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1. Introduction

The aim of this paper is to study bivariate homogeneous interpolation polynomials.

Let Hn(R2) be the space of all homogeneous polynomials of degree n in R2. It is

well-known that {xn, xn−1y, . . . , yn} is a basis for Hn(R2) and dimHn(R2) = n+1.

A set X = {xi = (ai, bi) : i = 0, . . . , n} ⊂ R2\{0} is said to be pairwise projectively

distinct (PPD for short) if xi and xj are linearly independent, or equivalently

aibj − ajbi 6= 0, for every 0 ≤ i < j ≤ n. Let f be a function de�ned on X. Bialas-

Ciez and Calvi [1] pointed out that there exists a unique polynomial h ∈ Hd(R2)

interpolating f at X, that is,

h(xi) = f(xi), 0 ≤ i ≤ n.

Moreover, the following equality holds:

h(x) =

n∑
i=0

f(xi)

n∏
j=0,j 6=i

xbj − yaj
aibj − biaj

, x = (x, y).

The polynomial h is called the homogeneous Lagrange interpolation polynomial

of f at X, and is denoted by Lh[X; f ]. Here we are concerned with the following

problem.

Problem. Let {Xk} be a sequence of PPD sets in R2 with card(Xk) = n + 1 for

k ≥ 1. Assume that Xk coalesces to a set A when k → ∞. The natural questions

are the following.

(1) Does the sequence {Lh[Xk; f ]} converge for every suitably de�ned function

f?
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(2) If yes, what is the limit? can it be understood as a Hermite-type interpolation

polynomial of f at A?

Positive answers to the above questions can be expected since Hermite interpolation

is usually the result of the collapsing of points in Lagrange interpolation. Note that

analogous problems have been studied by many authors. For instance, in [2, 5], the

authors found su�cient conditions that guarantee the convergence of multivariate

Lagrange interpolation polynomials of su�ciently smooth functions to the Taylor

polynomials. Phung [8] showed that the limit of bivariate Lagrange interpolation

polynomials at Bos con�gurations on circles is a Hermite interpolation polynomial

at the center of the circles when the radii of the circles tend to 0. In [6], based on

a beautiful result of Bos and Calvi [4], Calvi and Phung proved that the limit of

Lagrange projectors at Bos con�gurations on the irreducible algebraic curves in C2

are the Hermite projectors introduced by Bos and Calvi [4].

To investigate the above problem, we restrict our attention to the case where

Xk lies on the right half of the unit circle, that is,

Xk ⊂ C+ = {x = (x, y) : ‖x‖ = 1, x > 0}, ‖x‖ =
√
x2 + y2.

This assumption does not lose of generality since h(tx) = tnh(x) for h ∈ Hn(R2),

t ∈ R and x ∈ R2.

In Theorem 3.1 below, we give a Hermite type interpolation scheme for Hn(R2)

in which the interpolation points lie on C+. From this we infer that the Hermite

interpolation polynomial of a suitably de�ned function exists uniquely. In Theorem

4.1, we prove that when f is of class Cn, then the homogeneous Hermite interpolation

polynomial of f at A is the limit of the sequence of polynomials {Lh[Xk; f ]} when
Xk coalesces to A. Finally, we establish a continuity property of homogeneous

Hermite interpolation with respect to the interpolation points.

By Pn(R) we denote the vector space of all univariate polynomials of degree less

than or equal to n. Each vector space Pn(R), Hn(R2) is endowed with a norm. The

set of all natural numbers is denoted by N.

2. Univariate Hermite interpolation

Let t1, . . . , tλ be distinct real numbers, and let ν1, . . . , νλ be positive integers

such that n+ 1 = ν1 + · · ·+ νλ. The following theorem is well-known.

Theorem 2.1. Given a function f for which f (νi−1)(ti) exists for i = 1, . . . , λ.

Then there exists a unique p ∈ Pn(R) such that

p(j)(ti) = f (j)(ti), ∀1 ≤ i ≤ λ, 0 ≤ j ≤ νi − 1.
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The polynomial p in Theorem 2.1 is denoted by H[{(t1, ν1), . . . , (tλ, νλ)}; f ] and is
called the Hermite interpolation polynomial. The coe�cient of tn in H[{(t1, ν1), . . . , (tλ, νλ)}; f ],
denoted by f [(t1, ν1), . . . , (tλ, νλ)], is called the divided di�erence. A formula for

Hermite interpolation polynomial can be found in [3, Theorem 1.1]. Using this,

we can prove the following factorization property of generalized Vandermonde

determinants (see [8] for details of the proof.)

Lemma 2.1. Let t1, . . . , tλ be pairwise distinct real numbers, and let ν1, . . . , νλ be

positive integers such that n+1 = ν1+ · · ·+νλ. Let T = {(t1, ν1), . . . , (tλ, νλ)}, and
let F = {f0, . . . , fn} be a set of su�ciently di�erentiable functions at the tj's. We

denote by VDM(F;T ) the determinant of the generalized Vandermonde matrix:

V(F;T ) =



f0(t1) f1(t1) · · · fn−1(t1) fn(t1)
f ′0(t1) f ′1(t1) · · · f ′n−1(t1) f ′n(t1)

...
...

. . .
...

...

f
(ν1−1)
0 (t1) f

(ν1−1)
1 (t1) · · · f

(ν1−1)
n−1 (t1) f

(ν1−1)
n (t1)

...
...

. . .
...

...

f0(tλ) f1(tλ) · · · fn−1(tλ) fn(tλ)
f ′0(tλ) f ′1(tλ) · · · f ′n−1(tλ) f ′n(tλ)

...
...

. . .
...

...

f
(νλ−1)
0 (tλ) f

(νλ−1)
1 (tλ) · · · f

(νλ−1)
n−1 (tλ) f

(νλ−1)
n (tλ)


.

Then we have

VDM(F;T ) =
( λ∏
k=1

νk−1∏
i=0

i!
) ∏
1≤i<j≤λ

(tj − ti)νiνjD(F;T ),

where

D(F;T ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0[t1] f1[t1] · · · fn[t1]
f0[(t1, 2)] f1[(t1, 2)] · · · fn[(t1, 2)]

...
...

. . .
...

f0[(t1, ν1)] f1[(t1, ν1)] · · · fn[(t1, ν1)]
f0[(t1, ν1), (t2, 1)] f1[(t1, ν1), (t2, 1)] · · · fn[(t1, ν1), (t2, 1)]

...
...

. . .
...

f0[(t1, ν1), . . . , (tλ, νλ)] f1[(t1, ν1), . . . , (tλ, νλ)] · · · fn[(t1, ν1), . . . , (tλ, νλ)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here the factor
∏

1≤i<j≤λ(tj − ti)νiνj does not appear when λ = 1.

The following result gives a useful formula for Hermite interpolation polynomial

which contains the terms D(·; ·).

Proposition 2.1. Let t1, . . . , tλ be pairwise distinct real numbers, and let ν1, . . . , νλ

be positive integers such that n+ 1 = ν1 + · · ·+ νλ. Let T = {(t1, ν1), . . . , (tλ, νλ)},
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M = {1, t, . . . , tn}, and let f be a well-de�ned function. Then

H[{(t1, ν1), . . . , (tλ, νλ)}; f ](t) =
n∑
i=0

D(M[ti ← f(t)];T )ti.

Here M[ti ← f(t)] means that we substitute f(t) for ti in M.

Proof. For convenience, we set fi(t) = ti for 0 ≤ i ≤ n, and write

H[{(t1, ν1), . . . , (tλ, νλ)}; f ](t) =
n∑
i=0

cifi(t).

It follows from the interpolation conditions that

(2.1)

n∑
i=0

cif
(k)
i (tj) = f (k)(tj), 1 ≤ j ≤ λ, 0 ≤ k ≤ νj − 1.

The determinant of the matrix of coe�cients corresponding to the above system of

linear equations is VDM(M;T ). A result in [3, p. 3] shows that

VDM(M;T ) =
( λ∏
k=1

νk−1∏
i=0

i!
) ∏
1≤i<j≤λ

(tj − ti)νiνj .

Using the Cramer rule in (2.1) and Lemma 2.1, we obtain

ci =
VDM(M[fi ← f ];T )

VDM(M;T )
= D(M[fi ← f ];T ), 0 ≤ i ≤ n,

The proof is complete. �

When working with Hermite interpolation and the divided di�erence, it is convenient

to use interpolation sets in which elements may be repeated. For example, if A =

{1,−2, 3,−2, 1,−4, 1}, then we can write A = {(1, 3), (−2, 2), (3, 1), (−4, 1)}. More

generally, any set {s0, . . . , sn} can be identi�ed with {(t1, ν1), . . . , (tλ, νλ)}. Here,
ti are pairwise distinct and the notation (ti, νi) means that ti is repeated νi times.

Hence, we can write H[{s0, . . . , sn}; f ] (resp. f [s0, . . . , sn]) for H[{(t1, ν1), . . . , (tλ, νλ)}; f ]
(resp. f [(t1, ν1), . . . , (tλ, νλ)]). It is important to note that the divided di�erence is

continuous with respect to interpolation points (see [3, Corollary 1.5]).

Lemma 2.2. Let I ⊂ R be an interval and g ∈ Cn(I). Then the map

(s0, . . . , sn) ∈ In+1 7−→ g[s0, . . . , sn]

is continuous.

3. Bivariate homogeneous Hermite interpolation

In this section, we �rst give some results concerning vanishing of derivatives of

functions, which are used to prove that the homogeneous Hermite interpolation

problem in R2 has a unique solution.
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3.1. Vanishing of derivatives of functions.

Lemma 3.1. Let k be a natural number, and let g and h be k-times di�erentiable

functions at t0 ∈ R. If g(t0) 6= 0 and (gh)(i)(t0) = 0 for i = 0, . . . , k, then h(i)(t0) =

0 for i = 0, . . . , k.

Proof. Since by assumption g(t0)h(t0) = 0 and g(t0) 6= 0, we have h(t0) = 0.

Assume that the assertion holds for i = 0, . . . , j − 1 with j ≤ k, and prove it for j.

By the Leibnitz formula, we obtain

0 = (gh)(j)(t0) = g(t0)h
(j)(t0) +

j∑
i=1

(
j

i

)
g(i)(t0)h

(j−i)(t0) = g(t0)h
(j)(t0).

Hence, h(j)(t0) = 0, and the result follows. �

Lemma 3.2. Let g be a k-times di�erentiable functions at θ0 ∈ (−π2 ,
π
2 ). Then

di

dθi
g(tan θ)

∣∣∣
θ=θ0

= 0, ∀i = 0, . . . , k

if and only if

g(i)(tan θ0) = 0 ∀i = 0, . . . , k.

Proof.We �rst assume that di

dθi g(tan θ)
∣∣∣
θ=θ0

= 0 for every i = 0, . . . , k. We prove

the lemma by induction on k. The assertion is trivial for k = 0. Assuming that the

assertion holds for k − 1, we prove it for k. For convenience, we set ϕ(θ) = tan θ.

Using Faa di Bruno's formula from [9], we obtain

(3.1)
dk

dθk
g(ϕ(θ))

∣∣∣
θ=θ0

=
∑ k!

n1! · · ·nk!
g(n)(ϕ(θ0))

k∏
j=1

(ϕ(j)(θ0)

j!

)nj
.

where n = n1 + · · ·+ nk and the sum is over all values of n1, . . . , nk ∈ N such that

n1 + 2n2 + · · · + knk = k. Note that n ≤ k and n = k only if n1 = n = k and

n2 = · · · = nk = 0. Hence, it follows from the induction hypothesis and (3.1) that

0 =
dk

dθk
g(ϕ(θ))

∣∣∣
θ=θ0

= g(k)(tan θ0)
1

cos2k(θ0)
.

Thus, g(k)(tan θ0) = 0.

Conversely, from (3.1) we see that dk

dθk
g(ϕ(θ))

∣∣∣
θ=θ0

is a linear combination of

k+ 1 derivatives g(ϕ(θ0)), g
′(ϕ(θ0)), . . . , g

(k)(ϕ(θ0)). Hence, if these k+ 1 numbers

are equal to 0, then di

dθi g(tan θ)
∣∣∣
θ=θ0

= 0 for every i = 0, . . . , k. �

Corollary 3.1. Let f and g be k-times di�erentiable functions at θ0 ∈ (−π2 ,
π
2 ).

Then
di

dθi
f(tan θ)

∣∣∣
θ=θ0

=
di

dθi
g(tan θ)

∣∣∣
θ=θ0

, ∀i = 0, . . . , k,
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if and only if

f (i)(tan θ0) = g(i)(tan θ0), ∀i = 0, . . . , k.

3.2. Homogeneous Hermite interpolation.

Theorem 3.1. Let n, ν1, . . . , νλ be positive integers such that ν1+ · · ·+νλ = n+1,

and let {n1, . . . ,nλ
}
be a set of distinct points on C+ with ni = (cosαi, sinαi),

αj ∈ (−π2 ,
π
2 ). Then, for any given data {cik}, there exists a unique polynomial

h ∈ Hn(R2) such that

(3.2)
dk

dαk
h(cosα, sinα)

∣∣∣
α=αi

= cik, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

Proof. Since the relation (3.2) consists of n + 1 interpolation conditions and

dimHn(R2) = n + 1, it su�ces to show that if h ∈ Hn(R2) satis�es the following

conditions

(3.3)
dk

dαk
h(cosα, sinα)

∣∣∣
α=αi

= 0, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1,

then h = 0. We write

h(cosα, sinα) = (cosn α)h(1, tanα) = (cosn α)q(tanα),

where q(t) = h(1, t) ∈ Pn(R). From (3.3), we have

dk

dαk

(
(cosn α)q(tanα)

)∣∣∣
α=αi

= 0, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

Since αi ∈ (−π2 ,
π
2 ), Lemma 3.1 gives

dk

dαk
q(tanα)

∣∣∣
α=αi

= 0, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

Using Lemma 3.2, we obtain

q(k)(tanαi) = 0, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

The uniqueness of univariate Hermite interpolation in Theorem 2.1 implies that

q = 0 since deg p ≤ n. Hence, h(x, y) = xnq( yx ) = 0. �

Corollary 3.2. Under the assumptions of Theorem 3.1, if f is a function de�ned on

C+ such that the function α 7→ f(cosα, sinα) is (νi−1)-times di�erentiable at αi for

i = 1, . . . , λ, then there exists a unique polynomial h = Hh[{(n1, ν1), . . . , (nλ, νλ)}; f ] ∈
Hn(R2) satisfying

dk

dαk
h(cosα, sinα)

∣∣∣
α=αi

=
dk

dαk
f(cosα, sinα)

∣∣∣
α=αi

, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.
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4. Limit of homogeneous Lagrange interpolation polynomials

In this section, we give a formula for homogeneous Lagrange interpolation polynomials,

and then use it to respond the proposed problem.

Proposition 4.1. Let X = {x0, . . . ,xn} be a set of distinct points on C+ with

xi = (cosαi, sinαi), αi ∈ (−π2 ,
π
2 ), and let f be a function de�ned on X. Then

Lh[X; f ](x) =

n∑
i=0

D(M[ti ← f̂(t)];T )xn−iyi,

where M = {1, t, . . . , tn}, T = {tanα0, . . . , tanαn} and the function f̂ is de�ned by

f̂(tanα) = f(cosα,sinα)
cosn α .

Proof. Since Lh[X; f ] ∈ Hd(R2), we can write Lh[X; f ](x) =
∑n
i=0 dix

n−iyi.

By de�nition, we have
n∑
i=0

di cos
n−i αk sin

i αk = f(cosαk, sinαk), k = 0, . . . , n.

Dividing both sides by cosn αk, we obtain
n∑
i=0

di tan
i αk =

f(cosαk, sinαk)

cosn αk
= f̂(tanαk), k = 0, . . . , n.

By Cramer's rule, the coe�cients di's are given by

di =
VDM(M[ti ← f̂(t)];T )

VDM(M, T )
= D(M[ti ← f̂(t)];T ), 0 ≤ i ≤ n,

where Lemma 2.1 is used in the case of pairwise distinct points to reduce the last

fraction. �

Theorem 4.1. Let n, ν1, . . . , νλ be positive integers such that ν1+ · · ·+νλ = n+1,

and let Xk =
{
xk0 , . . . ,x

k
n

}
, k ≥ 1, be sets of distinct points on C+ such that

lim
k→∞

xkj = n1 for 0 ≤ j ≤ ν1 − 1

and

lim
k→∞

xkj = nm for ν1 + · · ·+ νm−1 ≤ j ≤ ν1 + · · ·+ νm − 1, 2 ≤ m ≤ λ,

where ni's are pairwise distinct points on C+. Then, for any function f of class Cn

on C+, we have

lim
k→∞

Lh[Xk; f ] = Hh[{(n1, ν1), . . . , (nλ, νλ)}; f ].

Proof. Let us de�ne αki = arg(xki ) for 0 ≤ i ≤ n and αi = arg(ni) for 1 ≤ i ≤ λ.
The hypothesis gives

(4.1) lim
k→∞

αkj = α1 for 0 ≤ j ≤ ν1 − 1
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and

(4.2) lim
k→∞

αkj = αm for ν1 + · · ·+ νm−1 ≤ j ≤ ν1 + · · ·+ νm − 1, 2 ≤ m ≤ λ.

Without loss of generality, we can assume that −π2 < α1 < · · · < αλ <
π
2 . Since the

interpolation polynomial is independent of the ordering of the interpolation points,

the relations (4.1) and (4.2) allow us to assume that−π2 < αk0 < αk1 < · · · < αkn <
π
2 .

Evidently, the setting f̂(tanα) := f(cosα,sinα)
cosn α with α ∈ (−π2 ,

π
2 ) is equivalent to

f̂(t) = (t2 + 1)
n
2 f
( 1√

t2 + 1
,

t√
t2 + 1

)
, t ∈ R.

Hence, f̂ ∈ Cn(R). By Proposition 4.1, we can write

(4.3) Lh[Xk; f ](x) =

n∑
i=0

dki x
n−iyi,

where

dki = D(M[ti ← f̂(t)];T k), 0 ≤ i ≤ n,

and M = {1, t, . . . , tn}, T k = {tanαk0 , . . . , tanαkn}. Let us set

T = {
(
tanα1, ν1

)
, . . . ,

(
tanαλ, νλ

)
} = {tanβ0, tanβ1, . . . , tanβn}, β0 ≤ · · · ≤ βn.

By relations (4.1) and (4.2), we have

lim
k→∞

tanαki = tanβi, 0 ≤ i ≤ n.

From the formula for D(·; ·) in Lemma 2.1, we see that the (l,m)-entries of the

matrices corresponding to D(M[ti ← f̂(t)];T k) and D(M[ti ← f̂(t)];T ) are

g[tanαk0 , . . . , tanα
k
l−1] and g[tanβ0, . . . , tanβl−1],

where g ∈ {1, . . . , ti−1, f̂ , ti+1, . . . , tn}. It follows from Lemma 2.2 that

lim
k→∞

g[tanαk0 , . . . , tanα
k
l−1] = g[tanβ0, . . . , tanβl−1].

Therefore, we have

lim
k→∞

D(M[ti ← f̂(t)];T k) = D(M[ti ← f̂(t)];T ),

and consequently,

lim
k→∞

Lh[Xk; f ](x) =

n∑
i=0

D(M[ti ← f̂(t)];T )xn−iyi =: H(x, y).

To complete the proof, it remains to verify that H = Hh[{(n1, ν1), . . . , (nλ, νλ)}; f ].
We have

H(1, t) =

n∑
i=0

D(M[ti ← f̂(t)];T )ti = HH
[
{
(
tanα1, ν1

)
, . . . ,

(
tanαλ, νλ

)
}; f̂
]
(t),
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where we use Proposition 2.1 in the second relation. It follows that, for 1 ≤ i ≤ λ,

0 ≤ k ≤ νi − 1,

dk

dtk
H(1, t)

∣∣∣
t=tanαi

=
dk

dtk

(
HH
[
{
(
tanα1, ν1

)
, . . . ,

(
tanαλ, νλ

)
}; f̂
]
(t)
)∣∣∣
t=tanαi

=
dk

dtk
f̂(t)

∣∣∣
t=tanαi

.

Corollary 3.1 now yields

dk

dαk
H(1, tanα)

∣∣∣
α=αi

=
dk

dαk
f̂(tanα)

∣∣∣
α=αi

, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

In other words,

dk

dαk
H(cosα, sinα)

cosn α

∣∣∣
α=αi

=
dk

dαk
f(cosα, sinα)

cosn α

∣∣∣
α=αi

, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

Using Lemma 3.1, we get

dk

dαk
H(cosα, sinα)

∣∣∣
α=αi

=
dk

dαk
f(cosα, sinα)

∣∣∣
α=αi

, 1 ≤ i ≤ λ, 0 ≤ k ≤ νi − 1.

It follows that H must be identical with Hh[{(n1, ν1), . . . , (nλ, νλ)}; f ]. �

The next example shows that Theorem 4.1 does not hold when f /∈ Cn(C+).

Example 4.1. For simplicity, we work with n = 1. The equation (4.3) gives

Lh[Xk; f ](x) = D(M[1← f̂(t)];T k)x+D(M[t← f̂(t)];T k)y,

where M = {1, t}, T k = {tanαk0 , tanαk1}. Let us de�ne f : C+ → R by

f
( 1√

t2 + 1
,

t√
t2 + 1

)
=

f̂(t)

(t2 + 1)
1
2

, t ∈ R,

with

f̂(t) =

{
3
√
t2 sin 1

t if t 6= 0

0 if t = 0.

Since f̂ is continuous in R but not di�erentiable at 0, the function f does not belong

to C1(C+). If we take αk0 = arctan(−sk) and αk1 = arctan(sk) with sk = 1
π/2+2kπ ,

then xk0 and xk1 tend to (1, 0). For the coe�cient of y in Lh[Xk; f ], we have

f̂ [tanαk0 , tanα
k
1 ] =

f̂(sk)− f̂(−sk)
sk − (−sk)

=
1

3
√
sk
→ +∞.

Let X =
{
x0,x1, . . . ,xn

}
be a set of not necessarily distinct points on C+. Then

we can write X = {(n1, ν1), . . . , (nλ, νλ)} with ν1 + · · ·+ νλ = n+1. Hence we can

identify Hh[X; f ] with Hh[{(n1, ν1), . . . , (nλ, νλ)}; f ]. Note that Hh[X; f ] does not

depend on the ordering of points in X.
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Corollary 4.1. Let n be a positive integer, and let Xk =
{
xk0 , . . . ,x

k
n

}
, k ≥ 0, be

sets of not necessarily distinct point on C+ such that

lim
k→∞

‖Xk −X0‖ = 0,

where

‖Xk −X‖ = max{‖xki − x0
i ‖ : i = 0, . . . , n}.

Then, for any function f of class Cn on C+, we have

lim
k→∞

Hh[Xk; f ] = Hh[X0; f ].

Proof. We can �nd αki in (−π2 ,
π
2 ) such that αki = arg(xki ) for 0 ≤ i ≤ n and

k ≥ 0. By hypothesis, we have

(4.4) lim
k→∞

max{|αki − α0
i | : i = 0, . . . , n} = 0.

Since the homogeneous Hermite interpolation polynomials are independent of the

ordering of the nodes, we can rearrange αki 's, if necessary, to get the ordering

−π
2
< αk0 ≤ αk1 ≤ · · · ≤ αkn <

π

2
, k ≥ 0,

and (4.4) still holds true. This enables us to group consecutive identical angles so

that the orderings in the (αki )
m
i=0 do not change. From the proof of Theorem 4.1,

we have

Hh
[
Xk; f

]
=

n∑
i=0

D(M[ti ← f̂(t)];T k)xn−iyi, T k = {tanαk0 , . . . , tanαkn}.

Since limk→∞ tanαki = tanα0
i for i = 0, . . . , n, it follows from Lemma 2.2 that

the (l,m)-entry of the matrix corresponding to D(M[ti ← f̂(t)];T k) converges to

the (l,m)-entry of the matrix corresponding to D(M[ti ← f̂(t)];T 0) for every 1 ≤
l,m ≤ n+ 1. Therefore, we have

lim
k→∞

D(M[ti ← f̂(t)];T k) = D(M[ti ← f̂(t)];T 0),

and consequently,

lim
k→∞

Hh
[
Xk; f

]
=

n∑
i=0

D(M[ti ← f̂(t)];T 0)xn−iyi = Hh
[
X0; f

]
.

The proof is complete. �
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