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Abstract. In this paper, we study bivariate homogeneous interpolation polynomials.
We show that the homogeneous Lagrange interpolation polynomial of a sufficiently
smooth function converges to a homogeneous Hermite interpolation polynomial when

the interpolation points coalesce.
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1. INTRODUCTION

The aim of this paper is to study bivariate homogeneous interpolation polynomials.
Let 3(,,(R?) be the space of all homogeneous polynomials of degree n in R2. It is
well-known that {2, 2" 1y,...,y"} is a basis for H,,(R?) and dim K, (R?) = n+1.
Aset X = {x; = (a;,b;) :i=0,...,n} C R?\ {0} is said to be pairwise projectively
distinct (PPD for short) if x; and x; are linearly independent, or equivalently
aib; —ajb; # 0, for every 0 <4 < j < n. Let f be a function defined on X. Bialas-
Ciez and Calvi [1] pointed out that there exists a unique polynomial h € H,4(R?)
interpolating f at X, that is,

h(x;) = f(x;), 0<i<nmn.

Moreover, the following equality holds:

" o abi —ya;

he)=> fx) [ ==+ x=(=y.

— 4t aby — bay

=0 7=0,j#1
The polynomial h is called the homogeneous Lagrange interpolation polynomial
of f at X, and is denoted by L"[X; f]. Here we are concerned with the following
problem.
Problem. Let {X*} be a sequence of PPD sets in R? with card(X*) =n + 1 for
k > 1. Assume that X* coalesces to a set A when k — oo. The natural questions

are the following.

(1) Does the sequence {LP[X*; f]} converge for every suitably defined function

f?
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(2) If yes, what is the limit? can it be understood as a Hermite-type interpolation

polynomial of f at A?

Positive answers to the above questions can be expected since Hermite interpolation
is usually the result of the collapsing of points in Lagrange interpolation. Note that
analogous problems have been studied by many authors. For instance, in [2, 5], the
authors found sufficient conditions that guarantee the convergence of multivariate
Lagrange interpolation polynomials of sufficiently smooth functions to the Taylor
polynomials. Phung [8] showed that the limit of bivariate Lagrange interpolation
polynomials at Bos configurations on circles is a Hermite interpolation polynomial
at the center of the circles when the radii of the circles tend to 0. In [6], based on
a beautiful result of Bos and Calvi [4], Calvi and Phung proved that the limit of
Lagrange projectors at Bos configurations on the irreducible algebraic curves in C?
are the Hermite projectors introduced by Bos and Calvi [4].

To investigate the above problem, we restrict our attention to the case where

X* lies on the right half of the unit circle, that is,

XFCet={x=(ay: x| =Lao>0}, [x| =+
This assumption does not lose of generality since h(tx) = t"h(x) for h € H,(R?),
t € R and x € R?.

In Theorem 3.1 below, we give a Hermite type interpolation scheme for J,, (R?)
in which the interpolation points lie on €. From this we infer that the Hermite
interpolation polynomial of a suitably defined function exists uniquely. In Theorem
4.1, we prove that when f is of class C™, then the homogeneous Hermite interpolation
polynomial of f at A is the limit of the sequence of polynomials {L*[X¥; f]} when
X* coalesces to A. Finally, we establish a continuity property of homogeneous
Hermite interpolation with respect to the interpolation points.

By ?,(R) we denote the vector space of all univariate polynomials of degree less
than or equal to n. Each vector space P, (R), 3, (R?) is endowed with a norm. The

set of all natural numbers is denoted by N.

2. UNIVARIATE HERMITE INTERPOLATION

Let t1,...,t\ be distinct real numbers, and let vq,...,vy be positive integers

such that n +1 = vy 4+ - -+ + vy. The following theorem is well-known.
Theorem 2.1. Given a function f for which fWi=Y(t;) exists for i = 1,... \.
Then there exists a unique p € P, (R) such that

P () = fO ), VI<i<A 0<j<w—1
91



P. V. MANH AND T. V. LONG

The polynomial p in Theorem 2.1 is denoted by H[{(¢1,11), ..., (tx,v2)}; f] and is
called the Hermite interpolation polynomial. The coefficient of ¢™ in H[{(¢1, 1), ..., (tx,va) }5 £,
denoted by f[(t1,v1),..., (tx,v0)], is called the divided difference. A formula for
Hermite interpolation polynomial can be found in [3, Theorem 1.1]. Using this,
we can prove the following factorization property of generalized Vandermonde

determinants (see [8] for details of the proof.)

Lemma 2.1. Let tq,..
positive integers such that n+1=wv1+---+vy. Let T = {(t1,11),..., (tx,vr)}, and

., tx be pairwise distinct real numbers, and let v, ...,V be

let F = {fo,...,fn} be a set of sufficiently differentiable functions at the t;’s. We
denote by VDM(F;T) the determinant of the generalized Vandermonde matriz:
fo(t1) fi(t1) fno1(t1) fn(t1)
fo(tr) fit) fa(ty)

V(F;T)

Then we have

k=1 i=0 1<i<i<A
where
folt1] filt1] fnlt1]
fol(t1,2)] fi(t1,2)] fl(ts, )]
DFT)=|  fol(tr. )] fil(t )] ful(t, )]

fO[(tla V1)7 (tQ’ 1)]

fol(tr, 1), (b )]

S (20 B AL (%))

fro1(t)

Farw) 1)

Fua(ty)
"Lt

D) V()

(t; - )""D(F: ),

fl[(tla V1)7 (tQ’ 1)]

il ) ()]

Here the factor [[,«;;<\(t; —t:)"""7 does not appear when X = 1.

fn[(thyl)’ (t27 1)]

Falt 1) (b 22)]

The following result gives a useful formula for Hermite interpolation polynomial

which contains the terms D(;-).

Proposition 2.1. Letty,..

., tx be pairwise distinct real numbers, and let vy, ..., vy

be positive integers such that n+1=wvy 4+ -+ vx. Let T = {(t1,v1),. .., (tr, V) },
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M={1,t,...,t"}, and let f be a well-defined function. Then
H[{(t1, 1), ..., (tx,vn)}; fI(E ZD [t f(O)]; Tt
Here M[t! < f(t)] means that we substitute f(t) for t* in M.

Proof. For convenience, we set f;(t) = t* for 0 < i < n, and write

H[{(tlayl)’ (t/\al//\ } f Zczfz

It follows from the interpolation conditions that
(2.1) S Pt = fPty), 1<j<A 0<k<y -1

The determinant of the matrix of coefficients corresponding to the above system of
linear equations is VDM (M;T'). A result in [3, p. 3] shows that

)\l/kl

voMOwT) = ([T [T I @& -t

k=1 i=0  1<i<j<A
Using the Cramer rule in (2.1) and Lemma 2.1, we obtain
_ VDMMfi < f1;T) _

“T TTVDMOWGT) (
The proof is complete. O

Mf; < f1;T), 0<i<m,

When working with Hermite interpolation and the divided difference, it is convenient
to use interpolation sets in which elements may be repeated. For example, if A =
{1,-2,3,-2,1,—4,1}, then we can write A = {(1,3),(—2,2),(3,1),(—4,1)}. More
generally, any set {sg,...,s,} can be identified with {(¢1,11),...,(tx,vr)}. Here,

t; are pairwise distinct and the notation (¢;, ;) means that ¢; is repeated v; times.
Hence, we can write H[{so, ..., sn}; f] (vesp. f[so,--.,sn]) for H[{(¢t1,v1), ..., (tx,vr)}; f]
(vesp. f[(t1,v1), .-, (Ex,va)])- It is important to note that the divided difference is

continuous with respect to interpolation points (see [3, Corollary 1.5]).

Lemma 2.2. Let I C R be an interval and g € C"(I). Then the map
(50,--+,8n) € " g[s0, ..., 5]

18 continuous.

3. BIVARIATE HOMOGENEOUS HERMITE INTERPOLATION

In this section, we first give some results concerning vanishing of derivatives of
functions, which are used to prove that the homogeneous Hermite interpolation

problem in R? has a unique solution.
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3.1. Vanishing of derivatives of functions.

Lemma 3.1. Let k be a natural number, and let g and h be k-times differentiable
functions at to € R. If g(to) # 0 and (gh) D (tg) = 0 fori =0,...,k, then h()(ty) =
0 fori=0,...,k.

Proof. Since by assumption g(to)h(to) = 0 and g(t9) # 0, we have h(ty) = 0.
Assume that the assertion holds for i = 0,...,5 — 1 with 7 < k, and prove it for j.

By the Leibnitz formula, we obtain

J
0= (1)) = (00 )+ 3= () )10 0) = 0 )
Hence, h9)(to) = 0, and the result follows. (]

Lemma 3.2. Let g be a k-times differentiable functions at 6y € (=5, %). Then

%

doi

g(tan@)’ —0, Vi=0,... .k

=00

if and only if
gW (tanfp) =0 Vi=0,... k.

Proof. We first assume that <% “g7g(tan 9)’9 - 0 for every i =0,..., k. We prove
=bo

the lemma by induction on k. The assertion is trivial for £ = 0. Assuming that the

assertion holds for k — 1, we prove it for k. For convenience, we set ¢(6) = tané.

Using Faa di Bruno’s formula from [9], we obtain

dk k! k SO(J)
3.1 L (0 ‘ I 4™ (e
61 rele®)|_ =3 = T
where n = ny + - - - + n; and the sum is over all values of ny,...,n;t € N such that

ny+2ns + -+ kngp = k. Note that n < k and n = k only if ny, = n = k and

ng = --- = ng = 0. Hence, it follows from the induction hypothesis and (3.1) that
d* 1
0=— 0 = ¢ (tan 6y) ———.
dekg(sﬁ( ) 8=, g"’ (tan 0>c052k(90)

Thus, ¢g* (tan ) = 0.

Conversely, from (3.1) we see that %g(ap(&)) - is a linear combination of
=Yo

k + 1 derivatives g(p (6?())),9'(<p(9()))7 .., 9% (©(y)). Hence, if these k + 1 numbers
W (tan@)‘ =0 for every i =0, ..., k. O

0=0,

are equal to 0, then

Corollary 3.1. Let f and g be k-times differentiable functions at 0y € (—73, 7).
Then

i i

d
daif(tan@)‘

oy daig(tan@) oo’ Vi=0,...,k,
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if and only if
fD(tanby) = ¢ (tan6y), Vi=0,... k.

3.2. Homogeneous Hermite interpolation.

Theorem 3.1. Let n,vq,...,vy be positive integers such that vy +---+vy =n+1,

and let {ny, .. .,n,\} be a set of distinct points on C with n; = (cosa;,sinq;),

aj € (=%,%). Then, for any given data {c;.}, there exists a unique polynomial

h € H,,(R?) such that
k

(3.2) —

h(cos a, sin «)

Proof. Since the relation (3.2) consists of n + 1 interpolation conditions and
dim 3(,,(R?) = n + 1, it suffices to show that if h € 3, (R?) satisfies the following
conditions

k
Wh(cosmsina) e =0, 1<i<) 0<k<y —1,

then A = 0. We write

(3.3)

h(cos a, sin ) = (cos™ a)h(1, tan ) = (cos™ a)g(tan ),

where ¢(t) = h(1,t) € P,(R). From (3.3), we have

% ((cos” a)g(tan a))

=0, 1<i<\ 0<k<uwy —1.

a=o;
Since a; € (=5, %), Lemma 3.1 gives
dk

dor !

(tan a) =0, 1<i:<\ 0<k<y —1.

=y

Using Lemma 3.2, we obtain
q(k)(tanozi) =0, 1<i<\ 0<k<y -1

The uniqueness of univariate Hermite interpolation in Theorem 2.1 implies that

q = 0 since degp < n. Hence, h(z,y) = 2"q(£) = 0. O

Corollary 3.2. Under the assumptions of Theorem 3.1, if f is a function defined on
C* such that the function o — f(cos a, sin &) is (v;—1)-times differentiable at o; for
i=1,...,), then there exists a unique polynomial h = H*[{(ny,v1),...,(nx,v2)}; f] €
H,(R?) satisfying

d* dk

Wh(cosa,sina) — Wf(cosa,sina) e 1<i<A 0<k<y—1
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4. LIMIT OF HOMOGENEOUS LAGRANGE INTERPOLATION POLYNOMIALS

In this section, we give a formula for homogeneous Lagrange interpolation polynomials,

and then use it to respond the proposed problem.

Proposition 4.1. Let X = {xq,...,X,} be a set of distinct points on CT with

x; = (cosay,sinwy), o € (=%, %), and let f be a function defined on X. Then
n

L"(X; f](x) = Y DM[t" « f(1)}; )"y,

i=0
where M = {1,t,...,t"}, T = {tanay, ..., tana, } and the function f is defined by

f(tan CM) _ flcosasina) )

cos™ «

Proof. Since L' X; f] € H4(R?), we can write LPX; fl(x) = Y7 diz" iyt

=0 "7

By definition, we have
n
Z d; cos™ "oy sin’ ap = f(cosag,sinag), k=0,...,n.
=0
Dividing both sides by cos™ o, we obtain

Zditani ap = fleosa, sin ay) = f(tanag), k=0,...,n.
= cos™ ag,

By Cramer’s rule, the coefficients d;’s are given by

_ VDM(M[t' « f(1)};T)

B VDM(M, T')

where Lemma 2.1 is used in the case of pairwise distinct points to reduce the last

d; =DM[t' « f(O)];T), 0<i<n,

fraction. O

Theorem 4.1. Let n,vq,...,vy be positive integers such that vy +---+vy =n+1,

and let X* = {X’S, e ,xﬁ}, k > 1, be sets of distinct points on CT such that

klim x?znl for 0<j<ip -1
— 00

and

klim xg?:nm for i+ 1 <j<v+-Fr,—1 2<m<)\
— 00

where n;’s are pairwise distinct points on Ct. Then, for any function f of class C"

on CT, we have

lim LMXF*; f] = H*[{(ny,11),. .., (ny,v0)}; f].

k—o0

Proof. Let us define of = arg(x¥) for 0 <i < n and o; = arg(n;) for 1 <i < A.
The hypothesis gives

(4.1) lim a?:al for 0<j<wv; -1

k—o0
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and

(4.2) lim ak—am for i+ Hrvp 1 <ji<vi+-Frv,—12<m<A

k—o0
Without loss of generality, we can assume that —5 < a3 <--- < ay < 7. Since the
interpolation polynomial is independent of the ordering of the interpolation points,

the relations (4.1) and (4.2) allow us to assume that —3 < of < aof <--- <alf < Z.

Evidently, the setting f(tan ) := % with a € (=7, J) is equivalent to
A n 1 t
H=t>+1)2 , , teR.

Hence, f € C™(R). By Proposition 4.1, we can write
(4.3) LM[X"; fl(x) = ) dia"'y,
i=0

where
df =DM[t' « f(&);T"), 0<i<n,

and M = {1,¢,....t"}, T = {tanaf,... tana’}. Let us set

T = {(tana1,ul),...,(tanoo\,w\)} = {tan Sy, tan By,...,tan B}, Lo < -+ < By
By relations (4.1) and (4.2), we have

klir{:otanaf =tanp;, 0<i<n.

From the formula for D(-;-) in Lemma 2.1, we see that the (I, m)-entries of the
matrices corresponding to D(M[t' « f()];T%) and D(M[t < f(t)];T) are

gltanaf, ... tanaf ;] and g[tanfo,..., tan B_1],

where g € {1,..., "1, f,¢7F1, ... t"}. Tt follows from Lemma 2.2 that

hm gltanak, ... tanaf || = g[tanfBo,. .., tan B;_1].
k—s o0
Therefore, we have
Jim DOVt f(0)]:T*) = DM + F(0)): 1),
—00

and consequently,

lim LP[X%; f](x) = Y DM[t' = f()); T)a" "y’ = H(z,y).

k—o0 .
=0

To complete the proof, it remains to verify that H = H*[{(ny,11),..., (nx,va)}; f]-
We have

ZD tlef t)]; )':HH[{(tanal,yl),...,(tanOémV)\)}Jﬂ(t)a
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where we use Proposition 2.1 in the second relation. It follows that, for 1 < i < A,
0<k<y—1,

d* d* /o .
ﬁH(l,t) e ﬁ(H [{(tanal,ul),...,(tanoo\,m)};ﬂ (t)) e
dr .
a ﬁf(t) t=tan ozi.

Corollary 3.1 now yields

dk dk: R

d—kH(l,tana) = - f(tana) , 1<i<X 0<k<y -1

(0% a=ao; (0% a=ao;

In other words,

d* H(cos a,sin a) d* f(cosa,sina)

da¥ cos™ o a:ai:W cos™ o a=a; 1<i<d 0<k=wun-1
Using Lemma 3.1, we get

dk dk

WH(cosa,sina) = Wf(cosoz,sina) e 1<i<A 0<k<y —1.
It follows that H must be identical with H*[{(n1,21),..., (nx,v)}; f]- O

The next example shows that Theorem 4.1 does not hold when f ¢ C"(CT).

Ezample 4.1. For simplicity, we work with n = 1. The equation (4.3) gives
L [X*; f](x) = DOM[L « f(8)}; T")x + DMt « f(); T*)y,
where M = {1,t}, T* = {tan ok, tan of}. Let us define f : €+ — R by

1 Ly f(t)
VEFT VT (124 1)

£( , tER,

with

R 313 i 1 :
f(t):{ﬁsmf ?f t#0
0 if t=0.

Since f is continuous in R but not differentiable at 0, the function f does not belong
to CH(CH). If we take aff = arctan(—s;) and of = arctan(sy) with s, = m,
then x§ and x¥ tend to (1,0). For the coefficient of y in LR[X*; f], we have

k) _fse) = fles) 1

= = — +o0.

Sk — (—Sk) \3/@

Let X = {XO7 X1, 7xn} be a set of not necessarily distinct points on €*. Then

fltan of , tan o

we can write X = {(ny,v1),..., (nx,vy)} with v; +---+ vy =n+ 1. Hence we can
identify HP[X; f] with H[{(ny,v1), ..., (nx,vx)}; f]- Note that HP[X; f] does not
depend on the ordering of points in X.
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Corollary 4.1. Let n be a positive integer, and let X* = {xo7 . ,xlfb}, k>0, be

sets of not necessarily distinct point on Ct such that
lim | X* - X% =0,
k— o0
where
| X" — X|| = max{||xF —x?|:i=0,...,n}.
Then, for any function f of class C™ on Ct, we have

lim H"[X*; f] = HX; f].

k—o0

Proof. We can find of in (=%, %) such that of = arg(x¥) for 0 < i < n and

k > 0. By hypothesis, we have
(4.4) lim max{|a¥ —a?:i=0,...,n} = 0.
k—oc0

Since the homogeneous Hermite interpolation polynomials are independent of the
ordering of the nodes, we can rearrange al’s, if necessary, to get the ordering

Y
——<af<af<--<akh<

k>
2 =0,

m
2’
and (4.4) still holds true. This enables us to group consecutive identical angles so
that the orderings in the (o)™, do not change. From the proof of Theorem 4.1,

we have

ZD [t f(O)]; TF)a" "y, TF = {tanaf,... tana’}.

Since limy_so0 tana = tan ao for i = 0,...,n, it follows from Lemma 2.2 that
the (I,m)-entry of the matrix correspondlng to D(M[t* « f(t)];T%) converges to
the (I, m)-entry of the matrix corresponding to D(M[t* « f(t)]; T°) for every 1 <

l,m <n + 1. Therefore, we have
Jim DOVt f(£)]:T*) = DO’ « F()):T°),
—00

and consequently,

n

lim H"[X*; f] =) D[’ « f(£); T)a" "y’ = H" [X7; f].

k—o0 .
=0

The proof is complete. O
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