորդ կարգի առանցքի որոշման ժամանակ, այս ցուցմունքննրով ղեկավարվելիս լրիվ վերացվում է սիսալվելու Տնարավորությունը։

ЛИТЕРАТУРА

- 1. Варданянц Л. А. Основы стереоконоскопического метода. Изд. АН АрмССР, 1947.
- 2. Варданянц Л. А. О стереоконоскопическом методе и его отношении к федоровскому методу. Сборник "Универсальный столик Е. С. Федорова". Изл. АН СССР, 1953.
- 3. Варданянц Л. А. К теории и практике федоровского метола. Вестн. Ленингр. Гос. универс., № 18, 1956.
- 4. Доливо-Добровольский В. В. О некоторых свойствах главного направления в явойниках. Зап. Всес. Минералог. общ., ч. 81, № 2, 1952.
- 5. Заварицкий В. А. О возможном усовершенствовании универсального столика Федорова. Зап. Всес. Минералог. общ., ч. 78, № 2, 1949. См. также в сборнике "Универсальный столик Е. С. Федорова". Изд. АН СССР, 1953.
- 6. Соболев В. С. Федоровский метод. Госгеолтехиздат, М., 1954.