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Abstract. It is known that for a wide class of discrete-time stationary processes

possessing spectral densities f , the variance σ2
n(f) of the best linear unbiased

estimator for the mean depends asymptotically only on the behavior of the spectral

density f near the origin, and behaves hyperbolically as n→ ∞. In this paper, we

obtain necessary as well as su�cient conditions for exponential rate of decrease of

σ2
n(f) as n→ ∞. In particular, we show that a necessary condition for σ2

n(f) to

decrease to zero exponentially is that the spectral density f vanishes on a set of

positive measure in any vicinity of zero, and if f vanishes only at the origin, then it

is impossible to obtain exponential decay of σ2
n(f), no mater how high the order of

the zero of f at the origin.
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1. Introduction

Consider the following, possibly complex-valued, stochastic model:

Y (t) = m+X(t), t ∈ Z = {0,±1,±2, . . .},

where m is the constant unknown mean of Y (t), and the noise X(t) is assumed

to be a zero-mean, wide-sense stationary process with a spectral density function

f(λ), λ ∈ Λ := [−π, π], and a covariance function r(t), t ∈ Z, so that

(1.1) r(t) = E[X(t+ s)X(s)] =

∫ π

−π
eitλf(λ)dλ.

In this paper we consider the problem of estimation of the unknown mean m for

this model by unbiased linear estimators m̂n, based on a random sample {Y (t), t =

∗The research of M. S. Ginovyan was partially supported by National Science Foundation
Grant #DMS-1309009 at Boston University.
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0, 1, . . . , n}:

(1.2) m̂n =

n∑
k=0

ckY (k),

n∑
k=0

ck = 1,

where the condition
∑n
k=0 ck = 1 is needed for unbiasedness of m̂n. Of particular

interest is the best linear unbiased estimator (BLUE) m̂n,BLU , that is, the estimator

of the form (1.2), where the weights ck, k = 0, 1, . . . , n, are chosen so that the

variance

(1.3) Var (m̂n) = E|m̂n −m|2 =

n∑
j,k=0

cj c̄kr(j − k)

is minimal under the condition
∑n
k=0 ck = 1.

We assume that the noise process X(t) is non-degenerate, that is, E|X(t)|2 =

r(0) =
∫ π
−π f(λ)dλ > 0, which implies that the BLUE exists and is unique (see,

e.g., Adenstedt [1], or Grenander and Szeg�o [14], Sections 11.1). Also, under our

assumptions the BLUE m̂n,BLU is a mean square consistent estimator for m, that

is, limn→∞E|m̂n,BLU −m|2 = 0 (see Grenander and Szeg�o [14], Sections 11.2).

Typically, calculation of m̂n,BLU and its variance is di�cult, because they involve

the inverse of covariance matrix, and hence adequate approximations are needed in

terms of more easily calculated estimators.

There is a substantial literature comparing the BLUE with other estimators,

especially the least squares estimator (LSE) m̂n,LS = (n+ 1)−1
∑n
k=0 Yk (see, e.g.,

Adenstedt [1], Adenstedt and Eisenberg [2], Beran [5], Beran and K�unsch [6], Beran

et al. [7], Grenander [10]-[12], Grenander and Rosenblatt [13], Grenander and Szeg�o

[14], Samarov and Taqqu [18], Vitale [19], Yajima [20], and references therein).

We are concerned here with asymptotic behavior of the variance:

(1.4) σ2
n(f) := Var (m̂n,BLUE , f) as n→∞.

To recall some known results in this direction, we �rst recall the de�nitions of

short memory, anti-persistent and long memory processes (see, e.g., Beran et al.

[7], Sections 1.3.1). We say that the process X(t) displays short memory if the

covariance function r(t) satis�es the condition: 0 <
∑
t∈Z r(t) <∞. In this case the

spectral density f(λ) is bounded away from zero and in�nity at frequency λ = 0,

that is, 0 < f(0) <∞. The process X(t) is said to be anti-persistent if
∑
t∈Z r(t) =

0. In this case the spectral density f(λ) vanishes at frequency zero: f(0) = 0.

We say that the process X(t) displays long memory or long-range dependence if∑
t∈Z r(t) =∞. In this case the spectral density f(λ) has a pole at frequency zero,

that is, it is unbounded at the origin.
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The �rst result on asymptotic behavior of the variance σ2
n(f), de�ned by (1.4),

as n → ∞, goes back to the classical works by Grenander (see [10]-[12], and [14],

Sections 11.1-11.3), who described the asymptotic behavior of σ2
n(f) for short-

memory models. More precisely, he showed that, as n → ∞, both m̂n,BLU and

m̂n,LS have asymptotic variance 2πf(0)/n as long as f(λ) is positive and continuous.

Then Vitale [19] considered the case of anti-persistent models, when f(λ) is continuous

and positive except at the origin, where f(λ) ∼= Lλ2 (L > 0) as λ → 0. He

showed that in this case σ2
n(f) ∼= 24πL/n3 as n → ∞, and the estimator (1.2)

with coe�cients ck = 6k(n− k)/[n(n2− 1)] is asymptotically e�cient, while m̂n,LS

is not. The asymptotic behavior of σ2
n(f) for long-memory models was studied by

Adenstedt [1]. Let

fα(λ) =
1

2π

∣∣1− eiλ∣∣2α =
22α−1

π

(
sin2 λ

2

)α
, α > −1

2
,(1.5)

g(λ) = h(λ)|λ− λ1|α1 · · · |λ− λr|αr ,(1.6)

where r ∈ N := {1, 2, . . .}, λ1, λ2, . . . , λr are non-zero distinct constants in [−π, π],

α1, α2, . . . , αr are nonnegative constants, and 0 < C1 ≤ h(λ) ≤ C2 <∞, with some

constants C1 and C2.

In [1], it was shown that the variance Var (m̂n,BLU , f) depends asymptotically

only on the behavior of the spectral density f(λ) near the origin λ = 0, and among

others, was proved the following result: if the noise X(t) has a spectral density of

the form f(λ) = fα(λ)g(λ) with fα(λ) and g(λ) as in (1.5) and (1.6), respectively,

then

σ2
n(f) ' n−2α−1 Γ(2α+ 1)g(0)

B(α+ 1, α+ 1)
,

where B(p, q) = Γ(p) · Γ(q)/Γ(p+ q), and Γ(p) is the gamma function.

Thus, the variance σ2
n(f) of the best linear unbiased estimator for the mean

depends asymptotically only on the behavior of the spectral density f near the

origin, and for some classes of spectral densities satisfying the condition f(λ) ∼ λν

(ν > −1) as λ→ 0, the variance σ2
n(f) decreases hyperbolically, that is,

(1.7) σ2
n(f) ∼ n−ν−1 as n→∞.

In this paper we obtain necessary as well as su�cient conditions for exponential

rate of decrease of σn(f) as n→∞, that is, for ful�llment of the equality:

(1.8) σn(f) = γnτ
n,

where 0 < τ < 1 and {γn, n ∈ N} is a sequence of positive numbers satisfying the

condition: limn→∞ n
√
γn = 1.
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Throughout the paper we will use the following notation.

By T we denote the unit circle |z| = 1 in the complex plane C, that is, T =

{eiλ, λ ∈ [−π, π]}. By Γα (0 < α < π) we denote the arc of the unit circle T
of length 2α with center at z = 1, that is, Γα = {eiλ, |λ| ≤ α, 0 < α < π}.
By Γ′α we denote the arc of T of length 2(π − α) with center at z = −1, that is,

Γ′α = {eiλ, α ≤ |λ| ≤ π, 0 < α < π}. By W we denote the mapping W : Λ → T,
de�ned by formula W (λ) = eiλ. By Ef we denote the spectrum of process X(t),

that is, Ef = {eiλ, f(λ)) > 0}. By Qn we denote the set of polynomials qn(z) =

c0z
n+c1z

n−1+· · ·+cn−1z+cn, z ∈ C of degree n ∈ N with leading coe�cient c0 = 1.

For a �xed complex number z0 ∈ C, by Qn(z0) we denote the set of polynomials

qn(z), z ∈ C of degree at most n, satisfying the condition qn(z0) = 1. In particular,

Qn(1) = {qn(z) = c0z
n + c1z

n−1 + · · ·+ cn−1z + cn : qn(1) =
∑n
k=0 ck = 1}.

The paper is structured as follows. In Section 2 we state the main results of the

paper - Theorems 2.1 and 2.2. Section 3 contains a number of preliminary results,

needed in the proofs of the main results. Section 4 is devoted to the proofs of

Theorems 2.1 and 2.2.

2. Main results

The main results of the present paper are the following theorems.

Theorem 2.1. If the spectrum Ef = {eiλ, f(λ) > 0} of the process X(t) is an

arc of the unit circle or the unit circle itself, then the sequence { n
√
σn(f), n ∈ N}

converges to some limit τ̃(Ef ) ≤ 1, that is,

(2.1) lim
n→∞

n
√
σn(f) = τ̃(Ef ).

Theorem 2.2. The following assertions hold:

(a) If the spectral density f(λ) is positive almost everywhere in some vicinity

of zero, then

(2.2) lim
n→∞

n
√
σn(f) = 1.

(b) If the spectral density f(λ) vanishes almost everywhere for |λ| < α, 0 <

α < π, then σn(f) decreases at least exponentially. More precisely, we have

(2.3) lim
n→∞

n
√
σn(f) 6 cos

α

2
.

As an immediate consequence of the assertion (a) of Theorem 2.2 we have the

following result.
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Corollary 2.1. A necessary condition for variance σ2
n(f) to decrease to zero exponentially

as n → ∞ is that the spectral density f(λ) vanishes on a set of positive Lebesgue

measure in any vicinity of zero.

Remark 2.1. The relation (2.1) is equivalent to the equality (1.8), where τ = τ̃(Ef )

and γn = σn(f)/τn. The quantity τ̃(Ef ) is a metric characteristic of the spectrum

Ef , which we call the generalized Tchebychev constant of the set Ef (see Lemma

3.3 and Remark 3.3). Thus, Theorem 2.1 shows that the question of exponential

decay of σn(f) in fact does not depend on the form of f(λ) and is determined solely

by the value of τ̃(Ef ), while the factor γn in (1.8) is determined by the behavior of

spectral density f(λ) on the spectrum Ef .

Remark 2.2. From the proof of Theorem 2.1, one conclude that the assertion of

the theorem remains valid also in the case where the spectrum Ef consists of the

union of a �nite number of arcs of the unit circle.

Remark 2.3. From the results mentioned in Introduction (see, e.g., (1.7)), it

follows that the higher the order of zero of spectral density f(λ) at λ = 0, the

higher the rate of decrease of σ2
n(f) to zero. Corollary 2.1 shows, in particular, that

if f(λ) vanishes only at the origin, then it is impossible to obtain exponential decay

of σ2
n(f), no matter how high the order of the zero of f(λ) at the origin.

Remark 2.4. For the considered estimation problem we have a complete similarity

with the problem of asymptotic behavior of the best linear prediction error variance

for stationary processes (see Babayan [3], [4] and Rosenblatt [17]). The only di�erence

is that in the prediction problem the asymptotic of prediction error variance is

determined by the behavior of spectral density f(λ) on the entire interval [−π, π]

but not only at the origin.

3. Preliminaries

In this section we present a number of auxiliary results that will be used in the

proofs of Theorems 2.1 and 2.2. We �rst use Kolmogorov's isometric isomorphism

between the time- and frequency-domains: X(t)↔ eitλ to reformulate the problem

of �nding BLUE in the frequency domain, and apply a result by Szeg�o to obtain

a convenient formula for variance σ2
n(f) = Var (m̂n,BLU , f) in terms of orthogonal

polynomials on the unit circle with respect to spectral density f(λ).
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Using (1.1)-(1.3) we can write

Var (m̂n) =

n∑
j,k=0

cj c̄kr(j − k) =

∫ π

−π

∣∣∣∣∣
n∑
ν=0

cνe
iνλ

∣∣∣∣∣
2

f(λ)dλ

=

∫ π

−π

∣∣∣∣∣
n∑
ν=0

cνe
i(n−ν)λ

∣∣∣∣∣
2

f(λ)dλ =

∫ π

−π
|qn(eiλ|2f(λ)dλ,

where qn(z) = c0z
n+c1z

n−1+· · ·+cn−1z+cn. Thus, the problem of �nding m̂n,BLU

becomes to the solution of the following minimum problem:

(3.1)

∫ π

−π
|qn(eiλ)|2f(λ)dλ = min, qn(z) ∈ Qn(1).

The polynomial pn(z) := pn(z, f) that solves the minimum problem (3.1) is called

the optimal polynomial for f(λ). The optimal polynomial pn(z, f) exists, is unique

and can be expressed in terms of orthogonal polynomials ϕn(z), n ∈ Z+ :=

{0, 1, 2, . . .}, on the unit circle T with respect to f(λ).

The system of orthogonal polynomials {ϕn(z) = ϕn(f ; z), z = eiλ, n ∈ Z+} is
uniquely determined by the following conditions:

(i) ϕn(z) = κn(f)zn + lower order terms

is a polynomial of degree n, in which the coe�cient κn = κn(f) is real

and positive;

(ii) for arbitrary nonnegative integers k and j

1

2π

∫ π

−π
ϕk(z)ϕj(z)f(λ)dλ = δkj =

{
1, for k = j
0, for k 6= j,

z = eiλ.

For a �xed z0 ∈ C, consider the Szeg�o kernel Gn(z, z0) de�ned by

Gn(z, z0) = Gn(f, z, z0) =

n∑
k=0

ϕk(z)ϕk(z0).

The kernel Gn(z, z0) possesses the following extremal property (see Nikishin and

Sorokin [16], Section 3.6, and Grenander and Szeg�o [14], Section 2.2).

Lemma 3.1. Let the set of polynomials Qn(z0) and the kernel Gn(z, z0) be as above.

The polynomial

pn(z) =
Gn(z, z0)

Gn(z0, z0)

is the unique solution of the extremal problem:

min
qn∈Qn(z0)

∫ π

−π

∣∣qn(eiλ)
∣∣2 f(λ)dλ =

∫ π

−π

∣∣pn(eiλ, f)
∣∣2 f(λ)dλ =

1

Gn(z0, z0)
.
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Applying Lemma 3.1 with z0 = 1, we obtain that the optimal polynomial pn(z, f)

in �nding m̂n,BLU is given by formula:

pn(z, f) =
Gn(z, 1)

Gn(1, 1)
=

n∑
v=0

ϕv(1)ϕv(z)

n∑
v=0
|ϕv(1)|2

.

Thus, for variance σ2
n(f) we have

σ2
n(f) = min

qn∈Qn(1)

∫ π

−π

∣∣qn(eiλ)
∣∣2 f(λ)dλ =

∫ π

−π

∣∣pn(eiλ, f)
∣∣2 f(λ)dλ

=
1

Gn(1, 1)
=

1
n∑
v=0
|ϕv(1)|2

.(3.2)

Remark 3.1. From the obvious embedding Qn(1) ⊂ Qn+1(1), it follows that the

sequence {σ2
n(f), n ∈ N} is non-increasing in n: σ2

n+1(f) ≤ σ2
n(f). Also, it follows

from (3.2) that σ2
n(f) is a non-decreasing functional of f(λ):

σ2
n(f) ≤ σ2

n(g) when f(λ) ≤ g(λ), λ ∈ Λ.(3.3)

Indeed, by the de�nition of optimal polynomials pn(z, f) and pn(z, g), corresponding

to spectral densities f and g, respectively, we have

σ2
n(f) =

∫ π

−π

∣∣pn(eiλ, f)
∣∣2 f(λ)dλ ≤

∫ π

−π

∣∣pn(eiλ, g)
∣∣2 f(λ)dλ

≤
∫ π

−π

∣∣pn(eiλ, g)
∣∣2 g(λ)dλ = σ2

n(g).

The next lemma is an analog of the assertion on existence of Tchebychev polynomial

for the class Qn(1) (see Goluzin [9], Section 7.1).

Lemma 3.2. Let F be an arbitrary in�nite bounded closed set in the complex

plane C, and let Qn(1) be the set of polynomials qn(z), z ∈ C of degree at most n,

satisfying the condition qn(1) = 1. Then in the class Qn(1) there exists a polynomial

T̃n(z) := T̃n(z, F ) with least maximum modulus on F :

(3.4) max
z∈F
|T̃n(z)| = min

qn∈Qn(1)
max
z∈F
|qn(z)|.

Proof. Denote

(3.5) m̃n(F ) := inf
qn∈Qn(1)

max
z∈F
|qn(z)|.

Let for a �xed n ∈ N, {qn,k(z), k ∈ N} be a sequence of polynomials from the class

Qn(1), whose maxima of moduli on F tend to m̃n(F ) as k →∞. We �x n+1 points
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z1, z2, . . . , zn+1 ∈ F and represent the polynomials qn,k(z) by the Lagrange formula

as follows:

qn,k(z) =

n+1∑
ν=1

(z − z1)(z − z2) · · · (z − zν−1)(z − zν+1) · · · (z − zn+1)

(zν − z1)(zν − z2) · · · (zν − zν−1)(zν − zν+1) · · · (zν − zn+1)
qn,k(zν).

It follows from this representation that the polynomials qn,k(z) are uniformly in k

bounded in modulus on an arbitrary bounded closed set of C.
Hence, in view of known condensation principle (see Goluzin [9], Section 1.1),

the sequence {qn,k(z), k ∈ N} contains a subsequence of polynomials that converges

uniformly on every bounded set of C. Also, together with the polynomials from

this subsequence, the sequence of their coe�cients converges as well, and hence

the limiting function T̃n(z) := T̃n(z, F ) is a polynomial from the class Qn(1), and

satis�es the condition (3.4), that is, we have

(3.6) max
z∈F
|T̃n(z, F )| = m̃n(F ) = min

qn∈Qn(1)
max
z∈F
|qn(z)|.

Lemma 3.2 is proved. �

Remark 3.2. The polynomial T̃n(z, F ) is an analog of the Tchebychev polynomial

Tn(z, F ), which has least maximum modulus on the set F in the class Qn, and

hence, we call T̃n(z, F ) the Tchebychev polynomial for the set F with respect to the

point z0 = 1, or simply the generalized Tchebychev polynomial.

The next lemma is an analog of the assertion on existence of Tchebychev constant

for an arbitrary bounded closed set F of the complex plane C (see Goluzin [9],

Section 7.1).

Lemma 3.3. For any bounded closed set F of the complex plane C, the sequence

{τ̃n(F ) := n
√
m̃n(F ), n ∈ N}, where m̃n(F ) is as in (3.5), converges to some �nite

limit τ̃(F ), that is,

(3.7) lim
n→∞

n
√
m̃n(F ) = τ̃(F ) <∞.

Proof. Taking into account that the set F is bounded, we have

(3.8) R := RF = max
z∈F
|z| <∞.

Next, observing that the polynomial qn(z) = zn belongs to the class Qn(1), in view

of (3.6) and (3.8), we conclude that the sequence {τ̃n(F ), n ∈ N} is bounded:

(3.9) τ̃n(F ) = n
√
m̃n(F ) ≤ n

√
max
z∈F
|zn| = R.

De�ne

lim inf
n→∞

τ̃n(F ) = a and lim sup
n→∞

τ̃n(F ) = b,
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and observe that a 6 b. So, to complete the proof, we have to show that b 6 a. To

this end, for given ε > 0 we choose n0 ∈ N so that τ̃n0(F ) < a+ ε. Then on the set

F we have the following inequality

|T̃n0(z)| < (a+ ε)n0 , z ∈ F.

Next, observe that for any q ∈ N and r ∈ Z+, the polynomial sn(z) = zr[T̃n0
(z)]q

of degree n = n0q + r satis�es the conditions:

(3.10) sn(z) ∈ Qn(1) and |sn(z)| < Rr(a+ ε)n0q, z ∈ F.

Therefore, in view of (3.6) and (3.10), we have

m̃n(F ) ≤ max
z∈F
|sn(z)| 6 Rr(a+ ε)n0q

and

(3.11) τ̃n(F ) 6 R
r
n (a+ ε)

n0q
n .

Now let the subsequence {τ̃nν (F ), nν ∈ N} converge to b as ν →∞. We write the

inequality (3.11) for nν := n0qν + rν with 0 ≤ rν < n0 to obtain

(3.12) τ̃nν (F ) 6 R
rν
nν (a+ ε)

n0qν
nν .

Finally, letting ν tend to in�nity, from (3.12) we obtain b 6 a + ε. Taking into

account arbitrariness of ε, we conclude that b 6 a. �

Remark 3.3. 1. The quantity τ̃(F ) is a metric characteristic of a closed set F ,

similar to Tchebychev constant τ(F ) (see Goluzin [9], Section 7.1). Hence, we call

τ̃(F ) the Tchebychev constant of the set F with respect to the point z0 = 1, or

simply the generalized Tchebychev constant of F .

2. It follows from the relation (3.9) that τ̃(F ) ≤ RF . In particular, for unit circle T
we have

(3.13) τ̃(T) ≤ 1.

3. The quantity τ̃(F ) is a non-decreasing set function, that is, if F1 ⊂ F2, then

(3.14) τ̃(F1) ≤ τ̃(F2).

Indeed, in view of (3.6) we have

m̃n(F1) = max
z∈F1

|T̃n(z, F1)| ≤ max
z∈F1

|T̃n(z, F2)| ≤ max
z∈F2

|T̃n(z, F2)| = m̃n(F2),

from which, after taking the root of order n and passing to the limit as n → ∞,

we obtain (3.14). Also, from inequalities (3.13) and (3.14) it follows that for any

F ⊂ T, we have

(3.15) τ̃(F ) ≤ 1.
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4. If the set F contains the point z = 1, then we obviously have

(3.16) τ̃(F ) ≥ 1,

and from inequalities (3.15) and (3.16) we infer that for any set F ⊂ T, containing
the point z = 1, we have

τ̃(F ) = 1.

In particular, for the unit circle T and for any its arc Γα := {eiλ, |λ| ≤ α, 0 < α <

π} we have

(3.17) τ̃(T) = τ̃(Γα) = 1.

Notice that for unit circle T, the Tchebychev constant τ(T) is also equal to 1 (see

Goluzin [9], Section 7.1). Thus, we have τ̃(T) = τ(T) = 1.

In the proof of Theorem 2.1 will be used arguments similar to those applied in

Babayan [3], [4], to obtain the corresponding result concerning asymptotic behavior

of the best linear prediction error variance for stationary processes, where a key role

played the following result by S. Mazurkievicz (see, e.g., Geronimus [8], Mazurkievicz

[15]).

Lemma 3.4. For any ε > 0 there is δ = δ(ε) > 0 depending only on ε, such that

for any continuum Γ of diameter d and any of its closed subset F ⊂ Γ the following

inequality holds:

Mn := max
x∈Γ
|qn(z)| ≤ (1 + ε)n max

z∈F
|qn(z)|,

provided that µ(Γ \ F ) < dδ, where qn(z) is an arbitrary polynomial of degree n,

and µ(e) stands for the linear measure of a set e.

4. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. In view of the de�nition of optimal polynomial pn(z, f), and

formulas (3.2) and (3.6), we can write

σ2
n(f) =

∫ π

−π
|pn(eiλ, f)|2f(λ)dλ ≤

∫ π

−π
|T̃n(eiλ, Ef )|2f(λ)dλ

≤ m̃2
n(Ef ) ·

∫ π

−π
f(λ)dλ.

Hence, by Lemma 3.3 and (3.15), we get

(4.1) lim sup
n→∞

n
√
σn(f) 6 τ̃(Ef ) 6 1.

Now we proceed to prove the inequality:

(4.2) lim inf
n→∞

n
√
σn(f) > τ̃(Ef ).
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To this end, we �rst consider a sequence of subsets {en, n ∈ N} of Ef , de�ned by

the relation:

(4.3) en =

{
z ∈ Ef : |pn(z, f)| >

√
σn(f) · m̃n(Ef )

}
,

and by µf denote a measure on the unit circle de�ned as follows:

µf (e) =

∫
W−1(e)

f(λ)dλ, e ⊂ Ef ,

where W−1(e) = {λ ∈ Λ : eiλ ∈ e}. It is clear that

lim sup
n→∞

n

√
µf (en) 6 1.

Next, for a given su�ciently small number ρ, 0 < ρ < 1, the set of natural numbers

N we write in the form N = J1 ∪ J2, where

J1 = J1(ρ) = {n ∈ N : µf (en) > (1− ρ)n},

J2 = J2(ρ) = {n ∈ N : µf (en) ≤ (1− ρ)n}.

It is clear that at least one of the sets J1 and J2 is in�nite. Without loss of generality,

we can assume that both J1 and J2 are in�nite sets.

For n ∈ J1, we have

σ2
n(f) =

∫
Ef

|pn(z, f)|2dµf >
∫
en

|pn(z, f)|2dµf > σn(f)m̃n(Ef )µf (en),

implying that

(4.4) lim inf
n→∞

n
√
σn(f) ≥ lim

n→∞
n

√
m̃n(Ef ) · lim inf

n→∞
n

√
µf (en) ≥ τ̃(Ef )(1− ρ).

For n ∈ J2, we have

(4.5) lim
n→∞

µf (en) = 0.

Since the spectral density f(λ) is positive on

W−1(Ef ) = {λ ∈ Λ : eiλ ∈ Ef},

the measure µ is absolutely continuous with respect measure µf . Taking into account

that the measure µ is also �nite, in view of (4.5), we conclude that

(4.6) lim
n→∞

µ(en) = 0, n ∈ J2.

For n ∈ J2 de�ne the sets En = Ef\en and observe that in view of (4.3), for z ∈ En
we have

(4.7) |pn(z, f)| 6
√
σn(f) · m̃n(Ef ).

Let ε > 0 be an arbitrary number satisfying

(4.8)
1

(1 + ε)2
> 1− ρ,
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and let δ := δ(Ef , ε) be chosen according to Lemma 3.4. Then, in view of (4.6), for

large enough n ∈ J2, we have

µ(Ef\En) = µ(en) < δ(Ef , ε).

Therefore, in view of (4.7) and Lemma 3.4, we can write

m̃n(Ef ) = max
z∈Ef

|T̃n(z, Ef )| 6 max
z∈Ef

|pn(z, f)|

≤ (1 + ε)n max
z∈En

|pn(z, f)| 6 (1 + ε)n
√
σn(f) · m̃n(Ef ), n ∈ J2,

implying that

σn(f) >
m̃n(Ef )

(1 + ε)2n
, n ∈ J2.

Therefore, letting n tend to in�nity, and taking into account the inequality (4.8),

we obtain

(4.9) lim inf
n→∞

n
√
σn(f) > τ̃(Ef )(1− ρ).

Putting together (4.4) and (4.9), and taking into account arbitrariness of ρ, we

obtain (4.2).

A combination of (4.1) and (4.2) implies (2.1), and thus completes the proof of

the theorem. �

Proof of Theorem 2.2. Both assertions (a) and (b) of the theorem we infer from

Theorem 2.1. To prove the assertion (a), observe �rst that since the spectral density

f(λ) is positive almost everywhere in some vicinity of zero, one can assume that

Ef ⊃ Γα for some 0 < α < π, where Γα = {eiλ, |λ| ≤ α}. Denoting by fα(λ) the

contraction of f(λ) on the set W−1(Γα):

(4.10) fα(λ) =

{
f(λ) if |λ| ≤ α
0 if |λ| > α,

and taking into account the obvious inequality f(λ) ≥ fα(λ) and (3.3), we conclude

that σn(f) ≥ σn(fα). Hence, in view of Theorem 2.1 and equality (3.17), we obtain

(4.11) lim inf
n→∞

n
√
σn(f) ≥ lim

n→∞
σn(fα) = τ̃(Γα) = 1.

Combining the relations (4.1) and (4.11) we obtain (2.2), and the assertion (a) of

the theorem follows.

Now we proceed to prove the assertion (b) of the theorem. In this case, without

loss of generality, we can assume that

Ef = Γ′α = {eiλ, α ≤ |λ| ≤ π},
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and hence, the equality (2.1) is ful�lled. So, to complete the proof, it remains to

show that

(4.12) τ̃(Ef ) = τ̃(Γ′α) 6 cos
α

2
.

To prove (4.12), consider the following polynomial of degree n:

qn(z) =

[
z + 1

2

]n
,

and observe that

qn(z) ∈ Qn(1) and |qn(eiλ)| =
(

cos
λ

2

)n
.

Next, according to the de�nition of minimizing polynomial T̃n(z), with Ef = Γ′α

we have

m̃n(Ef ) = max
z∈Ef

|T̃n(z, Ef )| 6 max
z∈Ef

|qn(z)| = max
|λ|≥α

|qn(eiλ)| =
(

cos
α

2

)n
.

Taking the root of order n and passing to the limit as n → ∞, we obtain (4.12).

Finally, from (2.1) and (4.12) we obtain (2.3), and the assertion (b) of the theorem

follows. �
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