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1. Definitions and notation

We use the following notation: I is the unit interval [0, 1]; Z0 is the set of all

nonnegative integers; ∆i
k and ∆̂i

k (k ∈ Z, i ∈ Z) are dyadic intervals ( i−1
2k ,

i
2k ) and

[ i−1
2k ,

i
2k ], respectively; p, q (p, q ∈ Z, p ≤ q) is the set [p, q] ∩ Z.

Recall (see [1]) that the Haar orthonormal system h = (hm)m∈N consists of the

functions de�ned on I in the following way: h1(x) = 1 (x ∈ I); if m = 2k+i (k ∈ Z0,

i ∈ 1, 2k), then hm(x) = 2k/2 when x ∈ ∆2i−1
k+1 , hm(x) = −2k/2 when x ∈ ∆2i

k+1,

hm(x) = 0 when x /∈ ∆̂i
k, at the inner points of discontinuity hm is de�ned as the

average of the limits from the right and from the left, and at the endpoints of I as
the limits from inside of the interval.

In what follows, if something else is not said, we will assume that the dimension n

is greater than 1. Let θ(1) = (θ
(1)
m )m∈N, . . . , θ

(n) = (θ
(n)
m )m∈N be systems of functions

on I. Their product θ(1) × · · · × θ(n) is de�ned as the system of functions θm(x) =

θ
(1)
m1(x1) . . . θ

(n)
mn(xn), where m = (m1, . . . ,mn) ∈ Nn and x = (x1, . . . , xn) ∈ In.

The multiple Haar system is de�ned as the product h× · · · × h.
Let E ⊂ N and λ > 1. A set E is said to be λ-lacunar if for every m,m∗ ∈ E

with m < m∗ we have m∗/m ≥ λ. A set E ⊂ Nn is called λ-lacunar if there are

one-dimensional λ-lacunar sets E1, . . . , En ⊂ N such that E ⊂ E1 × · · · × En. A
*The research is supported by Shota Rustaveli National Science Foundation (project no.

217282).
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set E ⊂ Nn is said to be lacunar if E is λ-lacunar for some λ > 1. A sequence

(am)m∈Nn or a series
∑

m∈Nn am is said to be lacunar (resp. λ-lacunar) if the set

E = {m ∈ Nn : am 6= 0} is lacunar (resp. is λ-lacunar).
By H(x) (x ∈ In) we denote the spectrum of the multiple Haar system at a

point x ∈ In, that is, the set {m ∈ Nn : hm(x) 6= 0}. By Id we denote the set of all

dyadic-irrational numbers of I.
From the de�nition of Haar system it easily follows that: if x ∈ Id, then H(x) is

a 3/2-lacunar set, and hence, taking into account that H(x) = H(x1)×· · ·×H(xn),

we have that H(x) is 3/2-lacunar at every x ∈ Ind .
Let k ∈ N and λ > 1. A set E ⊂ N we call (k, λ)-sparse if there are disjoint

λ-lacunar sets E1, . . . , Ek ⊂ N such that E = E1 ∪ · · · ∪ Ek. Obviously, the notion
of (1, λ)-sparse set coincides with that of λ-lacunar set. A set E ⊂ Nn we call

(k, λ)-sparse if there are (k, λ)-sparse one-dimensional sets E1, . . . , En ⊂ N such

that E ⊂ E1 × · · · ×En. A set E ⊂ Nn we call sparse if it is (k, λ)-sparse for some

k ∈ N and λ > 1.

It is easy to see that if x ∈ I\Id, then H(x) is a (2, 3/2)-sparse set. Consequently,

taking into account thatH(x) = H(x1)×· · ·×H(xn), we have thatH(x) is (2, 3/2)-

sparse at every x ∈ In \ Ind . Thus, for arbitrary point x ∈ In it is guaranteed

(2, 3/2)-sparseness of the spectrum H(x).

A point x ∈ Rn we call dyadic-irrational if x ∈ Ind , that is, if each coordinate of

x is a dyadic-irrational number.

A sequence (am)m∈Nn or a series
∑

m∈Nn am we will call sparse (resp. (k, λ)-

sparse) if the set E = {m ∈ Nn : am 6= 0} is sparse (resp. is (k, λ)-sparse).

Let W ⊂ Rn+, where R+ = [0,∞). For a series σ =
∑

m∈Nn am by SW (σ) we

denote its partial sum by the set W , that is, SW (σ) =
∑

m∈W am. Note that the

sum by empty set of indices we assume to be 0.

The convergence of partial sums SrW (σ) as r → ∞ will be referred as W -

convergence of the series σ. Here rW denotes the homothetic copy of the set W by

a coe�cient r > 0, that is, rW = {rx : x ∈W}.
For the casesW = In andW = {x ∈ Rn+ : x2

1 + · · ·+x2
n ≤ 1}, theW -convergence

is called cubical convergence and spherical convergence, respectively.

A set W ⊂ Rn+ we call standard if it is bounded and contains an intersection of

some neighborhood of the origin with Rn+.
A set E ⊂ Rn we call symmetric with respect to k-th variable if E is symmetric

with respect to hyperplane {x ∈ Rn : xk = 0}.
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We will say that a standard convex set W ⊂ Rn+ is of symmetric type if there

exists a symmetric with respect to each variable convex set E ⊂ Rn for which

W = E ∩ Rn+.
Recall that a sequence (am)m∈Nn is called convergent if am tends to a limit

as min(m1, . . . ,mn) → ∞, and a series σ =
∑

m∈Nn am is called convergent in

the Pringsheim sense if the sequence of its rectangular partial sums Sm(σ) =∑m1

i1=1 · · ·
∑mn

in=1 ai (m ∈ Nn) is convergent.

By a section of a multiple sequence (am)m∈Nn we shall mean the sequence

obtained from (am) by �xing some coordinates of the index m, and by a section of

a series σ =
∑

m∈Nn am we shall mean a series composed by some section of the

sequence (am).

A multiple numerical series is said to converge regularly to a number s if it

converges to s in the Pringsheim sense and if each of its sections is convergent in the

Pringsheim sense (for one-dimensional sections ordinary convergence is considered).

This type of convergence for double series was studied by Hardy [2] and Moricz [3].

For the briefness of formulations, for one-dimensional series the regular convergence

will be identi�ed with the ordinary convergence.

2. Results

A rectangular partial sum of a multiple Fourier-Haar series at a dyadic-irrational

point x ∈ In is represented by an integral mean over an appropriate dyadic interval

containing x. From this connection and the well-known theorems by Lebesgue,

Jessen, Marcinkiewicz and Zygmund (see [4, Ch. 2]) it follows that:

1) For every function f ∈ L(In), the Fourier-Haar series of f cubically converges

to f(x) at almost every point x ∈ In;
2) For every function f ∈ L(ln+ L)n−1(In), the Fourier-Haar series of f converges

in the Pringsheim sense to f(x) at almost every point x ∈ In.
The optimality of the class L(ln+ L)n−1(In) in the last assertion was shown by

Zerekidze in [5], where it was proved that in any integral class ϕ(L)(In), wider

than L(ln+ L)n−1(In), there exists a function f with almost everywhere divergent

Fourier-Haar series in the Pringsheim sense. As it was proved by Karagulyan [6] (see

also [7]) a similar result is valid for Fourier series with respect to arbitrary product-

system θ × · · · × θ, where θ is a complete orthonormal system on I consisting of

bounded functions.

Kemkhadze [8] proved that for every function f ∈ L(ln+ L)n−1(In), the Fourier-

Haar series of f spherically converges to f(x) at almost every point x ∈ In. The
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optimality of the class L(ln+ L)n−1(In) in this result was established in [9] (for

n = 2) and in [10] (for arbitrary n ≥ 2).

The following theorem shows that similar to spherical partial sums, almost

everywhere W -convergence of Fourier-Haar series in the class L(ln+ L)n−1(In) is

valid for quite general type sets W .

Theorem 2.1. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then for

every function f ∈ L(ln+ L)n−1(In) the Fourier-Haar series of f is W -convergent

to f(x) at almost every point x ∈ In.

We obtain Theorem 2.1 from the following two results.

Theorem 2.2 ([11]). For every function f ∈ L(ln+ L)n−1(In) the Fourier-Haar

series of f is regularly convergent to f(x) at almost every point x ∈ In. Furthermore,

if f ∈ L(ln+ L)k(In), where 0 ≤ k ≤ n − 2, then each (k + 1)-dimensional section

of Fourier-Haar series of f is regularly convergent at almost every point x ∈ In.

Theorem 2.3. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then for

an arbitrary function f ∈ L(In) and a point x ∈ In the following implication holds:

(the Fourier-Haar series of f regularly converges to f(x) at the point x) ⇒ (the

Fourier-Haar series of f W -converges to f(x) at the point x).

The next assertion is a corollary of Theorems 2.2 and 2.3.

Theorem 2.4. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then

for an arbitrary function f ∈ L(ln+ L)n−2(In) the following implication holds: (the

Fourier-Haar series of f converges in the Pringsheim sense to f(x) at every point

x from a set E) ⇒ (the Fourier-Haar series of f W -converges to f(x) at almost

every point x from E).

Taking into account sparseness of Fourier-Haar series at every point x ∈ In, we
obtain Theorem 2.3 from the following result.

Theorem 2.5. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then

for an arbitrary sparse numerical series σ =
∑

m∈Nn am the following implication

holds: (σ is regularly convergent to a number s) ⇒ (σ is W -convergent to s).

Remark 2.1. For the case of lacunar series and spherical convergence, Theorem 2.4

was proved in [11]. For two-dimensional case, more complete results were obtained

in [12].
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3. Proof of Theorem 2.5

Let W ⊂ Rn+ be a standard set. Denote by ti(W ) (i ∈ 1, n) the supremum of

the i-th coordinates of those points of W which belong to the axes Oxi. Obviously,

ti(W ) > 0. Let us consider two intervals I(W ) and J(W ) associated withW , de�ned

as follows:

I(W ) = [0, t1(W )]× · · · × [0, tn(W )],

J(W ) =

[
0,
t1(W )

2n

]
× · · · ×

[
0,
tn(W )

2n

]
.

Lemma 3.1. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then

J(W ) ⊂W ⊂ I(W ).

Proof. We �rst prove the inclusion W ⊂ I(W ). Assume the opposite, that is,

W \ I(W ) 6= ∅. Let E be a convex set which is symmetric with respect to each

variable and such that E ∩ Rn+ = W . Observe that for each point x = (x1, . . . , xn)

from the set W \ I(W ) there is i ∈ 1, n for which xi > ti(W ). Without loss of

generality, we can assume that

(3.1) xn > tn(W ).

Taking into account the symmetry of E, we have (−x1, . . . ,−xn−1, xn) ∈ E. The
point (0, . . . , 0, xn) is a midpoint of the segment joining x = (x1, . . . , xn−1, xn) and

(−x1, . . . ,−xn−1, xn). Therefore, by convexity of E we conclude that (0, . . . , 0, xn) ∈
E, and consequently, we have

(3.2) (0, . . . , 0, xn) ∈W.

The relations (3.1) and (3.2) contradict the de�nition of the number tn(W ), and

the obtained contradiction proves the inclusion W ⊂ I(W ).

Now, we prove the second inclusion J(W ) ⊂ W . For every i ∈ 1, n, by xi we

denote the point lying on the axes Oxi and having i-th coordinate equal to the

number ti(W )/2. From the properties of W it follows that all points O,x1, . . . ,xn

belong to W (here O denotes the origin). Then we consider the convex hull of the

points O,x1, . . . ,xn which we denote by Conv(O,x1, . . . ,xn). From the convexity

of W it follows that

(3.3) Conv(O,x1, . . . ,xn) ⊂W.

As it is well-known, the convex hull of points y0,y1, . . . ,ym has the following

representation {
∑m
i=0 λiyi : λ0, . . . , λm ≥ 0,

∑m
i=0 λi = 1}. Consequently, we have

(3.4) Conv(O,x1, . . . ,xn) =

{ n∑
i=1

λixi : λ1, . . . , λn ≥ 0,

n∑
i=1

λi ≤ 1

}
.
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Let x be an arbitrary point from the interval J(W ). For each i ∈ 1, n, we take the

number λi equal to the ratio of xi and ti(W )/2. Then we have
n∑
i=1

λi ≤
n∑
i=1

[
ti(W )

2n
÷ ti(W )

2

]
=

n∑
i=1

1

n
= 1, x =

n∑
i=1

λixi.

From (3.3) and (3.4) we conclude that x ∈W . Consequently, J(W ) ⊂W . �

Let W ⊂ Rn, i ∈ 1, n and t ∈ R. Consider the section of W by hyperplane {x ∈
Rn : xi = t}, that is, the set W [i, t] = W ∩ {x ∈ Rn : xi = t}). Denote by W (i, t)

the projection ofW [i, t] onto Rn−1 taken by the variables x1, . . . , xi−1, xi+1, . . . , xn.

We will refer the sets W (i, t) as sections of W .

Lemma 3.2. Let n ≥ 3 and W ⊂ Rn+ be a standard convex set of symmetric

type. Then for every i ∈ 1, n and t ∈ (0, ti(W )) the section W (i, t) ⊂ Rn−1
+ is an

(n− 1)-dimensional standard convex set of symmetric type.

Proof. Without loss of generality we assume that i = n. Let (ei)
n
i=1 be the

standard algebraic basis in Rn. Suppose x = ten, xi = ti(W )
2 ei (i = 1, . . . , n − 1)

and xn = t∗en, where t
∗ is some number from the interval (t, tn(W )). From the

properties of W it follows that the points x,x1, . . . ,xn belong to W .

For each i = 1, . . . , n− 1 let us consider the point yi = αxn + (1− α)xi, where

α = t/t∗. Using convexity of W we have x,y1, . . . ,yn−1 ∈ W . Besides, the n-th

coordinate of each point x,y1, . . . ,yn−1 is equal to t. From these facts it follows

that the section W (n, t) is a standard set in Rn−1.

Observe that the set W ∩ {x ∈ Rn : xn = t} is convex as an intersection of two

convex sets. Consequently, W (n, t) is a convex subset of Rn−1.

Let E be the convex set that is symmetric with respect to each variable for

which E ∩Rn+ = W . It is easy to see that E ∩ {x ∈ Rn : xn = t} is symmetric with

respect to variables x1, . . . , xn−1. Consequently, E(n, t) is a subset of Rn−1 that

is symmetric with respect to each variable. Now, taking into account the equality

E(n, t) ∩ Rn−1
+ = W (n, t), we conclude that W (n, t) is a standard convex set of

symmetric type. �

Lemma 3.3. Let W ⊂ Rn+ be a standard convex set of symmetric type. Then for

every i = 1, . . . , n− 1 and t1, . . . , ti > 0, the set

W ∩ ([0, t1]× · · · × [0, ti]× Rn−i+ )

is also a standard convex set of symmetric type.

Proof. Denote V = [0, t1] × · · · × [0, ti] × Rn−i+ . It is easy to see that V is a

convex set of symmetric type and the intersection of two convex sets of symmetric
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type is also similar one. Consequently, W ∩ V is a convex set of symmetric type.

On the other hand, taking into account that W is standard we can conclude that

W ∩ V is a standard set. �

Let us introduce the following notation. We denote:

by Mn the class of all subsets of 1, n;

by |M | the number of elements of a set M ;

by π(n,M) (M ∈ Mn) the bijection π(n,M) : 1, n → 1, n with the following

properties:

• π(n,M) is increasing on the set 1, |M | and maps this set onto M ,

• π(n,M) is increasing on |M |+ 1, n and maps this set onto 1, n \M ;

by (t,h,M) (M ∈ Mn, t ∈ R|M |,h ∈ Rn−|M |) the point x of Rn such that

xπ(n,M)(i) = ti if i ∈ 1, |M | and xπ(n,M)(i) = hi−|M | if i ∈ |M |+ 1, n;

by A ×M B (M ∈ Mn, A ⊂ R|M |, B ⊂ Rn−|M |) the product of the sets A and B

corresponding to the set M , that is, the set {(t,h,M) : t ∈ A,h ∈ B} (it is clear
that A×M B = B ×1,n\M A);

by ∆(n,M) (M ∈ Mn, 1 ≤ |M | < n) the class of �M -dimensional� intervals

∆ of type ([0, p1] × . . . [0, p|M |]) ×M {(q1, . . . , qn−|M |)}, where p1, . . . , p|M |, q1, . . . ,

qn−|M | ∈ N; and by l(∆) the largest among numbers qi from the de�nition of an

interval ∆ ∈∆(n,M).

By C(a1, . . . , am) will be denoted positive constants depending on parameters

a1, . . . , am. For a standard setW ⊂ Rn+ we denote t(W ) = min{t1(W ), . . . , tn(W )}.
Obviously, we have t(W ) > 0.

Lemma 3.4. Let k ∈ N, λ > 1, E ⊂ Nn be a (k, λ)-sparse set, and let W ⊂ Rn+ be

a standard convex set of symmetric type. Then the set E ∩W may be decomposed

in the following way:

E ∩W = (E ∩ J(W )) ∪
⋃

∆∈∆

(E ∩∆),

where ∆ ⊂
⋃
{∆(n,M) : M ∈ Mn, 1 ≤ |M | < n}, |∆| ≤ C(n, k, λ), the intervals

∆ ∈ ∆ are disjoint and they do not intersect J(W ), ∆ ⊂ W and l(∆) > t(W )/2n

for every ∆ ∈∆.

Proof. For i ∈ 1, n, t ∈ R, an one-dimensional interval I and a standard convex

set V , we denote

Γi(t) = {x ∈ Rn : xi = t}, Γi(I) = {x ∈ Rn : xi ∈ I},

Qi(V ) =

{
q ∈

(
ti(V )

2n
, ti(V )

]
∩ N : E ∩ Γi(q) 6= ∅

}
.
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Then we have the decomposition:

(3.5) V =

(
V ∩ Γi

([
0,
ti(V )

2n

]))
∪
(
V ∩ Γi

((
ti(V )

2n
, ti(V )

]))
.

Also, by virtue of (k, λ)-sparseness of the set E, the following inequality holds:

(3.6) |Qi(V )| ≤ k(1 + logλ(2n)).

Let us introduce the following sets

Wi = W ∩
([

0,
t1(W )

2n

]
× · · · ×

[
0,
ti(W )

2n

]
× Rn−i+

)
(1 ≤ i ≤ n− 1).

Also, we de�ne W0 = W and Wn = J(W ). Obviously, we have W = W0 ⊃ W1 ⊃
W2 ⊃ · · · ⊃ Wn−1 ⊃ Wn = J(W ). Observe that by Lemma 3.3 each Wi is a

standard convex set of symmetric type.

Taking into account (3.5), it is easy to see that for the cases V = W,k = 1; V =

W1, k = 2; . . . , V = Wn−1, k = n, the following decompositions hold:

E ∩W = (E ∩W1) ∪
⋃

q∈Q1(W )

(E ∩W ∩ Γ1(q)),(3.71)

E ∩W1 = (E ∩W2) ∪
⋃

q∈Q2(W1)

(E ∩W1 ∩ Γ2(q)),(3.72)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E ∩Wn−1 = (E ∩ J(W )) ∪
⋃

q∈Qn(Wn−1)

(E ∩Wn−1 ∩ Γn(q)).(3.7n)

Consequently, we have

(3.8) E ∩W = (E ∩ J(W )) ∪
n⋃
i=1

⋃
q∈Qi(Wi−1)

(E ∩Wi−1 ∩ Γi(q)).

In each of decompositions (3.7i) the components Wi−1 ∩ Γi(q) (q ∈ Qi(Wi−1)) and

Wi are disjoint, and hence, we conclude that:

The components J(W ) andWi−1 ∩ Γi(q) (i ∈ 1, n, q ∈ Qi(Wi−1))

in decomposition (3.8) are disjoint.(3.9)

By (3.6) for every i ∈ 1, n we have

(3.10) |Qi(Wi−1)| ≤ k(1 + logλ(2n)).

It is easy to see that for every i ∈ 1, n

ti(Wi−1) = ti(W ), . . . , tn(Wi−1) = tn(W ).

Consequently, for every i ∈ 1, n and q ∈ Qi(Wi−1) we have

(3.11) q >
ti(Wi−1)

2n
=
ti(W )

2n
≥ t(W )

2n
.
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The representation (3.8) gives a possibility to prove the lemma by induction with

respect to n.

Taking into account that Wi are standard convex sets of symmetric type and

using the properties (3.9)�(3.11), we easily conclude the validity of the lemma in

the case n = 2.

Let us perform the induction step from n− 1 to n.

Consider the projections of the sets E ∩ Γi(q) and Wi−1 ∩ Γi(q) (i ∈ 1, n, q ∈
Qi(Wi−1)) to the space Rn−1, taken with respect to variables x1, . . . , xi−1, xi+1, . . . , xn.

These projections are denoted by E(i, q) and Wi−1(i, q), respectively. It is easy to

see that E(i, q) is a (k, λ)-sparse subset of Nn−1. On the other hand, by Lemma 3.2,

Wi−1(i, q) is an (n− 1)-dimensional standard convex set of symmetric type. Using

the induction hypothesis for the sets E(i, q) andWi−1(i, q), we obtain a decomposition

of the set E(i, q) ∩Wi−1(i, q) by means of the family ∆(i, q) ⊂
⋃
{∆(n − 1,M) :

M ∈Mn−1, 1 ≤ |M | < n− 1} of lower-dimensional intervals, that is,

E(i, q) ∩Wi−1(i, q) = (E ∩ J(Wi−1(i, q))) ∪
⋃

∆∈∆(i,q)

(E(i, q) ∩∆),

where the family ∆(i, q) has the properties stated in the lemma.

Next, for every i ∈ 1, n and q ∈ Qi(Wi−1), let us consider the family ∆̃(i, q) of

the intervals {q} ×{i} ∆, where ∆ ∈∆(i, q) or ∆ = J(Wi−1(i, q)). Then we have

E ∩W = (E ∩ J(W )) ∪
n⋃
i=1

⋃
q∈Qi(Wi−1)

⋃
∆∈∆̃(i,q)

(E ∩∆).

Finally, taking into account the properties (3.9)�(3.11), we easily see that the family

∆ =

n⋃
i=1

⋃
q∈Qi(Wi−1)

∆̃(i, q)

possesses all the properties of the desired decomposition of the set E ∩W . �

Remark 3.1. If for every number r > 0 we use Lemma 3.4 for E and rW , then

we can conclude that the intervals ∆ from the decomposition of E ∩ rW satisfy

the inequality l(∆) > rt(W )/2n. To prove this we have to take into account the

following evident equality t(rW ) = rt(W ).

For x ∈ Rn denote ||x|| =
∑n
i=1 |xi|.

The following lemma was proved in [9] (see [9], Lemma 2).

Lemma 3.5. Let σ =
∑

i∈Nn ai be a numerical series, M ∈ Mn, 1 ≤ |M | < n,

p ∈ N|M |, q ∈ Nn−|M | and ∆ = ([0, p1]× . . . [0, p|M |])×M {q}. Then

S∆(σ) =
∑

d∈{0,1}n−|M|
(−1)||d||S(p,q−d,M)(σ).

78



ON THE ALMOST EVERYWHERE CONVERGENCE ...

Remark 3.2. For the general term of a series
∑

i∈Nn ai the following well-known

representation holds: ai =
∑

d∈{0,1}n(−1)||d||Sm−d(σ).

For any n ∈ N assume that ∆(n, ∅) = {{q} : q ∈ Nn}, and denote

∆(n) =
⋃

M∈Mn,|M |<n

∆(n,M).

Also, for ∆ = {q} ∈∆(n, ∅) by l(∆) we denote the maximal among the coordinates

of q.

Lemma 3.6. Let n ∈ N and σ =
∑

i∈Nn ai be a regularly convergent numerical

series. Then

lim
∆∈∆(n), l(∆)→∞

S∆(σ) = 0.

Proof. For the one-dimensional case the lemma is obvious. Let us perform the

induction step from n− 1 to n.

For an arbitrary given ε > 0 we must �nd a natural number N such that

(3.12) |S∆(σ)| < ε

for every ∆ ∈∆(n) with l(∆) ≥ N .

Taking into account convergence of σ in the Pringsheim sense, we can �nd a

natural number N1 such that

(3.13) |Sm(σ)− s| < ε/2n

for every m ∈ Nn having all coordinates not less than N1. Here s denotes the sum

of the series σ.

For every k ∈ 1, n and t ∈ 1, N1 let us consider the section σ(k, t) of the series

σ =
∑

i∈Nn ai which we derive by n-tuples i = (i1, . . . , in) having k-th coordinate

equal to t. Using induction hypothesis for each (n − 1)-dimensional series σ(k, t)

(k ∈ 1, n, t ∈ 1, N1) we can �nd a natural number N(k, t) such that

(3.14) |S∆(σ(k, t))| < ε/N1

for every ∆ ∈∆(n− 1) with l(∆) ≥ N(k, t).

Let N2 be the maximal among the numbers N(k, t) (k ∈ 1, n, t ∈ 1, N1). De�ne

the number N as follows N = N1 +N2.

Now, we proceed to prove the inequality (3.12). Suppose, ∆ ∈∆(n) and l(∆) ≥
N . Note that: 1) for the case ∆ ∈ ∆(n,M), 1 ≤ |M | < n, ∆ has the form:

([0, p1]× . . . [0, p|M |])×M {(q1, . . . , qn−|M |)}; 2) for the case ∆ ∈∆(n, ∅), ∆ has the

form: {(q1, . . . , qn)}.
Case 1. Each among the numbers pj and qj from the de�nition of ∆ is greater

than N1.
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We use Lemma 3.5 and Remark 3.2 to estimate |S∆(σ)| by a sum of |Sm(σ) −
Sm′(σ)| type expressions, where all coordinates of m and m′ are not less than N1.

Observe that the number of such expressions is not greater than 2n−1. Hence, taking

into account (3.13), we obtain |S∆(σ)| < 2n−1(ε/2n + ε/2n) = ε. Thus, in this case

the inequality (3.12) is proved.

Case 2. At least one among the numbers pj and qj from the de�nition of ∆ is not

greater than N1.

Suppose that for a k-th dimension the above mentioned inequality is ful�lled and

that for a m-th dimension l(∆) = qm. Obviously, k 6= m. The interval ∆ will be

decomposed by sections ∆[k, 1], . . . ,∆[k,N1]. Note that if a section ∆[k, t] is non-

empty, then ∆(k, t) ∈∆(n− 1) and ∆(k, t) is derived from ∆ by omitting its k-th

dimension. Consequently, taking into account that k 6= m, we have l(∆(k, t)) =

qm = l(∆) ≥ N2. From the last estimation, using (3.14) and the de�nition of

the number N2, for every k ∈ 1, n and t ∈ 1, N1 with ∆[k, t] 6= ∅, we obtain∣∣∑
i∈∆[k,t] ai

∣∣ < ε/N1. Consequently, we have

|S∆(σ)| =
∣∣∣∣∑
i∈∆

ai

∣∣∣∣ ≤ N1∑
t=1

∣∣∣∣ ∑
i∈∆[k,t]

ai

∣∣∣∣ < N1
ε

N1
= ε.

This completes the proof of inequality (3.12). �

Now, we proceed directly to the proof of Theorem 2.5.

By E denote the set {m ∈ Nn : am 6= 0}. According to the condition of the

theorem, the set E is (k, λ)-sparse for some k ∈ N and λ > 1.

Let ∆r ⊂ ∆(n) (r > 0) be a family of lower-dimensional intervals constituting

a decomposition of the set E ∩ rW according to Lemma 3.4. Then, in view of

properties of ∆r (see Lemma 3.4), we have

SrW (σ) = SrJ(W )(σ) +
∑

∆∈∆r

S∆(σ),

|∆r| ≤ C(n, k, λ), l(∆) > rt(W )/2n.

From the last two estimates and Lemma 3.6 we obtain

lim
r→∞

∑
∆∈∆r

S∆(σ) = 0.

On the other hand, from the convergence of σ in the Pringsheim sense it follows

that lim
r→∞

SrJ(W )(σ) = s. Thus, lim
r→∞

SrW (σ)=s. Theorem 2.5 is proved. �
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