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Abstract. Motivated by the ordinary Gabor frames in L2(R%) and operator-
valued frames on abstract Hilbert spaces, we investigate operator- valued Gabor
frames associated with locally compact Abelian groups. Necessary and sufficient
conditions for an operator-valued Gabor frame to admit a Parseval/tight Gabor

dual are given. In particular, we consider a special case, which includes the case of

ordinary Gabor frames.
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1. INTRODUCTION

The Gabor system was first proposed by D. Gabor [8] for the purpose of applications
in signal processing. It is a collection of functions generated by a window function

g € L*(R) and by translations and modulations:
S(g. . B) = {7 g(x —nf) : m,n € L},

where o and § are two positive parameters. In [9], K. Grochenig generalized the
notion of Gabor systems to the locally compact Abelian groups. To ensure stable
reconstruction of signals, the Gabor system needs to be a frame, a concept introduced
by R. Duffin and A. Schaeffer [4] as a generalization of the Riesz bases. In recent
years, the Gabor frames were one of the extensively studied research topics in the
frame theory (see [3, 5, 7, 10, 13, 15, 16, 17]). The early Gabor frames were mainly
studied by using classical Fourier/harmonic analysis methods. Meanwhile, as it was
indicated by a number researches, more abstract tools from other fields of pure
mathematics, such as operator algebras and group representations, can be used in
the study of Gabor frames (see [2, 11, 12, 13, 16] for some recent significant results).

Gabor analysis actually has roots in the theory of von Neumann algebras, which can
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be traced back to the von Neumann’s work [21] in 1930s about the von Neumann
lattices, and the related work by M. Rieffel [20] in 1980s about the incompleteness
property of Gabor families.

In the frame theory, the tight frames play an important role due to their simplicity
(e.g., the canonical dual of a tight frame is a scalar multiple of the tight frame itself),
and due to some other useful features in applications (e.g., tight frames are optimal
for erasures). Note that when a frame itself is not a tight frame, the canonical dual
frame cannot be tight. However, it is possible that tight dual frames exist even
when a given frame is not a tight one. This problem has been deeply investigated
by D. Han in several papers. For instance, in [12], it was characterized the existence
of tight/Parseval dual frames with the same structure for non-tight Gabor frames
in L2(R9).

As a generalized version of ordinary frames, the operator-valued frame was
introduced and studied in Kaftal et al [19]. This new type of frames can be used in
the quantum communication (see [1]) and in the packet network, and so it becomes
an attractive object of study.

In this paper, motivated by the ordinary Gabor frames in L?(R?) and by the
operator-valued frames on abstract Hilbert spaces, we consider the so-called operator-
valued Gabor frames associated with locally compact abelian groups. For simplicity,
the abbreviations “OPV” and “LCA” will be used for “operator-valued” and “locally
compact Abelian”, respectively.

The paper is structured as follows. In Section 2 we give some preliminaries for
OPV-Gabor frames. The main results of this paper are stated and proved in Section
3. Necessary and sufficient conditions for an OPV-Gabor frame associated with
an LCA group to admit a Parseval (respectively tight) Gabor dual are given in
Theorems 3.1 and 3.2. In Corollary 3.1 and Proposition 3.1, we consider a special
case including the case of ordinary Gabor frames and partially generalize the results
of D. Han from [12].

2. PRELIMINARIES FOR OPV-GABOR FRAMES

Throughout the paper, G will denote an LCA group and G will denote the dual
group of G, which consists of all characters, that is, all continuous homomorphisms
from G into the circle group T = {z € C : |z| = 1}. Note that under pointwise
multiplication and equipped with an appropriate topology, G is also an LCA group.
Considering the well-known Haar measure on the LCA group G, which is unique

up to a positive constant, we have the Hilbert space L?(G) in the usual way. One
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then defines the translation operator Ty, \ € G, as

Ty : L*(G) — LA(G), (Tnf)(z)= f(zA™Y), x€aq,
and the modulation operator E.,~y € @, as

E,: L%(G) = I%(G), (B,f)(x) =1(2)f(x), x€C.

Clearly, both T and FE) are unitary operators.

Recall that a closed subgroup A of G x G is called a lattice if it is discrete and
co-compact, that is, the quotient group G x G /A is compact. Given such a lattice
A, we write [2(A) for the usual Hilbert space consisting of all scalar functions x on
A such that 2(v) = 0 for all but a countable number of v and ) ., [#(v)]* < oc.

In what follows we use the following notation. By B(L?(G)) we denote the algebra
of all bounded linear operators on L?(G) and by {x, },ea we denote the standard
orthonormal basis of [2(A), where y, is the characteristic function at the single
point set {v}. By I and Iy we denote the identity operators in L?(G) and [2(A),
respectively. We always write A for a fixed lattice in G x G and e for the group unit
of A. Also, for a bounded linear operator 1" on a Hilbert space, its adjoint operator
is denoted by T™.

The central object of this paper is the so-called OPV-Gabor system in L?(G)
with modulation and translation along a lattice A of G x @, generated by an operator
A € B(L?*(@)). This is a collection of operators of the following form:

G(A,A) = {An(v) : m(v) = E,T) forv = (\,y) € A}

If an OPV-Gabor system is also an OPV-frame in the sense of [19], then it is called

an OPV-Gabor frame. The explicit definition is as follows.

Definition 2.1. For an OPV-Gabor system G(A4, A) for L?(G), if there exist two
constants C, D > 0 such that

(2.1) CI <) (An(v))*(Ar(v)) < DI,
veA
where the series converges in the strong operator topology, then G(A, A) is called an
OPV-Gabor frame for L?(G). The optimal constants (maximal for C' and minimal
for D) are called the lower and the upper frame bounds, respectively. An OPV-
Gabor frame G(A, A) is called tight if C = D, and is called Parseval if C = D = 1.
If we only require the second inequality in (2.1), then G(A, A) is called a Bessel
system.
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It is easy to verify that the condition (2.1) is satisfied if and only if there exist
two constants C, D > 0 such that
(22)  CIFIPE Y I An)f P< D |7 forall f € I2(C).

veA

A closed subspace M of L?(G) is called A-shift invariant if it is m-invariant, that is,
m(v)M C M for all v € A. In [12], a subspace Gabor frame for the ordinary (vector)
case was introduced. Similarly, we can also define the subspace Gabor frame for the
operator-valued case. If an OPV-Gabor system G(A, A) satisfies the condition (2.2)
only for f € M, then we say that G(A4, A) is a subspace OPV-Gabor frame for M.

As we know, the analysis operators and the frame operators play an important
role in the study of frame theory. Let G(A, A) be a Bessel OPV-Gabor system for
L?(G). Following [14, 19|, the analysis operator 64 for G(A, A) is an operator from
L?(G) into the tensor product space [?(A) ® L?(G), defined by

0a(f) =D xv @ An(v)(f) for f € L*(G).

veA
Clearly, for the adjoint of 64 we have 6% (x, ® f) = (A7 (v))*(f) for v € A, f €
L*(G). The operator Sy = 0404 = >, 2 (An(v))*(Am(v)) is called the frame
operator of G(A,A). As in [19], for every v € A we define the partial isometry:
L, : L*(G) = I*(A) ® L*(G), L,(f) = x» ® f. Then, we have

I ifw=v,

LL =11
0 ifw#v, and Z vin =l ® 4

(2.3) L,L, = {
veA
where the convergence is in the strong operator topology.
If G(A, A) is a Bessel OPV-Gabor system, then we have
(2.4) 0a=> L,An(v) and 04 = (Ar(v))*L;.

vEA vEA
We collect several simple and useful facts for analysis operators as a lemma, which

are also true for general frames on Hilbert spaces.

Lemma 2.1. Let G(A,A) be a Bessel OPV-Gabor system for L?(G). Then the

following assertions hold:
(i) G(A,A) is an OPV-Gabor frame for L*(G) if and only if 04 is injective and

has closed range.
(ii) S(A,A) is a subspace OPV-Gabor frame for a A-shift invariant subspace M
if and only if 075,04 is an invertible bounded operator when restricted to M.
(iii) G(A,A) is a Parseval subspace OPV-Gabor frame if and only if 0%04 (or
equivalently, 046% ) is an orthogonal projection. In particular, G(A,A) is a

Parseval OPV-Gabor frame for L*(G) if and only if 0404 = I.
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In the case where G(A, A) is an OPV-Gabor frame for L?(G), by using Lemma
3.1(iii), we can conclude that G(AS,*, A) is also an OPV-Gabor frame for L*(G)

and 9,4521 = GASZL Thus we obtain the following reconstruction formula:
9:"45:‘19,4 = 92914321 =1

The frame G(AS,',A) is called the canonical OPV-Gabor dual of G(A,A). In
general, if a Bessel OPV-Gabor system G(B, A) for L?(G) satisfies

03,04 = 0705 =1,

then G(B,A) is called an alternate OPV-Gabor dual of G(A,A) (cf. [19]). In this
case, §(B, A) must be an OPV-Gabor frame for L?(G). The canonical and alternate
OPV-Gabor duals are simply referred to OPV-Gabor duals.

Definition 2.2. Let G(A4,A) be an OPV-Gabor frame for L?(G). A Bessel OPV-
Gabor system G(B, A) for L?(G) is called a Parseval (tespectively tight) OPV-Gabor
dual for G(A, A) if it is an OPV-Gabor dual of (A4, A) (that is, 8504 = 0%0p = I),
and at the same time it is also a Parseval (respectively tight) OPV-Gabor frame
for L*(G).

For OPV-Gabor frames, we are interested in the existence of their Parseval or
tight OPV-Gabor duals. More precisely, our goal is to find conditions under which
a Parseval (tight) OPV-Gabor dual exists for a given OPV-Gabor frame. This topic

will be discussed in the next section, and we will need the following lemma.

Lemma 2.2. Let G(A, A) be an OPV-Gabor frame for L>(G) and let S 4 be its frame
operator. If S(B,A) is an OPV-Gabor dual of G(A, A) with upper frame bound b,
then || S| < b.

Proof. By the hypotheses, we have 8505 < bI, and hence 050} < bly® I. Thus
I=0%0p0504 <b0%04 =054,

whence ;' < bI, or equivalently, ||S'(| < b. O
In particular, Lemma 2.2 implies that a necessary condition for an OPV-Gabor
frame G(A, A) to have a Parseval Gabor dual is that the optimal lower frame bound

is greater than or equal to one, that is, || || < 1.

3. THE EXISTENCE OF PARSEVAL AND TIGHT GABOR DUALS FOR OPV-GABOR

FRAMES

In this section, we give complete characterizations for OPV-Gabor frames for

L?(G) to admit Parseval (respectively tight) OPV-Gabor duals. For this purpose, we
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need to recall a few concepts and notation, which can be found in [18]. Let A be a von
Neumann algebra, that is, it is a *-algebra of bounded linear operators on a Hilbert
space such that the identity operator I € A and A is closed in the weak operator
topology. Call A finite if every isometry in A is unitary. Two orthogonal projections
P and @ in A are said to be equivalent in the sense of Murray-von Neumann, if there
exists a partial isometry V € A such that VV* = P and V*V = Q. In this case we
write P ~ (). We use the notation P 3 @ if P is equivalent to a subprojection of Q
in A. A trace “tr” on A is a positive linear functional satisfying tr(7*T) = tr(TT™*)
for all T' € A. A faithful normal trace on A is a trace that is continuous in the
weak operator topology and satisfies the condition that tr(7") > 0 whenever T € A
is a nonzero positive operator. Denote by A’ the commutant of A. A center-valued
trace T on A is a linear mapping from A to its center ANA’ satisfying the following
conditions:

(i) 7(AB) = 7(BA) for all A, B € A,

(i y=Cforall Ce ANA;

i (¢
(iii) 7(A) is a nonzero positive whenever A € A is a nonzero positive operator;
(iv) 7(CA) =C7(A) forall Ac A,C e ANA".

We remark that if A is a finite von Neumann algebra, then A must have a unique

T

center-valued trace 7. Moreover, if “tr” is a faithful normal trace on A, then we have
tr(A) = tr(7(A)) for all A € A.
Let A be a lattice in G x G and v = (\,7) € A. It is clear that 7(v) = E,\Ty is

a unitary operator on L?(G). The commutator relation

T\E, = v(\)E,T)

leads to the following useful identities

m() =N, w)r(ve) = plvr, ve)m(vive),
where p(vy,v2) = v2(A1) belongs to the circle group T and v; = (A, 7:) € A (i =
1,2). Following [11, 14], the mapping 7 is called a projective unitary representation
of A on L?(G), and the mapping (v1,v2) — u(v1,v2) is called a multiplier of 7. It
follows from the results of [14] that
(1) p(vr, vevs)u(va, vs) = p(vive, vs) (v, va) for all vy, ve,v3 € A;
(il) p(v,e) = ple,v) =1for all v € A;
(iii) p(v,v=1) = p(v=1,v) for all v € A.
Following [14], there exists an associated right regular p-projective representation

r of A on the Hilbert space (?(A) defined by r(v)(xw) = p(w,v=1)Xwp-1, V,w € A.
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We can check that

r(n)r(ve) = p(vy ' vy r(vive) = p(ve, 11)r(vivs)

for all v1,1s € A. Clearly, every r(v) is unitary and r is a projective unitary
representation of A with multiplier u(vo,v1). We also introduce another projective

unitary representation:
7:A— B(I*(MN)® LA(@Q), 7v)=r)®I.

Of course, there exists an associated left reqular u-projective representation A of A
on the Hilbert space [2(A) defined by

AV)(Xw) = p(v,w)Xpw, Vyw €A

Since A is an Abelian group, they are essentially the same.

We will need the following two lemmas.

Lemma 3.1. Let G(A, A) be a Bessel OPV-Gabor system for L*(G). Then
(i) L:7F(v) = u(v,v=Y)LE for all v € A;
(i) Oam(v) = u(v,v=1)7(v)04 for all v € A;
(iii) Sam(v) =7(v)Sa for allv € A.

Proof. (i) Let v € A and f € L?(G). Then we have

P Le(f) = (r(r™ ) @ D(xe @ ) = ule,V)xw @ f = x0 @ f = Lu(f).

This means that 7(v~!)L. = L,, and hence L*7(v~1)* = L*. Noting that
r)r(v™") = ulv=tv)rr™) = p(v,v=1)l,

we have r(v=1)* = p(v,v=Y)r(v). Thus, 7(v=1)* = pu(v,v=1)7(v) and p(v,v =1 L7 (v) =
L}. Therefore, L7 (v) = p(v,v=1)L} for all v € A.
(ii) For all v € A, f € L*(G), by (2.4), we have

Oam(v)(f) = Y LoAn(w)r(v)(f) = D plw,v) Lo Am(wr)(f)

weA weA

= 3 jlwr ™ 0) Ly Ar(@) () = (v S @ D Ly Am(w) (f)

weA weA

= u(v,v™h) Z ww, v ) X1 ® Am(w)(f)

weA
= u(r,v W) Y X @ An(w)(f) = p(v, v F(W)0a(f),
weA

Lv) = p(v,v Y p(w,v—1) follows from the properties (i)

where the identity u(wy™
and (ii) of u listed above. This shows that 047 (v) = u(v,v=1)7(v)04 for all v € A.
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(iii) For every v € A, we have

Sam(v) =Y (An(w)) (An(w)m(v) = Y w(v)m(v)* (An(w))"(Am(w))r(v)

weA wEeA
=7(v) Y (Ar(w)r(v)* (Am(W)m(v)) = 7(v) Y ulw, v)u(w, v)(Ar(wr))* (Ar(wr))
weA wEA
=7(v) Z(Aﬂ(wu))*(Aﬂ'(wz/)) =m(v)Sa,
weA
as required. Lemma 3.1 is proved. (]

Lemma 3.2. Let G(A,A) be a Bessel OPV-Gabor system for L*(G) with the
analysis operator 04, and let M = Range(0%04). Then there exists an operator
T € B(L*(Q)) such that:

(i) S(T,A) is a subspace Parseval OPV-Gabor frame for M;
(ii) Range(fr) = Range(64).
Proof. By the polar decomposition theorem, there is a partial isometry V :
L*(G) — I2(A) ® L*(G) with the initial space
M = Range(6%64) (: Range(@jﬁA)% = Range(@jg))

1

and the final space K = Range(64), such that 84 = V(6%64)2. It follows from

Lemma 3.1 (iii) that M is 7-invariant and

(v, v YTV (04504)2 = p(v, v )7 (v)04 = Oam(v)

= V(0304)37(v) = V(v)(0304)*
for all v € A. Define a projective unitary representation:

R:A— B(2(A) @ L3(G)), R(v)= ulv,v ).
Then E(V)V(@Z@A)% = VT&'(V)(GZ&A)% for every v € A. Also, by Lemma 3.1 (ii),
for v € A, f € L?(G), we have

R()0(f) = (v, v N ()0a(f) = Oam()(f)-

Hence R(v)f4 = O47(v) and K is R-invariant. So, the operator V induces a unitary

equivalence between the two sub-representations R|x and 7|;.
Let T'= L:V. For all v € A, by Lemma 3.1(i), we have

Tl (v) = LiValn(v) = LERW)V v = plv, v YLF@)V |n
= u(v,v Hulv,v=)LEV|ym = LEV |y
It follows from (?7) and (2.4) that

S (Tl ) (Tl (v) =Y VAL, LV = V(Y LLy)Viy = V'V
vEA veA veA
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and

Or = LT7ln(wv) =Y LLiVIn =Viu.
veEA veA
Since V*V is an orthogonal projection on M, it follows that G(T', A) is a subspace

Parseval OPV-Gabor frame for M and Range(f7) = Range(V) = Range(64). O

We remark that in the case when G(4, A) is an OPV-Gabor frame for L?(G), that
is, S4 is invertible on L?(G), then the partial isometry V is already well-known to
be the analysis operator of the associated Parseval OPV-Gabor frame S(AS;% ).

Given a Bessel OPV-Gabor system G(A, A) for L?(G), and let 64 be its analysis
operator. It follows from Lemma 3.1(ii) that the norm closure Range(f 1) is invariant
under 7(v) for every v € A. So, if we use P4 to denote the orthogonal projection
of 12(A) ® L?(G) onto Range(f4), then P4 belongs to the commutant of 7(A), that
is, P4 € 7(A) = r(A) ® B(L*(Q)). These results are extensions to the projective
unitary representations of some results stated in Lemma 6.4 of [19].

Now we are ready to state and prove our first main result, which generalizes

Theorem 2.2 of [12], but the proof turns out to be more complicated.

Theorem 3.1. Let G be an LCA group and A be a lattice of G X G. Assume
that G(A, A) is an OPV-Gabor frame for L?(G) whose frame operator S satisfies
the condition ||S;*|| < 1, and denote M = Range(I — S,'). Then G(A,A) has
a Parseval OPV-Gabor dual if and only if there exists a subspace Parseval OPV-
Gabor frame (T, A) for M such that Pr 3 Io®1— P4 in the von Neumann algebra
(A).

Proof. We first assume that G(A4, A) has a Parseval OPV-Gabor dual G(B, A). Let
C=B-AS,".
Since both §(B,A) and G(AS;', A) are OPV-Gabor frames, we have that G(C, A)
is a Bessel OPV-Gabor system. Moreover, GASZ1 = HASZL So, we can write
(3.1) 0500 = 04 (0p —04S,) =1 S48, =0
and
000 = (05 — 55'04) (0 — 04551
= 0305 + S, SaSy — 05045, — S1' 0405 =1~ S;",
implying that
M = Range(I — S;") = Range(650c).-
Next, it follows from Lemma 3.2 that there exists a subspace Parseval OPV-Gabor

frame G(T, A) for M such that Range(6r) = Range(6¢). By (3.1), we have 0% 60r =
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0. Thus, P4 L Pr, which implies that Pr < Io®I— P4. Noting that Pr, P4 € 7(A)’,
we have Pr X Ip ® I — P4 in the von Neumann algebra 7(A)’.

Conversely, assume that there exists a subspace Parseval OPV-Gabor frame
S(T,A) for M = Range(I — S;') such that Pr < Iy ® I — P4 in the von Neumann
algebra 7(A)’. Then there exists a subprojection @ < Iy ® I — P4 such that Pr ~ Q
in the von Neumann algebra 7(A)’. Let V' € 7(A)’ be the partial isometry such that
VV* = Pr and V*V = Q. Set E = L:;V*0p. Then for all v € A, by Lemma 3.1(i)
and (ii), we obtain

Enly(v) = LV 0rn|py(v) = u(v,v Y ) LIV*F(v)0r
= u(v, v HLIFW)V*0r = pu(v, v " Hu(y,v=1)LEV* 0 = LiV*0r.
So, by (2.4), we have

O0p =Y L,Ex|y(v) =Y L,LyV*0r =V*0r.
vEA vEA

Therefore
050 = (V*0r) (V*Or) = 05.(VV*)0r = 05 Prr = 0501 = I).

It follows that G(F,A) is also a subspace Parseval OPV-Gabor frame for M =
Range(I — S;'). On the other hand, we have

Range(V*) = Range(Q) C Range(Ip ® I — P4) = Range(f4)" = ker(67%).
So, we have 0% 0g = 6% V*0r = 0, and hence
(3.2) 0504 = 030 =0.
Write D = /I — S, and apply Lemma 3.1 (iii), to obtain D7 (v) = 7(v)D for

all v € A, from which we can see that G(ED, A) is a Bessel OPV-Gabor system for
L?(G) and Ogp = O D. Taking into account that D is self-adjoint, we get

M = Range(I — S;') = Range(D).
Since G(E, A) is also a subspace Parseval OPV-Gabor frame for M, we have
I—-S,'=D?=D(030r)D = (0gD)*(0rD) = 0550ED.

Observing that S;l =0*

ASZlgAS;17 we obtain

(3.3) 0y510as7 +0pp0ep = 1.
Let B = AS;'+ ED. Then 05 = 045" 4+ 05D, and by (3.2) and (3.3), we obtain
0505 = (045, +05D)*(04aSy" +05D) = S,'04045," + S, (0%0r)D
+ D(0304)S," 4+ DOLOED = 05104571 +0pp0ep =1
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and
0304 = (045" +05D)*04 = S,'0404 + DOROA = I.

The above arguments show that G(B,A) is a Parseval OPV-Gabor dual frame of
G(A, A). This completes the proof. O

We next consider the Parseval OPV-Gabor duals in certain special case. Let
S(A,A) be an OPV-Gabor frame for L?(G). If B = TA, where T € B(L*(G)) is
an invertible operator, then G(B,A) is also an OPV-Gabor frame for L?(G). In
this case, we say that that G(B,A) is left-similar to G(A,A). By an appropriate
modification of the arguments used in Lemma 6.4 of [19], we obtain P4 ~ Pp in
7(A)". Since r(A)’ is a finite von Neumann algebra (cf. |6, 18]), so is r(A) & I.
Keeping this fact in mind, an (OPV)-Gabor frame G(A, A) is said to satisfy a finite
von Neumann algebra condition, or simply F-condition, if P4 € r(A)' ®I. Moreover,
we say that a lattice A of G x G is an F-lattice if every OPV-Gabor frame (including
subspace OPV-Gabor frame) G(A, A) satisfies the F-condition.

A natural problem is whether such F-lattices exist or not. In [19], the authors
discussed the OPV-frames associated with discrete (not necessarily countable) group
representations on abstract Hilbert spaces. In particular, Corollary 7.4 of [19] contains
a necessary and sufficient condition for all the OPV-frame generators to be left-
similar, which is generalized in Corollary 3.14 of [13] for the case of vector frames.
Given a lattice A of G x G and an OPV-Gabor frame G(A,A). If all the OPV-
Gabor frames are left-similar to G(A, A), then there are no projections in 7(A)’ that
are different but Murray-von Neumann equivalent to it. It follows from Corollary
7.4 of [19] that P4 belongs to the center 7(A)’ N 7(A)”. Denote by w*(r(A)) and
w*(A(A)) the von Neumann algebras generated by r(A) and A(A), respectively. It is
well known that r(A)" = w*(A(A)) and A(A) = w*(r(A)) (cf. |6, 14]). Since A is an
Abelian group, we have w*(r(A)) = w*(A(A)), and hence 7(A)' NF(A)”" = r(A) @ I.
The above discussion tells us that if all the OPV-Gabor frames G(A, A) are left-
similar, then P4 € r(A)’ ® I, which means that A is an F-lattice.

In [18] it was shown that there exists a unique center-valued trace 7 on the von
Neumann algebra r(A)’®1, and for all orthogonal projections P,Q € r(A)'®I, P 3
Q in r(A) ® I if and only if 7(P) < 7(Q). So, in the case where A is an F-lattice

of G x @, we can obtain the following corollary of Theorem 3.1.

Corollary 3.1. Let G be an LCA group and A be an F-lattice of G X G. Assume

that G(A, A) is an OPV-Gabor frame for L?(G) whose frame operator Sa satisfies

the condition ||S;'|| < 1, and denote M = Range(I — S;'). Then G(A,A) has a
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Parseval OPV-Gabor dual if and only if there exists a subspace Parseval OPV-Gabor
frame S(T, A) for M such that 7(Pr) < Io®I —71(P4), where T is the center-valued

trace on the von Neumann algebra r(A) ® I.

Proof. Assume that G(A, A) has a Parseval OPV-Gabor dual §(B,A). In the
proof of the “only if” part of Theorem 3.1, in fact we have Pr, P4 € r(A)' ®I. Hence
Pr3Iy®1I— Py in r(A) ® I, meaning that 7(Pr) < Io ® I — 7(Pa).

Conversely, by the hypotheses we have Pr 3 Ip ® I — P4 in r(A) ® I. Since
r(A) ® I is a subalgebra of 7(A)’, we have Pr 3 Ip ® I — P4 in 7(A)’. So, we can
apply Theorem 3.1 to conclude that G(A, A) has a Parseval OPV-Gabor dual. O

Example 3.1. In the case G = (R, +), with the identification z € R? <5 v, € G,
we have G = G, where 7, (y) = e2™4=¥), Let g, fo € L*(R%) with ||fo|| = 1, and
let My and M be two non-singular d x d real matrices. Denote by A the rank one
operator given by Af = (f,g)fo for f € L?(R?), and write A = M;Z¢ x M,Z4,
which is the so-called time-frequency lattice and plays an important role in time-
frequency analysis. Then G(A4, A) is an OPV-Gabor frame for L2(R?) if and only if
there exist two constants C, D > 0 such that

CUFPS S ILa)P <DIFIP forall f e L3(RY,

veA
where g, (z) = 2™t g(x — k) for v = (k,1) € A. Hence, in this case, an OPV-
Gabor frame is indeed an ordinary (vector) Gabor frame. The associated analysis
operator 4 is an operator from L?(R%) to 12(A) ® L?(R?) defined by
04(f) =D _xv®(f.g)fo for f € L*(RY),
veA

which leads to the orthogonal projection P4 € r(A)’ ® I. So the F-condition holds,
and moreover, A is an F-lattice in this case. Thus, Corollary 3.1 holds for ordinary

Gabor frames, and hence Theorem 2.2 of [12] is a special case of Corollary 3.1.

It is well known that the equation tr(X) = (X xe, xe) for X € r(A)’, defines a
faithful normalized trace on r(A)’ (cf. [6]). Denote by p the corresponding map:

(3.4) p:r(A)Y @I —-CI, p(X®I)=tr(X)I
for every X € r(A) . Then, by Lemma 8.3 of [19], we have
(3.5) p(®) = Li®L, forall®er(A) @I.

The next proposition provides a characterization in the case where (A)’ is a factor

von Neumann algebra.
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Proposition 3.1. Let G be an LCA group, and let A be an F-lattice of G x G such
that r(A)’ is a factor von Neumann algebra. Assume that G(A, A) is an OPV-Gabor
frame for L*(G) whose frame operator S satisfies the condition ||Sy*| < 1, and
denote M = Range(I — S '). Then G(A, A) has a Parseval OPV-Gabor dual if and
only if there exists a subspace Parseval OPV-Gabor frame G(T,A) for M such that
(T|m)(TIa)* <1 —AS;TA”

Proof. Since A is an F-lattice of G x CA}, by Corollary 3.1, G(A, A) has a Parseval
OPV-Gabor dual if and only if there exists a subspace Parseval OPV-Gabor frame
G(T,A) for M such that 7(Pr) < Iy ® I — 7(P4), where 7 is the center-valued
trace on the finite von Neumann algebra r(A)’ ® I. Noting that Pa, Pr € r(A) ® 1,
we can assume that Py = Py ® I, Pr = P, ® I, where Py, P, are two orthogonal
projections in the finite von Neumann algebra r(A)’. Let 75 be the center-valued
trace on r(A)’. Then 7(Pr) < Iy ® I — 7(P4) if and only if 7o (P2) < Iy — 7a(Py).

Also, since 7(A)’ is a factor, we have that
Ta(P1) = tr(Pr) o, Ta(P2) = tr(P2)1o.

Thus, 7A(Ps) < Iy — 7a(P1) if and only if tr(P2) < 1 — tr(Py). By (3.4) we have
p(Pa) = tr(Py)I, p(Pr) = tr(Py)I. Hence tr(P) < 1—tr(P) if and only if p(Pr) <
I — p(Py4). By using (2.3), (2.4), (??) and (3.5), we can write

p(Pr)=L:PrL. = L}0705L. = L:0r Z:(T7T|M(u))*L;Le = L:07(Tr|n(e))*

vEA
= L0r(T|a)* = Le Y LTrlae0)(T|an)* = Trelar(e)(Tlan)* = (T]an)(T]ar)"
veA
Similarly it can be shown that p(Pa) = p(P,s-1/2) = (AS;?)(AS,2)* = AS; A",
A

Therefore, p(Pr) < I — p(P4) if and only if (T|y)(T|ar)* < T — AS;'A*, and the
result follows. Proposition 3.1 is proved. O

Finally, we give a necessary and sufficient condition for an OPV-Gabor frame
for L?(G) to admit a tight OPV-Gabor dual.

Theorem 3.2. Let G be an LCA group and A be a lattice of G x G. Suppose
that G(A, A) is an OPV-Gabor frame for L*>(G) with the frame operator Sa. Then
S(A, A) has a tight OPV-Gabor dual if and only if there exists a subspace Parseval
OPV-Gabor frame G(T, A) for M = Range(||S;*||T — S3*) such that Pr 3 Iy @1 —
P, in the von Neumann algebra 7(A) = r(A)’ @ B(L*(G)).

Proof. Assume first that G(A4,A) has a tight OPV-Gabor dual §(B,A) with
frame bound b. From Lemma 2.2, we have b > ||S7;!||, which implies that ||(bS4) || <
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1. Observe that S(ﬁB,A) is a Parseval OPV-Gabor dual of G(vbA,A), and the
frame operator for G(v/bA, A) is bSa. It follows from Theorem 3.1 that there exists a
subspace Parseval OPV-Gabor frame G(C, A) for N = Range(I — %S;l) such that
P 31y®1— P, in 7(A). Noting that if b > [|S5"||, then bl — S is invertible,

we have
1
ker(I — gSZl) = ker(bl — S;*) = {0}.
Thus when b > [|S;"|, we have ker(|[S;'[[I — S;")* C ker(I — $54")*, which
means that

1
b
Define an operator T := C|p. It is easy to check that §(T, A) is a subspace Parseval
OPV-Gabor frame for M and Range(6r) C Range(6c). Combining this with the
fact that Range(f 5;,) = Range(fa), we get

M = Range(||S;'[|[T — S;"') C Range(I — ~S3") = N.

Pr Spcjl()@I*P\/EA:Io@I*PA
in 7(A)".
Conversely, assume that there exists a subspace Parseval OPV-Gabor frame
S(T,A) for M = Range(||S;*||[I — S,') such that Pr 3 Ip ® I — P4 in 7(A)".
Observe that

1

—1
M = ker(|[S3'[1 — S31)*" = ker (I— o4, > :
[Erell

and || S *||Sa is the frame operator for OPV-Gabor frame G(1/||S; || A4, A) satisfying

—1 —1 . . o . . .
11547 11Sa)~ || = 1. Since Range(6 HS;ll\A) = Range(64) implies that P TA =
P4, by Theorem 3.1, G(1/[|S;"[|4,A) has a Parseval OPV-Gabor dual G(B,A).
Therefore G(A,A) has a tight OPV-Gabor dual G(y/[S;'||B,A). The proof is

complete. Theorem 3.2 is proved. O
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