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1. Introduction

It is well-known (for details see e.g. [8] and [14]) that the Vilenkin system does

not form a basis in the space L1 (Gm) . Moreover, there is a function in the Hardy

space H1 (Gm) , (for details see [12, 13, 21, 22]) such that the partial sums of f are

not bounded in L1-norm. However, (see e.g. [2, 23]) the subsequence SMn of partial

sums are bounded from the Hardy space H1 (Gm) to the Lebesgue space L1 (Gm) :

(1.1) ‖SMk
f‖H1

≤ c ‖f‖H1
(k ∈ N).

Moreover, in G�at [7] (see also Simon [18, 19]) it was proved the following strong

convergence result for all f ∈ H1 :

lim
n→∞

1

log n

n∑
k=1

‖Skf − f‖1
k

= 0,

where Skf denotes the k-th partial sum of the Vilenkin-Fourier series of f.

It follows that there exists an absolute constant c, such that

(1.2)
1

log n

n∑
k=1

‖Skf‖1
k

≤ c ‖f‖H1
(n = 2, 3...)

and for all f ∈ H1

lim
n→∞

1

log n

n∑
k=1

‖Skf‖1
k

= ‖f‖H1
.

Similar result for the trigonometric system was proved by Smith [20], and for the

Walsh-Paley system by Simon [17].
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If the partial sums of Vilenkin-Fourier series was bounded from H1 to L1 we also

would have:

(1.3) sup
n∈N+

1

n

n∑
m=1

‖Smf‖1 ≤ c ‖f‖H1
,

but as it was presented above the boundednes of the partial sums does not hold

from H1 to L1, However, we have inequality (1.2).

On the other hand, in the one-dimensional case, Fujji [6] and Simon [16] proved

that maximal operator Fej�er means are bounded from H1 to L1, that is

(1.4) sup
n∈N+

∥∥∥∥∥ 1n
n∑

m=1

Smf

∥∥∥∥∥
1

< c ‖f‖H1
.

So, natural question has arised that if inequality (1.3) holds true, which would be

generalization of inequality (1.4) or is we have negative answer on this problem.

In this paper we prove that there exists a function f ∈ H1 such that

sup
n∈N+

1

n

n∑
m=1

‖Smf‖1 =∞.

This paper is organized as follows: in order not to disturb our discussions later on

some de�nitions and notations are presented in Section 2. For the proofs of the main

results we need some auxiliary Lemmas. These results are presented in Section 3.

The formulation and detailed proof of main results can be found in Section 4.

2. Definitions and notations

Let N+ denote the set of the positive integers, N = N+∪{0}. Letm = (m0,m1, . . . )

denote a sequence of positive integers not less than 2. Denote by

Zmk = {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.

De�ne the group Gm as the complete direct product of the group Zmj with the

product of the discrete topologies of Zmj
,s. The direct product µ of the measures

µk ({j}) = 1/mk (j ∈ Zmk)

is the Haar measure on Gm with µ (Gm) = 1.

If supn∈Nmn <∞, then we call Gm a bounded Vilenkin group. If the generating

sequence m is not bounded, then Gm is said to be an unbounded Vilenkin group.

The elements of Gm are represented by sequences

x = (x0, x1, . . . , xk, . . . ), xk ∈ Zmk .

It is easy to give a base for the neighbourhood of Gm namely I0(x) = Gm,

In(x) = {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N)
82



A NOTE ON THE STRONG CONVERGENCE ...

Denote In = In (0) for n ∈ N and In = Gm \ In. Let en = (0, . . . , 0, xn = 1, 0, . . . ) ∈
Gm, n ∈ N. If we de�ne the so-called generalized number system based on m in the

following way:

M0 = 1, Mk+1 = mkMk , k ∈ N

then every n ∈ N can be uniquely expressed as n =
∑∞
k=0 njMj where nj ∈ Zmj

(j ∈ N) and only a �nite number of nj ‘s di�er from zero. Let |n| = max {j ∈ N;
nj 6= 0}.

Next, we introduce on Gm an orthonormal system, which is called the Vilenkin

system.

At �rst de�ne the complex valued function rk (x) : Gm → C, the generalized

Rademacher functions as

rk (x) = exp (2πıxk/mk) , ı2 = −1, x ∈ Gm, k ∈ N.

Now de�ne the Vilenkin system ψ = (ψn : n ∈ N) on Gm as:

ψn (x) =

∞∏
k=0

rnkk (x) , n ∈ N.

Specially, we call this system the Walsh-Paley one if m ≡ 2.

The norm (or quasi norm) of the space Lp(Gm) is de�ned by

‖f‖p =
(∫

Gm

|f(x)|p dµ(x)
)1/p

, 0 < p <∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [1, 25]).

If f ∈ L1 (Gm) we can de�ne Fourier coe�cients, partial sums of the Fourier

series, Fej�er means, Dirichlet kernels with respect to the Vilenkin system in the

usual manner:

f̂(k) =
∫
Gm

fψkdµ, k ∈ N

Snf =
∑n−1
k=0 f̂ (k)ψk, n ∈ N+, S0f := 0

σnf = 1
n

∑n−1
k=0 Skf, n ∈ N+

Dn =
∑n−1
k=0 ψk , n ∈ N+ .

Recall that

(2.1) DMn (x) =

{
Mn, x ∈ In
0, x /∈ In

and

(2.2) DsnMn
= DMn

sn−1∑
k=0

ψkMn
= DMn

sn−1∑
k=0

rkn, 1 ≤ sn ≤ mn − 1.

The n-th Lebesgue constant is de�ned in the following way

Ln = ‖Dn‖1 .
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It is well-known [25] that

(2.3) Ln = O(log n), n→∞.

Moreover, (for unbounded Vilenkin systems it can be found in [5], for bounded

Vilenkin systems see [9] and [11, 24]) there exist absolute constant c1 and c2 such

that

(2.4) c1 log n ≤
1

n

n∑
k=1

L (k) ≤ c2 log n, n = 2, 3, ....

The concept of the Hardy space [4] can be de�ned in various manners, e.g. by a

maximal function

f∗ = sup
n∈N
|SMn

f | , f ∈ Gm,

saying that f belongs to the Hardy space if f∗ ∈ L1 (Gm) . This de�nition is

suitable if the sequence m is bounded. In this case a good property of the space{
f ∈ L1 (Gm) : f∗ ∈ L1 (Gm)

}
is the atomic structure [4]. To the de�nition of space

of Hardy type for an arbitrary m, �rst we give the concept of the atoms [16]. A

set I ⊂ Gm is called an interval if for some x ∈ Gm and n ∈ N , I is of the form

I =
⋃
k∈U

In (x, k), where U is obtained from Zmn by dyadic partition.

The sets U1, U2, ... ⊂ Zmn , are obtained by means of such a partition if

U1 =
{
0, ...,

[mn

2

]
− 1
}
, U2 =

{[mn

2

]
, ...,mn − 1

}
,

U3 =

{
0, ...,

[
[mn/2]− 1

2

]
− 1

}
, U4 =

{[
[mn/2]− 1

2

]
, ...,

[mn

2

]
− 1

}
, ...

etc.; [ ] denotes the entire part. We de�ne the atoms as follows: the function

a ∈ L∞ (Gm) is called an atom if eather a ≡ 1 or there exists an interval I for which

sup a ⊂ I, |a| ≤ |I|−1 and
∫
I
a = 0 hold. (|I| denotes the Haar measure of I ) .

Now we can de�ne the space H1 (Gm) (for details see e.g [26, 27]) as the set of

all functions f =
∞∑
i=0

λiai,where ai's are atoms and for the coe�cients λi we have

∞∑
i=0

|λi| <∞. H1 (Gm) is a Banach space with respect to the norm

(2.5) ‖f‖H1
:= inf

∞∑
k=0

|λk| <∞,

where the in�mum is taken over all decompositions f =
∞∑
i=0

λiai. It is known [7]

that ‖f‖H1
is equivalent to ‖f∗∗‖1

(
f ∈ L1 (Gm)

)
, where f**(x) := supI |I|

−1 ∣∣∫
I
f
∣∣,

(x ∈ Gm, x ∈ I and I is interval). Since by (2.1)

f∗ (x) = sup
n∈N

1

|In (x)|

∣∣∣∣∣
∫
In(x)

f (u)µ (u)

∣∣∣∣∣
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we have f∗ ≤ f∗∗ and, thus, H (Gm) ⊂
{
f ∈ L1 (Gm) : f∗ ∈ L1 (Gm)

}
. Moreover

these spaces coincide if the sequence m is bounded.

3. The main result

Our main result is the following theorem.

Theorem 3.1. a) Let f ∈ H1. Then there exists an absolute constant c, such that

sup
n∈N

1

n log n

n∑
k=1

‖Skf‖1 ≤ ‖f‖H1
.

b) Let ϕ : N+ → [1, ∞) be a nondecreasing function satisfying the condition

(3.1) lim
n→∞

log n

ϕn
= +∞.

Then there exists a function f ∈ H1, such that

sup
n∈N

1

nϕn

n∑
k=1

‖Skf‖1 =∞.

Corollary 3.1. (see [10, 16, 18])There exists a function f ∈ H1, such that

sup
n∈N

1

n

n∑
k=1

‖Skf‖1 =∞.

4. Proof of theorem 3.1

Proof. By using (2.3) we can conclude that

1

n log n

n∑
k=1

‖Skf‖1 ≤
c ‖f‖H1

n log n

n∑
k=1

log k ≤ c ‖f‖H1
.

The proof of part a) is complete.

Under the condition (3.1) there exists an increasing sequence of the positive

integers {αk : k ∈ N} such that

lim
k→∞

logMαk

ϕ2Mαk

= +∞

and

(4.1)

∞∑
k=0

ϕ
1/2
2Mαk

log1/2Mαk

< c <∞.

Let f =
∑∞
k=1 λkak, where ak = rαkDMαk

= D2Mαk
−DMαk

and

λk =
ϕ
1/2
2Mαk

log1/2Mαk

.
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By the de�nition of H1 and (2.5), if we apply (4.1) we can conclude that f ∈ H1.

Moreover,

(4.2) f̂(j) =

 λk, j ∈ {Mαk , ..., 2Mαk − 1} , k ∈ N

0 , j /∈
∞⋃
k=1

{Mαk , ..., 2Mαk − 1} .

Since

Dj+Mαk
= DMαk

+ ψ
Mαk

Dj , when j ≤Mαk ,

if we apply (4.2) we obtain that

Sjf = SMαk
f +

∑j−1
v=Mαk

f̂(v)ψvSMαk
f + λk

∑j−1
v=Mαk

ψv(4.3)

= SMαk
f + λk

(
Dj −DMαk

)
= SMαk

f + λkψMαk
Dj−Mαk

= I1 + I2.

In view of (1.1) we can write that

‖I1‖1 ≤
∥∥∥SMαk

f
∥∥∥
1
≤ c ‖f‖H1

.(4.4)

By combining (2.4) and (4.4) we get that

‖Snf‖1 ≥ ‖I2‖1 − ‖I1‖1 ≥ λkL (n−Mαk)− c ‖f‖H1
.

Hence,

sup
n∈N+

1

nϕn

n∑
k=1

‖Skf‖1 ≥
1

2Mαkϕ2Mαk

∑
{Mαk

≤l≤2Mαk}
‖Slf‖1

≥ 1

2Mαkϕ2Mαk

∑
{Mαk

≤l≤2Mαk}

(
L (l −Mαk)ϕ

1/2
2Mαk

log1/2Mαk

− c ‖f‖H1

)

≥
cϕ

1/2
2Mαk

2Mαk log
1/2Mαkϕ2Mαk

Mαk
−1∑

l=1

L (l)− c ‖f‖1/2H1

≥
cϕ

1/2
2Mαk

logMαk

log1/2Mαkϕ2Mαk

≥ c log1/2Mαk

ϕ
1/2
2Mαk

→∞, as k →∞.

The proof is complete. �
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