
Èçâåñòèÿ ÍÀÍ Àðìåíèè, Ìàòåìàòèêà, òîì 54, í. 6, 2019, ñòð. 66 � 80

GABOR DUALS FOR OPERATOR-VALUED GABOR FRAMES

ON LOCALLY COMPACT ABELIAN GROUPS

Y. HU, P. LI

Nanjing University of Aeronautics and Astronautics, Nanjing, China

Anqing Normal University, Anqing, China∗

E-mails: ymhu712@126.com; pengtongli@nuaa.edu.cn; pengtonglee@sina.com

Abstract. Motivated by the ordinary Gabor frames in L2(Rd) and operator-

valued frames on abstract Hilbert spaces, we investigate operator- valued Gabor

frames associated with locally compact Abelian groups. Necessary and su�cient

conditions for an operator-valued Gabor frame to admit a Parseval/tight Gabor

dual are given. In particular, we consider a special case, which includes the case of

ordinary Gabor frames.

MSC2010 numbers: 42C15, 42C40, 46L10.

Keywords: operator-valued Gabor frame; Gabor dual; Lattice; projective unitary

representation; LCA group.

1. Introduction

The Gabor system was �rst proposed by D. Gabor [8] for the purpose of applications

in signal processing. It is a collection of functions generated by a window function

g ∈ L2(R) and by translations and modulations:

G(g, α, β) = {e2πimαxg(x− nβ) : m,n ∈ Z},

where α and β are two positive parameters. In [9], K. Gr�ochenig generalized the

notion of Gabor systems to the locally compact Abelian groups. To ensure stable

reconstruction of signals, the Gabor system needs to be a frame, a concept introduced

by R. Du�n and A. Schae�er [4] as a generalization of the Riesz bases. In recent

years, the Gabor frames were one of the extensively studied research topics in the

frame theory (see [3, 5, 7, 10, 13, 15, 16, 17]). The early Gabor frames were mainly

studied by using classical Fourier/harmonic analysis methods. Meanwhile, as it was

indicated by a number researches, more abstract tools from other �elds of pure

mathematics, such as operator algebras and group representations, can be used in

the study of Gabor frames (see [2, 11, 12, 13, 16] for some recent signi�cant results).

Gabor analysis actually has roots in the theory of von Neumann algebras, which can
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be traced back to the von Neumann's work [21] in 1930s about the von Neumann

lattices, and the related work by M. Rie�el [20] in 1980s about the incompleteness

property of Gabor families.

In the frame theory, the tight frames play an important role due to their simplicity

(e.g., the canonical dual of a tight frame is a scalar multiple of the tight frame itself),

and due to some other useful features in applications (e.g., tight frames are optimal

for erasures). Note that when a frame itself is not a tight frame, the canonical dual

frame cannot be tight. However, it is possible that tight dual frames exist even

when a given frame is not a tight one. This problem has been deeply investigated

by D. Han in several papers. For instance, in [12], it was characterized the existence

of tight/Parseval dual frames with the same structure for non-tight Gabor frames

in L2(Rd).
As a generalized version of ordinary frames, the operator-valued frame was

introduced and studied in Kaftal et al [19]. This new type of frames can be used in

the quantum communication (see [1]) and in the packet network, and so it becomes

an attractive object of study.

In this paper, motivated by the ordinary Gabor frames in L2(Rd) and by the

operator-valued frames on abstract Hilbert spaces, we consider the so-called operator-

valued Gabor frames associated with locally compact abelian groups. For simplicity,

the abbreviations �OPV� and �LCA� will be used for �operator-valued� and �locally

compact Abelian�, respectively.

The paper is structured as follows. In Section 2 we give some preliminaries for

OPV-Gabor frames. The main results of this paper are stated and proved in Section

3. Necessary and su�cient conditions for an OPV-Gabor frame associated with

an LCA group to admit a Parseval (respectively tight) Gabor dual are given in

Theorems 3.1 and 3.2. In Corollary 3.1 and Proposition 3.1, we consider a special

case including the case of ordinary Gabor frames and partially generalize the results

of D. Han from [12].

2. Preliminaries for OPV-Gabor frames

Throughout the paper, G will denote an LCA group and Ĝ will denote the dual

group of G, which consists of all characters, that is, all continuous homomorphisms

from G into the circle group T = {z ∈ C : |z| = 1}. Note that under pointwise

multiplication and equipped with an appropriate topology, Ĝ is also an LCA group.

Considering the well-known Haar measure on the LCA group G, which is unique

up to a positive constant, we have the Hilbert space L2(G) in the usual way. One
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then de�nes the translation operator Tλ, λ ∈ G, as

Tλ : L2(G)→ L2(G), (Tλf)(x) = f(xλ−1), x ∈ G,

and the modulation operator Eγ , γ ∈ Ĝ, as

Eγ : L2(G)→ L2(G), (Eγf)(x) = γ(x)f(x), x ∈ G.

Clearly, both Tλ and Eλ are unitary operators.

Recall that a closed subgroup Λ of G × Ĝ is called a lattice if it is discrete and

co-compact, that is, the quotient group G× Ĝ/Λ is compact. Given such a lattice

Λ, we write l2(Λ) for the usual Hilbert space consisting of all scalar functions x on

Λ such that x(ν) = 0 for all but a countable number of ν and
∑
ν∈Λ |x(ν)|2 <∞.

In what follows we use the following notation. ByB(L2(G)) we denote the algebra

of all bounded linear operators on L2(G) and by {χν}ν∈Λ we denote the standard

orthonormal basis of l2(Λ), where χν is the characteristic function at the single

point set {ν}. By I and I0 we denote the identity operators in L2(G) and l2(Λ),

respectively. We always write Λ for a �xed lattice in G× Ĝ and e for the group unit

of Λ. Also, for a bounded linear operator T on a Hilbert space, its adjoint operator

is denoted by T ∗.

The central object of this paper is the so-called OPV-Gabor system in L2(G)

with modulation and translation along a lattice Λ ofG×Ĝ, generated by an operator
A ∈ B(L2(G)). This is a collection of operators of the following form:

G(A,Λ) = {Aπ(ν) : π(ν) = EγTλ for ν = (λ, γ) ∈ Λ}.

If an OPV-Gabor system is also an OPV-frame in the sense of [19], then it is called

an OPV-Gabor frame. The explicit de�nition is as follows.

De�nition 2.1. For an OPV-Gabor system G(A,Λ) for L2(G), if there exist two

constants C,D > 0 such that

CI ≤
∑
ν∈Λ

(Aπ(ν))∗(Aπ(ν)) ≤ DI,(2.1)

where the series converges in the strong operator topology, then G(A,Λ) is called an

OPV-Gabor frame for L2(G). The optimal constants (maximal for C and minimal

for D) are called the lower and the upper frame bounds, respectively. An OPV-

Gabor frame G(A,Λ) is called tight if C = D, and is called Parseval if C = D = 1.

If we only require the second inequality in (2.1), then G(A,Λ) is called a Bessel

system.
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It is easy to verify that the condition (2.1) is satis�ed if and only if there exist

two constants C,D > 0 such that

C ‖ f ‖2≤
∑
ν∈Λ

‖ Aπ(ν)f ‖2≤ D ‖ f ‖2 for all f ∈ L2(G).(2.2)

A closed subspaceM of L2(G) is called Λ-shift invariant if it is π-invariant, that is,

π(ν)M ⊆M for all ν ∈ Λ. In [12], a subspace Gabor frame for the ordinary (vector)

case was introduced. Similarly, we can also de�ne the subspace Gabor frame for the

operator-valued case. If an OPV-Gabor system G(A,Λ) satis�es the condition (2.2)

only for f ∈M , then we say that G(A,Λ) is a subspace OPV-Gabor frame for M .

As we know, the analysis operators and the frame operators play an important

role in the study of frame theory. Let G(A,Λ) be a Bessel OPV-Gabor system for

L2(G). Following [14, 19], the analysis operator θA for G(A,Λ) is an operator from

L2(G) into the tensor product space l2(Λ)⊗ L2(G), de�ned by

θA(f) =
∑
ν∈Λ

χν ⊗Aπ(ν)(f) for f ∈ L2(G).

Clearly, for the adjoint of θA we have θ∗A(χν ⊗ f) = (Aπ(ν))∗(f) for ν ∈ Λ, f ∈
L2(G). The operator SA = θ∗AθA =

∑
ν∈Λ(Aπ(ν))∗(Aπ(ν)) is called the frame

operator of G(A,Λ). As in [19], for every ν ∈ Λ we de�ne the partial isometry:

Lν : L2(G)→ l2(Λ)⊗ L2(G), Lν(f) = χν ⊗ f . Then, we have

L∗ωLν =

{
I if ω = ν,

0 if ω 6= ν,
and

∑
ν∈Λ

LνL
∗
ν = I0 ⊗ I,(2.3)

where the convergence is in the strong operator topology.

If G(A,Λ) is a Bessel OPV-Gabor system, then we have

θA =
∑
ν∈Λ

LνAπ(ν) and θ∗A =
∑
ν∈Λ

(Aπ(ν))∗L∗ν .(2.4)

We collect several simple and useful facts for analysis operators as a lemma, which

are also true for general frames on Hilbert spaces.

Lemma 2.1. Let G(A,Λ) be a Bessel OPV-Gabor system for L2(G). Then the

following assertions hold:

(i) G(A,Λ) is an OPV-Gabor frame for L2(G) if and only if θA is injective and

has closed range.

(ii) G(A,Λ) is a subspace OPV-Gabor frame for a Λ-shift invariant subspace M

if and only if θ∗AθA is an invertible bounded operator when restricted to M .

(iii) G(A,Λ) is a Parseval subspace OPV-Gabor frame if and only if θ∗AθA (or

equivalently, θAθ
∗
A) is an orthogonal projection. In particular, G(A,Λ) is a

Parseval OPV-Gabor frame for L2(G) if and only if θ∗AθA = I.
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In the case where G(A,Λ) is an OPV-Gabor frame for L2(G), by using Lemma

3.1(iii), we can conclude that G(AS−1
A ,Λ) is also an OPV-Gabor frame for L2(G)

and θAS
−1
A = θAS−1

A
. Thus we obtain the following reconstruction formula:

θ∗
AS−1

A

θA = θ∗AθAS−1
A

= I.

The frame G(AS−1
A ,Λ) is called the canonical OPV-Gabor dual of G(A,Λ). In

general, if a Bessel OPV-Gabor system G(B,Λ) for L2(G) satis�es

θ∗BθA = θ∗AθB = I,

then G(B,Λ) is called an alternate OPV-Gabor dual of G(A,Λ) (cf. [19]). In this

case, G(B,Λ) must be an OPV-Gabor frame for L2(G). The canonical and alternate

OPV-Gabor duals are simply referred to OPV-Gabor duals.

De�nition 2.2. Let G(A,Λ) be an OPV-Gabor frame for L2(G). A Bessel OPV-

Gabor system G(B,Λ) for L2(G) is called a Parseval (respectively tight) OPV-Gabor

dual for G(A,Λ) if it is an OPV-Gabor dual of G(A,Λ) (that is, θ∗BθA = θ∗AθB = I),

and at the same time it is also a Parseval (respectively tight) OPV-Gabor frame

for L2(G).

For OPV-Gabor frames, we are interested in the existence of their Parseval or

tight OPV-Gabor duals. More precisely, our goal is to �nd conditions under which

a Parseval (tight) OPV-Gabor dual exists for a given OPV-Gabor frame. This topic

will be discussed in the next section, and we will need the following lemma.

Lemma 2.2. Let G(A,Λ) be an OPV-Gabor frame for L2(G) and let SA be its frame

operator. If G(B,Λ) is an OPV-Gabor dual of G(A,Λ) with upper frame bound b,

then ‖S−1
A ‖ ≤ b.

Proof. By the hypotheses, we have θ∗BθB ≤ bI, and hence θBθ
∗
B ≤ bI0⊗ I. Thus

I = θ∗AθBθ
∗
BθA ≤ bθ∗AθA = bSA,

whence S−1
A ≤ bI, or equivalently, ‖S−1

A ‖ ≤ b. �

In particular, Lemma 2.2 implies that a necessary condition for an OPV-Gabor

frame G(A,Λ) to have a Parseval Gabor dual is that the optimal lower frame bound

is greater than or equal to one, that is, ‖S−1
A ‖ ≤ 1.

3. The existence of Parseval and tight Gabor duals for OPV-Gabor

frames

In this section, we give complete characterizations for OPV-Gabor frames for

L2(G) to admit Parseval (respectively tight) OPV-Gabor duals. For this purpose, we
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need to recall a few concepts and notation, which can be found in [18]. LetA be a von

Neumann algebra, that is, it is a ∗-algebra of bounded linear operators on a Hilbert

space such that the identity operator I ∈ A and A is closed in the weak operator

topology. Call A �nite if every isometry in A is unitary. Two orthogonal projections

P and Q in A are said to be equivalent in the sense of Murray-von Neumann, if there

exists a partial isometry V ∈ A such that V V ∗ = P and V ∗V = Q. In this case we

write P ∼ Q. We use the notation P - Q if P is equivalent to a subprojection of Q

in A. A trace �tr� on A is a positive linear functional satisfying tr(T ∗T ) = tr(TT ∗)

for all T ∈ A. A faithful normal trace on A is a trace that is continuous in the

weak operator topology and satis�es the condition that tr(T ) > 0 whenever T ∈ A

is a nonzero positive operator. Denote by A′ the commutant of A. A center-valued

trace τ on A is a linear mapping from A to its center A∩A′ satisfying the following
conditions:

(i) τ(AB) = τ(BA) for all A,B ∈ A;

(ii) τ(C) = C for all C ∈ A ∩A′;

(iii) τ(A) is a nonzero positive whenever A ∈ A is a nonzero positive operator;

(iv) τ(CA) = Cτ(A) for all A ∈ A, C ∈ A ∩A′.

We remark that if A is a �nite von Neumann algebra, then A must have a unique

center-valued trace τ . Moreover, if �tr� is a faithful normal trace on A, then we have

tr(A) = tr(τ(A)) for all A ∈ A.

Let Λ be a lattice in G× Ĝ and ν = (λ, γ) ∈ Λ. It is clear that π(ν) = EγTλ is

a unitary operator on L2(G). The commutator relation

TλEγ = γ(λ)EγTλ

leads to the following useful identities

π(ν)∗ = γ(λ)π(ν−1), π(ν1)π(ν2) = µ(ν1, ν2)π(ν1ν2),

where µ(ν1, ν2) = γ2(λ1) belongs to the circle group T and νi = (λi, γi) ∈ Λ (i =

1, 2). Following [11, 14], the mapping π is called a projective unitary representation

of Λ on L2(G), and the mapping (ν1, ν2) → µ(ν1, ν2) is called a multiplier of π. It

follows from the results of [14] that

(i) µ(ν1, ν2ν3)µ(ν2, ν3) = µ(ν1ν2, ν3)µ(ν1, ν2) for all ν1, ν2, ν3 ∈ Λ;

(ii) µ(ν, e) = µ(e, ν) = 1 for all ν ∈ Λ;

(iii) µ(ν, ν−1) = µ(ν−1, ν) for all ν ∈ Λ.

Following [14], there exists an associated right regular µ-projective representation

r of Λ on the Hilbert space l2(Λ) de�ned by r(ν)(χω) = µ(ω, ν−1)χων−1 , ν, ω ∈ Λ.
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We can check that

r(ν1)r(ν2) = µ(ν−1
2 , ν−1

1 )r(ν1ν2) = µ(ν2, ν1)r(ν1ν2)

for all ν1, ν2 ∈ Λ. Clearly, every r(ν) is unitary and r is a projective unitary

representation of Λ with multiplier µ(ν2, ν1). We also introduce another projective

unitary representation:

r̃ : Λ→ B(l2(Λ)⊗ L2(G)), r̃(ν) = r(ν)⊗ I.

Of course, there exists an associated left regular µ-projective representation λ of Λ

on the Hilbert space l2(Λ) de�ned by

λ(ν)(χω) = µ(ν, ω)χνω, ν, ω ∈ Λ.

Since Λ is an Abelian group, they are essentially the same.

We will need the following two lemmas.

Lemma 3.1. Let G(A,Λ) be a Bessel OPV-Gabor system for L2(G). Then

(i) L∗e r̃(ν) = µ(ν, ν−1)L∗ν for all ν ∈ Λ;

(ii) θAπ(ν) = µ(ν, ν−1)r̃(ν)θA for all ν ∈ Λ;

(iii) SAπ(ν) = π(ν)SA for all ν ∈ Λ.

Proof. (i) Let ν ∈ Λ and f ∈ L2(G). Then we have

r̃(ν−1)Le(f) = (r(ν−1)⊗ I)(χe ⊗ f) = µ(e, ν)χν ⊗ f = χν ⊗ f = Lν(f).

This means that r̃(ν−1)Le = Lν , and hence L∗e r̃(ν
−1)∗ = L∗ν . Noting that

r(ν)r(ν−1) = µ(ν−1, ν)r(νν−1) = µ(ν, ν−1)I0,

we have r(ν−1)∗ = µ(ν, ν−1)r(ν). Thus, r̃(ν−1)∗ = µ(ν, ν−1)r̃(ν) and µ(ν, ν−1)L∗e r̃(ν) =

L∗ν . Therefore, L
∗
e r̃(ν) = µ(ν, ν−1)L∗ν for all ν ∈ Λ.

(ii) For all ν ∈ Λ, f ∈ L2(G), by (2.4), we have

θAπ(ν)(f) =
∑
ω∈Λ

LωAπ(ω)π(ν)(f) =
∑
ω∈Λ

µ(ω, ν)LωAπ(ων)(f)

=
∑
ω∈Λ

µ(ων−1, ν)Lων−1Aπ(ω)(f) = µ(ν, ν−1)
∑
ω∈Λ

µ(ω, ν−1)Lων−1Aπ(ω)(f)

= µ(ν, ν−1)
∑
ω∈Λ

µ(ω, ν−1)χων−1 ⊗Aπ(ω)(f)

= µ(ν, ν−1)r̃(ν)
∑
ω∈Λ

χω ⊗Aπ(ω)(f) = µ(ν, ν−1)r̃(ν)θA(f),

where the identity µ(ων−1, ν) = µ(ν, ν−1)µ(ω, ν−1) follows from the properties (i)

and (ii) of µ listed above. This shows that θAπ(ν) = µ(ν, ν−1)r̃(ν)θA for all ν ∈ Λ.
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(iii) For every ν ∈ Λ, we have

SAπ(ν) =
∑
ω∈Λ

(Aπ(ω))∗(Aπ(ω))π(ν) =
∑
ω∈Λ

π(ν)π(ν)∗(Aπ(ω))∗(Aπ(ω))π(ν)

= π(ν)
∑
ω∈Λ

(Aπ(ω)π(ν))∗(Aπ(ω)π(ν)) = π(ν)
∑
ω∈Λ

µ(ω, ν)µ(ω, ν)(Aπ(ων))∗(Aπ(ων))

= π(ν)
∑
ω∈Λ

(Aπ(ων))∗(Aπ(ων)) = π(ν)SA,

as required. Lemma 3.1 is proved. �

Lemma 3.2. Let G(A,Λ) be a Bessel OPV-Gabor system for L2(G) with the

analysis operator θA, and let M = Range(θ∗AθA). Then there exists an operator

T ∈ B(L2(G)) such that:

(i) G(T,Λ) is a subspace Parseval OPV-Gabor frame for M ;

(ii) Range(θT ) = Range(θA).

Proof. By the polar decomposition theorem, there is a partial isometry V :

L2(G)→ l2(Λ)⊗ L2(G) with the initial space

M = Range(θ∗AθA)
(

= Range(θ∗AθA)
1
2 = Range(θ∗A)

)
and the �nal space K = Range(θA), such that θA = V (θ∗AθA)

1
2 . It follows from

Lemma 3.1 (iii) that M is π-invariant and

µ(ν, ν−1)r̃(ν)V (θ∗AθA)
1
2 = µ(ν, ν−1)r̃(ν)θA = θAπ(ν)

= V (θ∗AθA)
1
2π(ν) = V π(ν)(θ∗AθA)

1
2

for all ν ∈ Λ. De�ne a projective unitary representation:

R̃ : Λ→ B(l2(Λ)⊗ L2(G)), R̃(ν) = µ(ν, ν−1)r̃(ν).

Then R̃(ν)V (θ∗AθA)
1
2 = V π(ν)(θ∗AθA)

1
2 for every ν ∈ Λ. Also, by Lemma 3.1 (ii),

for ν ∈ Λ, f ∈ L2(G), we have

R̃(ν)θA(f) = µ(ν, ν−1)r̃(ν)θA(f) = θAπ(ν)(f).

Hence R̃(ν)θA = θAπ(ν) and K is R̃-invariant. So, the operator V induces a unitary

equivalence between the two sub-representations R̃|K and π|M .

Let T = L∗eV . For all ν ∈ Λ, by Lemma 3.1(i), we have

Tπ|M (ν) = L∗eV π|M (ν) = L∗eR̃(ν)V |M = µ(ν, ν−1)L∗e r̃(ν)V |M

= µ(ν, ν−1)µ(ν, ν−1)L∗νV |M = L∗νV |M .

It follows from (??) and (2.4) that∑
ν∈Λ

(Tπ|M (ν))∗(Tπ|M (ν)) =
∑
ν∈Λ

V ∗LνL
∗
νV |M = V ∗(

∑
ν∈Λ

LνL
∗
ν)V |M = V ∗V |M
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and

θT =
∑
ν∈Λ

LνTπ|M (ν) =
∑
ν∈Λ

LνL
∗
νV |M = V |M .

Since V ∗V is an orthogonal projection on M , it follows that G(T,Λ) is a subspace

Parseval OPV-Gabor frame for M and Range(θT ) = Range(V ) = Range(θA). �

We remark that in the case when G(A,Λ) is an OPV-Gabor frame for L2(G), that

is, SA is invertible on L2(G), then the partial isometry V is already well-known to

be the analysis operator of the associated Parseval OPV-Gabor frame G(AS
− 1

2

A ,Λ).

Given a Bessel OPV-Gabor system G(A,Λ) for L2(G), and let θA be its analysis

operator. It follows from Lemma 3.1(ii) that the norm closure Range(θA) is invariant

under r̃(ν) for every ν ∈ Λ. So, if we use PA to denote the orthogonal projection

of l2(Λ)⊗L2(G) onto Range(θA), then PA belongs to the commutant of r̃(Λ), that

is, PA ∈ r̃(Λ)′ = r(Λ)′ ⊗ B(L2(G)). These results are extensions to the projective

unitary representations of some results stated in Lemma 6.4 of [19].

Now we are ready to state and prove our �rst main result, which generalizes

Theorem 2.2 of [12], but the proof turns out to be more complicated.

Theorem 3.1. Let G be an LCA group and Λ be a lattice of G × Ĝ. Assume

that G(A,Λ) is an OPV-Gabor frame for L2(G) whose frame operator SA satis�es

the condition ‖S−1
A ‖ ≤ 1, and denote M = Range(I − S−1

A ). Then G(A,Λ) has

a Parseval OPV-Gabor dual if and only if there exists a subspace Parseval OPV-

Gabor frame G(T,Λ) for M such that PT - I0⊗I−PA in the von Neumann algebra

r̃(Λ)′.

Proof. We �rst assume that G(A,Λ) has a Parseval OPV-Gabor dual G(B,Λ). Let

C = B −AS−1
A .

Since both G(B,Λ) and G(AS−1
A ,Λ) are OPV-Gabor frames, we have that G(C,Λ)

is a Bessel OPV-Gabor system. Moreover, θAS
−1
A = θAS−1

A
. So, we can write

θ∗AθC = θ∗A(θB − θAS−1
A ) = I − SAS−1

A = 0(3.1)

and

θ∗CθC = (θ∗B − S−1
A θ∗A)(θB − θAS−1

A )

= θ∗BθB + S−1
A SAS

−1
A − θ

∗
BθAS

−1
A − S

−1
A θ∗AθB = I − S−1

A ,

implying that

M = Range(I − S−1
A ) = Range(θ∗CθC).

Next, it follows from Lemma 3.2 that there exists a subspace Parseval OPV-Gabor

frame G(T,Λ) for M such that Range(θT ) = Range(θC). By (3.1), we have θ∗AθT =

74



GABOR DUALS FOR OPERATOR-VALUED GABOR FRAMES ...

0. Thus, PA ⊥ PT , which implies that PT ≤ I0⊗I−PA. Noting that PT , PA ∈ r̃(Λ)′,

we have PT - I0 ⊗ I − PA in the von Neumann algebra r̃(Λ)′.

Conversely, assume that there exists a subspace Parseval OPV-Gabor frame

G(T,Λ) for M = Range(I − S−1
A ) such that PT - I0 ⊗ I −PA in the von Neumann

algebra r̃(Λ)′. Then there exists a subprojection Q ≤ I0⊗ I−PA such that PT ∼ Q

in the von Neumann algebra r̃(Λ)′. Let V ∈ r̃(Λ)′ be the partial isometry such that

V V ∗ = PT and V ∗V = Q. Set E = L∗eV
∗θT . Then for all ν ∈ Λ, by Lemma 3.1(i)

and (ii), we obtain

Eπ|M (ν) = L∗eV
∗θTπ|M (ν) = µ(ν, ν−1)L∗eV

∗r̃(ν)θT

= µ(ν, ν−1)L∗e r̃(ν)V ∗θT = µ(ν, ν−1)µ(ν, ν−1)L∗νV
∗θT = L∗νV

∗θT .

So, by (2.4), we have

θE =
∑
ν∈Λ

LνEπ|M (ν) =
∑
ν∈Λ

LνL
∗
νV
∗θT = V ∗θT .

Therefore

θ∗EθE = (V ∗θT )∗(V ∗θT ) = θ∗T (V V ∗)θT = θ∗TPT θT = θ∗T θT = IM .

It follows that G(E,Λ) is also a subspace Parseval OPV-Gabor frame for M =

Range(I − S−1
A ). On the other hand, we have

Range(V ∗) = Range(Q) ⊆ Range(I0 ⊗ I − PA) = Range(θA)⊥ = ker(θ∗A).

So, we have θ∗AθE = θ∗AV
∗θT = 0, and hence

θ∗EθA = θ∗AθE = 0.(3.2)

Write D =
√
I − S−1

A , and apply Lemma 3.1 (iii), to obtain Dπ(ν) = π(ν)D for

all ν ∈ Λ, from which we can see that G(ED,Λ) is a Bessel OPV-Gabor system for

L2(G) and θED = θED. Taking into account that D is self-adjoint, we get

M = Range(I − S−1
A ) = Range(D).

Since G(E,Λ) is also a subspace Parseval OPV-Gabor frame for M , we have

I − S−1
A = D2 = D(θ∗EθE)D = (θED)∗(θED) = θ∗EDθED.

Observing that S−1
A = θ∗

AS−1
A

θAS−1
A
, we obtain

θ∗
AS−1

A

θAS−1
A

+ θ∗EDθED = I.(3.3)

Let B = AS−1
A +ED. Then θB = θAS

−1
A + θED, and by (3.2) and (3.3), we obtain

θ∗BθB = (θAS
−1
A + θED)∗(θAS

−1
A + θED) = S−1

A θ∗AθAS
−1
A + S−1

A (θ∗AθE)D

+D(θ∗EθA)S−1
A +Dθ∗EθED = θ∗

AS−1
A

θAS−1
A

+ θ∗EDθED = I
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and

θ∗BθA = (θAS
−1
A + θED)∗θA = S−1

A θ∗AθA +Dθ∗EθA = I.

The above arguments show that G(B,Λ) is a Parseval OPV-Gabor dual frame of

G(A,Λ). This completes the proof. �

We next consider the Parseval OPV-Gabor duals in certain special case. Let

G(A,Λ) be an OPV-Gabor frame for L2(G). If B = TA, where T ∈ B(L2(G)) is

an invertible operator, then G(B,Λ) is also an OPV-Gabor frame for L2(G). In

this case, we say that that G(B,Λ) is left-similar to G(A,Λ). By an appropriate

modi�cation of the arguments used in Lemma 6.4 of [19], we obtain PA ∼ PB in

r̃(Λ)′. Since r(Λ)′ is a �nite von Neumann algebra (cf. [6, 18]), so is r(Λ)′ ⊗ I.

Keeping this fact in mind, an (OPV)-Gabor frame G(A,Λ) is said to satisfy a �nite

von Neumann algebra condition, or simply F -condition, if PA ∈ r(Λ)′⊗I. Moreover,

we say that a lattice Λ of G×Ĝ is an F -lattice if every OPV-Gabor frame (including

subspace OPV-Gabor frame) G(A,Λ) satis�es the F-condition.

A natural problem is whether such F-lattices exist or not. In [19], the authors

discussed the OPV-frames associated with discrete (not necessarily countable) group

representations on abstract Hilbert spaces. In particular, Corollary 7.4 of [19] contains

a necessary and su�cient condition for all the OPV-frame generators to be left-

similar, which is generalized in Corollary 3.14 of [13] for the case of vector frames.

Given a lattice Λ of G × Ĝ and an OPV-Gabor frame G(A,Λ). If all the OPV-

Gabor frames are left-similar to G(A,Λ), then there are no projections in r̃(Λ)′ that

are di�erent but Murray-von Neumann equivalent to it. It follows from Corollary

7.4 of [19] that PA belongs to the center r̃(Λ)′ ∩ r̃(Λ)′′. Denote by w∗(r(Λ)) and

w∗(λ(Λ)) the von Neumann algebras generated by r(Λ) and λ(Λ), respectively. It is

well known that r(Λ)′ = w∗(λ(Λ)) and λ(Λ)′ = w∗(r(Λ)) (cf. [6, 14]). Since Λ is an

Abelian group, we have w∗(r(Λ)) = w∗(λ(Λ)), and hence r̃(Λ)′∩ r̃(Λ)′′ = r(Λ)′⊗ I.
The above discussion tells us that if all the OPV-Gabor frames G(A,Λ) are left-

similar, then PA ∈ r(Λ)′ ⊗ I, which means that Λ is an F-lattice.

In [18] it was shown that there exists a unique center-valued trace τ on the von

Neumann algebra r(Λ)′⊗I, and for all orthogonal projections P,Q ∈ r(Λ)′⊗I, P -
Q in r(Λ)′ ⊗ I if and only if τ(P ) ≤ τ(Q). So, in the case where Λ is an F-lattice

of G× Ĝ, we can obtain the following corollary of Theorem 3.1.

Corollary 3.1. Let G be an LCA group and Λ be an F-lattice of G× Ĝ. Assume

that G(A,Λ) is an OPV-Gabor frame for L2(G) whose frame operator SA satis�es

the condition ‖S−1
A ‖ ≤ 1, and denote M = Range(I − S−1

A ). Then G(A,Λ) has a
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Parseval OPV-Gabor dual if and only if there exists a subspace Parseval OPV-Gabor

frame G(T,Λ) for M such that τ(PT ) ≤ I0⊗I−τ(PA), where τ is the center-valued

trace on the von Neumann algebra r(Λ)′ ⊗ I.

Proof. Assume that G(A,Λ) has a Parseval OPV-Gabor dual G(B,Λ). In the

proof of the �only if� part of Theorem 3.1, in fact we have PT , PA ∈ r(Λ)′⊗I. Hence
PT - I0 ⊗ I − PA in r(Λ)′ ⊗ I, meaning that τ(PT ) ≤ I0 ⊗ I − τ(PA).

Conversely, by the hypotheses we have PT - I0 ⊗ I − PA in r(Λ)′ ⊗ I. Since
r(Λ)′ ⊗ I is a subalgebra of r̃(Λ)′, we have PT - I0 ⊗ I − PA in r̃(Λ)′. So, we can

apply Theorem 3.1 to conclude that G(A,Λ) has a Parseval OPV-Gabor dual. �

Example 3.1. In the case G = (Rd,+), with the identi�cation x ∈ Rd ↔ γx ∈ Ĝ,
we have Ĝ = G, where γx(y) = e2πi〈x,y〉. Let g, f0 ∈ L2(Rd) with ‖f0‖ = 1, and

let M1 and M2 be two non-singular d× d real matrices. Denote by A the rank one

operator given by Af = 〈f, g〉f0 for f ∈ L2(Rd), and write Λ = M1Zd ×M2Zd,
which is the so-called time-frequency lattice and plays an important role in time-

frequency analysis. Then G(A,Λ) is an OPV-Gabor frame for L2(Rd) if and only if

there exist two constants C,D > 0 such that

C ‖ f ‖2≤
∑
ν∈Λ

|〈f, gν〉|2 ≤ D ‖ f ‖2 for all f ∈ L2(Rd),

where gν(x) = e2πi〈l,x〉g(x − k) for ν = (k, l) ∈ Λ. Hence, in this case, an OPV-

Gabor frame is indeed an ordinary (vector) Gabor frame. The associated analysis

operator θA is an operator from L2(Rd) to l2(Λ)⊗ L2(Rd) de�ned by

θA(f) =
∑
ν∈Λ

χν ⊗ 〈f, gν〉f0 for f ∈ L2(Rd),

which leads to the orthogonal projection PA ∈ r(Λ)′⊗ I. So the F -condition holds,

and moreover, Λ is an F -lattice in this case. Thus, Corollary 3.1 holds for ordinary

Gabor frames, and hence Theorem 2.2 of [12] is a special case of Corollary 3.1.

It is well known that the equation tr(X) = 〈Xχe, χe〉 for X ∈ r(Λ)′, de�nes a

faithful normalized trace on r(Λ)′ (cf. [6]). Denote by ρ the corresponding map:

ρ : r(Λ)′ ⊗ I → CI, ρ(X ⊗ I) = tr(X)I(3.4)

for every X ∈ r(Λ)′ . Then, by Lemma 8.3 of [19], we have

ρ(Φ) = L∗eΦLe for all Φ ∈ r(Λ)′ ⊗ I.(3.5)

The next proposition provides a characterization in the case where r(Λ)′ is a factor

von Neumann algebra.
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Proposition 3.1. Let G be an LCA group, and let Λ be an F-lattice of G× Ĝ such

that r(Λ)′ is a factor von Neumann algebra. Assume that G(A,Λ) is an OPV-Gabor

frame for L2(G) whose frame operator SA satis�es the condition ‖S−1
A ‖ ≤ 1, and

denote M = Range(I − S−1
A ). Then G(A,Λ) has a Parseval OPV-Gabor dual if and

only if there exists a subspace Parseval OPV-Gabor frame G(T,Λ) for M such that

(T |M )(T |M )∗ ≤ I −AS−1
A A∗.

Proof. Since Λ is an F-lattice of G× Ĝ, by Corollary 3.1, G(A,Λ) has a Parseval

OPV-Gabor dual if and only if there exists a subspace Parseval OPV-Gabor frame

G(T,Λ) for M such that τ(PT ) ≤ I0 ⊗ I − τ(PA), where τ is the center-valued

trace on the �nite von Neumann algebra r(Λ)′⊗ I. Noting that PA, PT ∈ r(Λ)′⊗ I,
we can assume that PA = P1 ⊗ I, PT = P2 ⊗ I, where P1, P2 are two orthogonal

projections in the �nite von Neumann algebra r(Λ)′. Let τΛ be the center-valued

trace on r(Λ)′. Then τ(PT ) ≤ I0 ⊗ I − τ(PA) if and only if τΛ(P2) ≤ I0 − τΛ(P1).

Also, since r(Λ)′ is a factor, we have that

τΛ(P1) = tr(P1)I0, τΛ(P2) = tr(P2)I0.

Thus, τΛ(P2) ≤ I0 − τΛ(P1) if and only if tr(P2) ≤ 1 − tr(P1). By (3.4) we have

ρ(PA) = tr(P1)I, ρ(PT ) = tr(P2)I. Hence tr(P2) ≤ 1−tr(P1) if and only if ρ(PT ) ≤
I − ρ(PA). By using (2.3), (2.4), (??) and (3.5), we can write

ρ(PT ) = L∗ePTLe = L∗eθT θ
∗
TLe = L∗eθT

∑
ν∈Λ

(Tπ|M (ν))∗L∗νLe = L∗eθT (Tπ|M (e))∗

= L∗eθT (T |M )∗ = L∗e
∑
ν∈Λ

LνTπ|M (ν)(T |M )∗ = Tπ|M (e)(T |M )∗ = (T |M )(T |M )∗.

Similarly it can be shown that ρ(PA) = ρ(P
AS

−1/2
A

) = (AS
− 1

2

A )(AS
− 1

2

A )∗ = AS−1
A A∗.

Therefore, ρ(PT ) ≤ I − ρ(PA) if and only if (T |M )(T |M )∗ ≤ I − AS−1
A A∗, and the

result follows. Proposition 3.1 is proved. �

Finally, we give a necessary and su�cient condition for an OPV-Gabor frame

for L2(G) to admit a tight OPV-Gabor dual.

Theorem 3.2. Let G be an LCA group and Λ be a lattice of G × Ĝ. Suppose

that G(A,Λ) is an OPV-Gabor frame for L2(G) with the frame operator SA. Then

G(A,Λ) has a tight OPV-Gabor dual if and only if there exists a subspace Parseval

OPV-Gabor frame G(T,Λ) for M = Range(‖S−1
A ‖I − S

−1
A ) such that PT - I0⊗ I−

PA in the von Neumann algebra r̃(Λ)′ = r(Λ)′ ⊗B(L2(G)).

Proof. Assume �rst that G(A,Λ) has a tight OPV-Gabor dual G(B,Λ) with

frame bound b. From Lemma 2.2, we have b ≥ ‖S−1
A ‖, which implies that ‖(bSA)−1‖ ≤
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1. Observe that G( 1√
b
B,Λ) is a Parseval OPV-Gabor dual of G(

√
bA,Λ), and the

frame operator for G(
√
bA,Λ) is bSA. It follows from Theorem 3.1 that there exists a

subspace Parseval OPV-Gabor frame G(C,Λ) for N = Range(I − 1
bS
−1
A ) such that

PC - I0⊗ I −P√bA in r̃(Λ)′. Noting that if b > ‖S−1
A ‖, then bI −S

−1
A is invertible,

we have

ker(I − 1

b
S−1
A ) = ker(bI − S−1

A ) = {0}.

Thus when b ≥ ‖S−1
A ‖, we have ker(‖S−1

A ‖I − S−1
A )⊥ ⊆ ker(I − 1

bS
−1
A )⊥, which

means that

M = Range(‖S−1
A ‖I − S

−1
A ) ⊆ Range(I − 1

b
S−1
A ) = N.

De�ne an operator T := C|M . It is easy to check that G(T,Λ) is a subspace Parseval

OPV-Gabor frame for M and Range(θT ) ⊆ Range(θC). Combining this with the

fact that Range(θ√bA) = Range(θA), we get

PT ≤ PC - I0 ⊗ I − P√bA = I0 ⊗ I − PA

in r̃(Λ)′.

Conversely, assume that there exists a subspace Parseval OPV-Gabor frame

G(T,Λ) for M = Range(‖S−1
A ‖I − S

−1
A ) such that PT - I0 ⊗ I − PA in r̃(Λ)′.

Observe that

M = ker(‖S−1
A ‖I − S

−1
A )⊥ = ker

(
I −

S−1
A

‖S−1
A ‖

)⊥
,

and ‖S−1
A ‖SA is the frame operator for OPV-Gabor frame G(

√
‖S−1

A ‖A,Λ) satisfying

‖(‖S−1
A ‖SA)−1‖ = 1. Since Range(θ√‖S−1

A ‖A
) = Range(θA) implies that P√‖S−1

A ‖A
=

PA, by Theorem 3.1, G(
√
‖S−1

A ‖A,Λ) has a Parseval OPV-Gabor dual G(B,Λ).

Therefore G(A,Λ) has a tight OPV-Gabor dual G(
√
‖S−1

A ‖B,Λ). The proof is

complete. Theorem 3.2 is proved. �
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