Известия НАН Армении, Математика, том 54, н. 5, 2019, стр. 70 – 81 ON THE ALMOST EVERYWHERE CONVERGENCE OF MULTIPLE FOURIER-HAAR SERIES

G. ONIANI, F. TULONE

Akaki Tsereteli State University, Kutaisi, Georgia^{*} University of Palermo, Palermo, Italy E-mails: oniani@atsu.edu.ge; francescotulone@hotmail.it

Abstract. The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $W \subset \mathbb{R}^n_+$ containing the intersection of some neighborhood of the origin with \mathbb{R}^n_+ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class $L(\ln^+ L)^{n-1}$.

MSC2010 numbers: 42C10, 40A05.

Keywords: almost everywhere convergence; multiple Fourier-Haar series; lacunar series.

1. Definitions and notation

We use the following notation: I is the unit interval [0,1]; \mathbb{Z}_0 is the set of all nonnegative integers; Δ_k^i and $\widehat{\Delta}_k^i$ $(k \in \mathbb{Z}, i \in \mathbb{Z})$ are dyadic intervals $(\frac{i-1}{2^k}, \frac{i}{2^k})$ and $[\frac{i-1}{2^k}, \frac{i}{2^k}]$, respectively; $\overline{p,q}$ $(p,q \in \mathbb{Z}, p \leq q)$ is the set $[p,q] \cap \mathbb{Z}$.

Recall (see [1]) that the Haar orthonormal system $h = (h_m)_{m \in \mathbb{N}}$ consists of the functions defined on \mathbb{I} in the following way: $h_1(x) = 1$ $(x \in \mathbb{I})$; if $m = 2^k + i$ $(k \in \mathbb{Z}_0, i \in \overline{1, 2^k})$, then $h_m(x) = 2^{k/2}$ when $x \in \Delta_{k+1}^{2i-1}$, $h_m(x) = -2^{k/2}$ when $x \in \Delta_{k+1}^{2i}$, $h_m(x) = 0$ when $x \notin \widehat{\Delta}_k^i$, at the inner points of discontinuity h_m is defined as the average of the limits from the right and from the left, and at the endpoints of \mathbb{I} as the limits from inside of the interval.

In what follows, if something else is not said, we will assume that the dimension n is greater than 1. Let $\theta^{(1)} = (\theta_m^{(1)})_{m \in \mathbb{N}}, \ldots, \theta^{(n)} = (\theta_m^{(n)})_{m \in \mathbb{N}}$ be systems of functions on \mathbb{I} . Their product $\theta^{(1)} \times \cdots \times \theta^{(n)}$ is defined as the system of functions $\theta_{\mathbf{m}}(\mathbf{x}) = \theta_{m_1}^{(1)}(x_1) \ldots \theta_{m_n}^{(n)}(x_n)$, where $\mathbf{m} = (m_1, \ldots, m_n) \in \mathbb{N}^n$ and $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{I}^n$. The multiple Haar system is defined as the product $h \times \cdots \times h$.

Let $E \subset \mathbb{N}$ and $\lambda > 1$. A set E is said to be λ -lacunar if for every $m, m^* \in E$ with $m < m^*$ we have $m^*/m \ge \lambda$. A set $E \subset \mathbb{N}^n$ is called λ -lacunar if there are one-dimensional λ -lacunar sets $E_1, \ldots, E_n \subset \mathbb{N}$ such that $E \subset E_1 \times \cdots \times E_n$. A

[&]quot;The research is supported by Shota Rustaveli National Science Foundation (project no. 217282).

set $E \subset \mathbb{N}^n$ is said to be *lacunar* if E is λ -lacunar for some $\lambda > 1$. A sequence $(a_{\mathbf{m}})_{\mathbf{m}\in\mathbb{N}^n}$ or a series $\sum_{\mathbf{m}\in\mathbb{N}^n} a_{\mathbf{m}}$ is said to be *lacunar* (resp. λ -*lacunar*) if the set $E = \{\mathbf{m}\in\mathbb{N}^n : a_{\mathbf{m}}\neq 0\}$ is lacunar (resp. is λ -lacunar).

By $H(\mathbf{x})$ ($\mathbf{x} \in \mathbb{I}^n$) we denote the *spectrum* of the multiple Haar system at a point $\mathbf{x} \in \mathbb{I}^n$, that is, the set { $\mathbf{m} \in \mathbb{N}^n : h_{\mathbf{m}}(\mathbf{x}) \neq 0$ }. By \mathbb{I}_d we denote the set of all dyadic-irrational numbers of \mathbb{I} .

From the definition of Haar system it easily follows that: if $x \in \mathbb{I}_d$, then H(x) is a 3/2-lacunar set, and hence, taking into account that $H(\mathbf{x}) = H(x_1) \times \cdots \times H(x_n)$, we have that $H(\mathbf{x})$ is 3/2-lacunar at every $\mathbf{x} \in \mathbb{I}_d^n$.

Let $k \in \mathbb{N}$ and $\lambda > 1$. A set $E \subset \mathbb{N}$ we call (k, λ) -sparse if there are disjoint λ -lacunar sets $E_1, \ldots, E_k \subset \mathbb{N}$ such that $E = E_1 \cup \cdots \cup E_k$. Obviously, the notion of $(1, \lambda)$ -sparse set coincides with that of λ -lacunar set. A set $E \subset \mathbb{N}^n$ we call (k, λ) -sparse if there are (k, λ) -sparse one-dimensional sets $E_1, \ldots, E_n \subset \mathbb{N}$ such that $E \subset E_1 \times \cdots \times E_n$. A set $E \subset \mathbb{N}^n$ we call sparse if it is (k, λ) -sparse for some $k \in \mathbb{N}$ and $\lambda > 1$.

It is easy to see that if $x \in \mathbb{I} \setminus \mathbb{I}_d$, then H(x) is a (2, 3/2)-sparse set. Consequently, taking into account that $H(\mathbf{x}) = H(x_1) \times \cdots \times H(x_n)$, we have that $H(\mathbf{x})$ is (2, 3/2)sparse at every $\mathbf{x} \in \mathbb{I}^n \setminus \mathbb{I}_d^n$. Thus, for arbitrary point $\mathbf{x} \in \mathbb{I}^n$ it is guaranteed (2, 3/2)-sparseness of the spectrum $H(\mathbf{x})$.

A point $\mathbf{x} \in \mathbb{R}^n$ we call *dyadic-irrational* if $\mathbf{x} \in \mathbb{I}^n_d$, that is, if each coordinate of \mathbf{x} is a dyadic-irrational number.

A sequence $(a_{\mathbf{m}})_{\mathbf{m}\in\mathbb{N}^n}$ or a series $\sum_{\mathbf{m}\in\mathbb{N}^n} a_{\mathbf{m}}$ we will call *sparse* (resp. (k, λ) -*sparse*) if the set $E = \{\mathbf{m}\in\mathbb{N}^n : a_{\mathbf{m}}\neq 0\}$ is sparse (resp. is (k, λ) -sparse).

Let $W \subset \mathbb{R}^n_+$, where $\mathbb{R}_+ = [0, \infty)$. For a series $\sigma = \sum_{\mathbf{m} \in \mathbb{N}^n} a_{\mathbf{m}}$ by $S_W(\sigma)$ we denote its *partial sum by the set* W, that is, $S_W(\sigma) = \sum_{\mathbf{m} \in W} a_{\mathbf{m}}$. Note that the sum by empty set of indices we assume to be 0.

The convergence of partial sums $S_{rW}(\sigma)$ as $r \to \infty$ will be referred as *W*convergence of the series σ . Here rW denotes the homothetic copy of the set *W* by a coefficient r > 0, that is, $rW = \{r\mathbf{x} : \mathbf{x} \in W\}$.

For the cases $W = \mathbb{I}^n$ and $W = \{ \mathbf{x} \in \mathbb{R}^n_+ : x_1^2 + \cdots + x_n^2 \leq 1 \}$, the *W*-convergence is called *cubical convergence* and *spherical convergence*, respectively.

A set $W \subset \mathbb{R}^n_+$ we call *standard* if it is bounded and contains an intersection of some neighborhood of the origin with \mathbb{R}^n_+ .

A set $E \subset \mathbb{R}^n$ we call symmetric with respect to k-th variable if E is symmetric with respect to hyperplane $\{\mathbf{x} \in \mathbb{R}^n : x_k = 0\}$. We will say that a standard convex set $W \subset \mathbb{R}^n_+$ is of symmetric type if there exists a symmetric with respect to each variable convex set $E \subset \mathbb{R}^n$ for which $W = E \cap \mathbb{R}^n_+$.

Recall that a sequence $(a_{\mathbf{m}})_{\mathbf{m}\in\mathbb{N}^n}$ is called *convergent* if $a_{\mathbf{m}}$ tends to a limit as $\min(m_1,\ldots,m_n) \to \infty$, and a series $\sigma = \sum_{\mathbf{m}\in\mathbb{N}^n} a_{\mathbf{m}}$ is called *convergent in* the Pringsheim sense if the sequence of its rectangular partial sums $S_{\mathbf{m}}(\sigma) = \sum_{i_1=1}^{m_1} \cdots \sum_{i_n=1}^{m_n} a_i \quad (\mathbf{m}\in\mathbb{N}^n)$ is convergent.

By a section of a multiple sequence $(a_{\mathbf{m}})_{\mathbf{m}\in\mathbb{N}^n}$ we shall mean the sequence obtained from $(a_{\mathbf{m}})$ by fixing some coordinates of the index \mathbf{m} , and by a section of a series $\sigma = \sum_{\mathbf{m}\in\mathbb{N}^n} a_{\mathbf{m}}$ we shall mean a series composed by some section of the sequence $(a_{\mathbf{m}})$.

A multiple numerical series is said to *converge regularly* to a number s if it converges to s in the Pringsheim sense and if each of its sections is convergent in the Pringsheim sense (for one-dimensional sections ordinary convergence is considered). This type of convergence for double series was studied by Hardy [2] and Moricz [3]. For the briefness of formulations, for one-dimensional series the regular convergence will be identified with the ordinary convergence.

2. Results

A rectangular partial sum of a multiple Fourier-Haar series at a dyadic-irrational point $\mathbf{x} \in \mathbb{I}^n$ is represented by an integral mean over an appropriate dyadic interval containing \mathbf{x} . From this connection and the well-known theorems by Lebesgue, Jessen, Marcinkiewicz and Zygmund (see [4, Ch. 2]) it follows that:

1) For every function $f \in L(\mathbb{I}^n)$, the Fourier-Haar series of f cubically converges to $f(\mathbf{x})$ at almost every point $\mathbf{x} \in \mathbb{I}^n$;

2) For every function $f \in L(\ln^+ L)^{n-1}(\mathbb{I}^n)$, the Fourier-Haar series of f converges in the Pringsheim sense to $f(\mathbf{x})$ at almost every point $\mathbf{x} \in \mathbb{I}^n$.

The optimality of the class $L(\ln^+ L)^{n-1}(\mathbb{I}^n)$ in the last assertion was shown by Zerekidze in [5], where it was proved that in any integral class $\varphi(L)(\mathbb{I}^n)$, wider than $L(\ln^+ L)^{n-1}(\mathbb{I}^n)$, there exists a function f with almost everywhere divergent Fourier-Haar series in the Pringsheim sense. As it was proved by Karagulyan [6] (see also [7]) a similar result is valid for Fourier series with respect to arbitrary productsystem $\theta \times \cdots \times \theta$, where θ is a complete orthonormal system on \mathbb{I} consisting of bounded functions.

Kemkhadze [8] proved that for every function $f \in L(\ln^+ L)^{n-1}(\mathbb{I}^n)$, the Fourier-Haar series of f spherically converges to $f(\mathbf{x})$ at almost every point $\mathbf{x} \in \mathbb{I}^n$. The optimality of the class $L(\ln^+ L)^{n-1}(\mathbb{I}^n)$ in this result was established in [9] (for n = 2) and in [10] (for arbitrary $n \ge 2$).

The following theorem shows that similar to spherical partial sums, almost everywhere W-convergence of Fourier-Haar series in the class $L(\ln^+ L)^{n-1}(\mathbb{I}^n)$ is valid for quite general type sets W.

Theorem 2.1. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for every function $f \in L(\ln^+ L)^{n-1}(\mathbb{I}^n)$ the Fourier-Haar series of f is W-convergent to $f(\mathbf{x})$ at almost every point $\mathbf{x} \in \mathbb{I}^n$.

We obtain Theorem 2.1 from the following two results.

Theorem 2.2 ([11]). For every function $f \in L(\ln^+ L)^{n-1}(\mathbb{I}^n)$ the Fourier-Haar series of f is regularly convergent to $f(\mathbf{x})$ at almost every point $\mathbf{x} \in \mathbb{I}^n$. Furthermore, if $f \in L(\ln^+ L)^k(\mathbb{I}^n)$, where $0 \le k \le n-2$, then each (k+1)-dimensional section of Fourier-Haar series of f is regularly convergent at almost every point $\mathbf{x} \in \mathbb{I}^n$.

Theorem 2.3. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for an arbitrary function $f \in L(\mathbb{I}^n)$ and a point $\mathbf{x} \in \mathbb{I}^n$ the following implication holds: (the Fourier-Haar series of f regularly converges to $f(\mathbf{x})$ at the point \mathbf{x}) \Rightarrow (the Fourier-Haar series of f W-converges to $f(\mathbf{x})$ at the point \mathbf{x}).

The next assertion is a corollary of Theorems 2.2 and 2.3.

Theorem 2.4. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for an arbitrary function $f \in L(\ln^+ L)^{n-2}(\mathbb{I}^n)$ the following implication holds: (the Fourier-Haar series of f converges in the Pringsheim sense to $f(\mathbf{x})$ at every point \mathbf{x} from a set E) \Rightarrow (the Fourier-Haar series of f W-converges to $f(\mathbf{x})$ at almost every point \mathbf{x} from E).

Taking into account sparseness of Fourier-Haar series at every point $\mathbf{x} \in \mathbb{I}^n$, we obtain Theorem 2.3 from the following result.

Theorem 2.5. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for an arbitrary sparse numerical series $\sigma = \sum_{\mathbf{m} \in \mathbb{N}^n} a_{\mathbf{m}}$ the following implication holds: (σ is regularly convergent to a number s) \Rightarrow (σ is W-convergent to s).

Remark 2.1. For the case of lacunar series and spherical convergence, Theorem 2.4 was proved in [11]. For two-dimensional case, more complete results were obtained in [12].

G. ONIANI, F. TULONE

3. Proof of Theorem 2.5

Let $W \subset \mathbb{R}^n_+$ be a standard set. Denote by $t_i(W)$ $(i \in \overline{1, n})$ the supremum of the *i*-th coordinates of those points of W which belong to the axes Ox_i . Obviously, $t_i(W) > 0$. Let us consider two intervals I(W) and J(W) associated with W, defined as follows:

$$I(W) = [0, t_1(W)] \times \cdots \times [0, t_n(W)],$$

$$J(W) = \left[0, \frac{t_1(W)}{2n}\right] \times \cdots \times \left[0, \frac{t_n(W)}{2n}\right].$$

Lemma 3.1. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then $J(W) \subset W \subset I(W)$.

Proof. We first prove the inclusion $W \subset I(W)$. Assume the opposite, that is, $W \setminus I(W) \neq \emptyset$. Let E be a convex set which is symmetric with respect to each variable and such that $E \cap \mathbb{R}^n_+ = W$. Observe that for each point $\mathbf{x} = (x_1, \ldots, x_n)$ from the set $W \setminus I(W)$ there is $i \in \overline{1, n}$ for which $x_i > t_i(W)$. Without loss of generality, we can assume that

$$(3.1) x_n > t_n(W)$$

Taking into account the symmetry of E, we have $(-x_1, \ldots, -x_{n-1}, x_n) \in E$. The point $(0, \ldots, 0, x_n)$ is a midpoint of the segment joining $\mathbf{x} = (x_1, \ldots, x_{n-1}, x_n)$ and $(-x_1, \ldots, -x_{n-1}, x_n)$. Therefore, by convexity of E we conclude that $(0, \ldots, 0, x_n) \in E$, and consequently, we have

$$(3.2) \qquad (0,\ldots,0,x_n) \in W.$$

The relations (3.1) and (3.2) contradict the definition of the number $t_n(W)$, and the obtained contradiction proves the inclusion $W \subset I(W)$.

Now, we prove the second inclusion $J(W) \subset W$. For every $i \in \overline{1, n}$, by \mathbf{x}_i we denote the point lying on the axes Ox_i and having *i*-th coordinate equal to the number $t_i(W)/2$. From the properties of W it follows that all points $O, \mathbf{x}_1, \ldots, \mathbf{x}_n$ belong to W (here O denotes the origin). Then we consider the convex hull of the points $O, \mathbf{x}_1, \ldots, \mathbf{x}_n$ which we denote by $\operatorname{Conv}(O, \mathbf{x}_1, \ldots, \mathbf{x}_n)$. From the convexity of W it follows that

As it is well-known, the convex hull of points $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_m$ has the following representation $\{\sum_{i=0}^m \lambda_i \mathbf{y}_i : \lambda_0, \dots, \lambda_m \ge 0, \sum_{i=0}^m \lambda_i = 1\}$. Consequently, we have

(3.4)
$$\operatorname{Conv}(O, \mathbf{x}_1, \dots, \mathbf{x}_n) = \left\{ \sum_{i=1}^n \lambda_i \mathbf{x}_i : \lambda_1, \dots, \lambda_n \ge 0, \quad \sum_{i=1}^n \lambda_i \le 1 \right\}.$$

Let **x** be an arbitrary point from the interval J(W). For each $i \in \overline{1, n}$, we take the number λ_i equal to the ratio of x_i and $t_i(W)/2$. Then we have

$$\sum_{i=1}^{n} \lambda_i \le \sum_{i=1}^{n} \left[\frac{t_i(W)}{2n} \div \frac{t_i(W)}{2} \right] = \sum_{i=1}^{n} \frac{1}{n} = 1, \quad \mathbf{x} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

From (3.3) and (3.4) we conclude that $\mathbf{x} \in W$. Consequently, $J(W) \subset W$.

Let $W \subset \mathbb{R}^n$, $i \in \overline{1, n}$ and $t \in \mathbb{R}$. Consider the section of W by hyperplane $\{\mathbf{x} \in \mathbb{R}^n : x_i = t\}$, that is, the set $W[i, t] = W \cap \{\mathbf{x} \in \mathbb{R}^n : x_i = t\}$. Denote by W(i, t) the projection of W[i, t] onto \mathbb{R}^{n-1} taken by the variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$. We will refer the sets W(i, t) as sections of W.

Lemma 3.2. Let $n \geq 3$ and $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for every $i \in \overline{1,n}$ and $t \in (0, t_i(W))$ the section $W(i,t) \subset \mathbb{R}^{n-1}_+$ is an (n-1)-dimensional standard convex set of symmetric type.

Proof. Without loss of generality we assume that i = n. Let $(\mathbf{e}_i)_{i=1}^n$ be the standard algebraic basis in \mathbb{R}^n . Suppose $\mathbf{x} = t\mathbf{e}_n$, $\mathbf{x}_i = \frac{t_i(W)}{2}\mathbf{e}_i$ (i = 1, ..., n - 1) and $\mathbf{x}_n = t^*\mathbf{e}_n$, where t^* is some number from the interval $(t, t_n(W))$. From the properties of W it follows that the points $\mathbf{x}, \mathbf{x}_1, \ldots, \mathbf{x}_n$ belong to W.

For each i = 1, ..., n-1 let us consider the point $\mathbf{y}_i = \alpha \mathbf{x}_n + (1-\alpha)\mathbf{x}_i$, where $\alpha = t/t^*$. Using convexity of W we have $\mathbf{x}, \mathbf{y}_1, ..., \mathbf{y}_{n-1} \in W$. Besides, the *n*-th coordinate of each point $\mathbf{x}, \mathbf{y}_1, ..., \mathbf{y}_{n-1}$ is equal to t. From these facts it follows that the section W(n, t) is a standard set in \mathbb{R}^{n-1} .

Observe that the set $W \cap \{\mathbf{x} \in \mathbb{R}^n : x_n = t\}$ is convex as an intersection of two convex sets. Consequently, W(n,t) is a convex subset of \mathbb{R}^{n-1} .

Let E be the convex set that is symmetric with respect to each variable for which $E \cap \mathbb{R}^n_+ = W$. It is easy to see that $E \cap \{\mathbf{x} \in \mathbb{R}^n : x_n = t\}$ is symmetric with respect to variables x_1, \ldots, x_{n-1} . Consequently, E(n, t) is a subset of \mathbb{R}^{n-1} that is symmetric with respect to each variable. Now, taking into account the equality $E(n,t) \cap \mathbb{R}^{n-1}_+ = W(n,t)$, we conclude that W(n,t) is a standard convex set of symmetric type.

Lemma 3.3. Let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then for every i = 1, ..., n-1 and $t_1, ..., t_i > 0$, the set

$$W \cap ([0, t_1] \times \cdots \times [0, t_i] \times \mathbb{R}^{n-i}_+)$$

is also a standard convex set of symmetric type.

Proof. Denote $V = [0, t_1] \times \cdots \times [0, t_i] \times \mathbb{R}^{n-i}_+$. It is easy to see that V is a convex set of symmetric type and the intersection of two convex sets of symmetric

type is also similar one. Consequently, $W \cap V$ is a convex set of symmetric type. On the other hand, taking into account that W is standard we can conclude that $W \cap V$ is a standard set.

Let us introduce the following notation. We denote:

by \mathbb{M}_n the class of all subsets of $\overline{1,n}$;

by |M| the number of elements of a set M;

by $\pi(n, M)$ $(M \in \mathbb{M}_n)$ the bijection $\pi(n, M) : \overline{1, n} \to \overline{1, n}$ with the following properties:

- $\pi(n, M)$ is increasing on the set $\overline{1, |M|}$ and maps this set onto M,
- $\pi(n, M)$ is increasing on $\overline{|M| + 1, n}$ and maps this set onto $\overline{1, n} \setminus M$;

by $(\mathbf{t}, \mathbf{h}, M)$ $(M \in \mathbb{M}_n, \mathbf{t} \in \mathbb{R}^{|M|}, \mathbf{h} \in \mathbb{R}^{n-|M|})$ the point \mathbf{x} of \mathbb{R}^n such that $x_{\pi(n,M)(i)} = t_i$ if $i \in \overline{1, |M|}$ and $x_{\pi(n,M)(i)} = h_{i-|M|}$ if $i \in \overline{|M|+1, n}$;

by $A \times^M B$ $(M \in \mathbb{M}_n, A \subset \mathbb{R}^{|M|}, B \subset \mathbb{R}^{n-|M|})$ the product of the sets A and B corresponding to the set M, that is, the set $\{(\mathbf{t}, \mathbf{h}, M) : \mathbf{t} \in A, \mathbf{h} \in B\}$ (it is clear that $A \times^M B = B \times^{\overline{1,n} \setminus M} A$);

by $\Delta(n, M)$ $(M \in \mathbb{M}_n, 1 \leq |M| < n)$ the class of "*M*-dimensional" intervals Δ of type $([0, p_1] \times \ldots [0, p_{|M|}]) \times^M \{(q_1, \ldots, q_{n-|M|})\}$, where $p_1, \ldots, p_{|M|}, q_1, \ldots, q_{n-|M|} \in \mathbb{N}$; and by $l(\Delta)$ the largest among numbers q_i from the definition of an interval $\Delta \in \Delta(n, M)$.

By $C(a_1, \ldots, a_m)$ will be denoted positive constants depending on parameters a_1, \ldots, a_m . For a standard set $W \subset \mathbb{R}^n_+$ we denote $t(W) = \min\{t_1(W), \ldots, t_n(W)\}$. Obviously, we have t(W) > 0.

Lemma 3.4. Let $k \in \mathbb{N}$, $\lambda > 1$, $E \subset \mathbb{N}^n$ be a (k, λ) -sparse set, and let $W \subset \mathbb{R}^n_+$ be a standard convex set of symmetric type. Then the set $E \cap W$ may be decomposed in the following way:

$$E \cap W = (E \cap J(W)) \cup \bigcup_{\Delta \in \mathbf{\Delta}} (E \cap \Delta),$$

where $\mathbf{\Delta} \subset \bigcup \{ \mathbf{\Delta}(n, M) : M \in \mathbb{M}_n, 1 \leq |M| < n \}, |\mathbf{\Delta}| \leq C(n, k, \lambda), \text{ the intervals}$ $\Delta \in \mathbf{\Delta}$ are disjoint and they do not intersect $J(W), \Delta \subset W$ and $l(\Delta) > t(W)/2n$ for every $\Delta \in \mathbf{\Delta}$.

Proof. For $i \in \overline{1, n}$, $t \in \mathbb{R}$, an one-dimensional interval I and a standard convex set V, we denote

$$\Gamma_i(t) = \{ \mathbf{x} \in \mathbb{R}^n : x_i = t \}, \ \Gamma_i(I) = \{ \mathbf{x} \in \mathbb{R}^n : x_i \in I \},\$$
$$Q_i(V) = \left\{ q \in \left(\frac{t_i(V)}{2n}, t_i(V) \right] \cap \mathbb{N} : E \cap \Gamma_i(q) \neq \emptyset \right\}.$$

Then we have the decomposition:

(3.5)
$$V = \left(V \cap \Gamma_i\left(\left[0, \frac{t_i(V)}{2n}\right]\right)\right) \cup \left(V \cap \Gamma_i\left(\left(\frac{t_i(V)}{2n}, t_i(V)\right]\right)\right).$$

Also, by virtue of (k, λ) -sparseness of the set E, the following inequality holds:

(3.6)
$$|Q_i(V)| \le k(1 + \log_{\lambda}(2n)).$$

Let us introduce the following sets

$$W_i = W \cap \left(\left[0, \frac{t_1(W)}{2n} \right] \times \dots \times \left[0, \frac{t_i(W)}{2n} \right] \times \mathbb{R}^{n-i}_+ \right) \quad (1 \le i \le n-1).$$

Also, we define $W_0 = W$ and $W_n = J(W)$. Obviously, we have $W = W_0 \supset W_1 \supset W_2 \supset \cdots \supset W_{n-1} \supset W_n = J(W)$. Observe that by Lemma 3.3 each W_i is a standard convex set of symmetric type.

Taking into account (3.5), it is easy to see that for the cases V = W, k = 1; $V = W_1, k = 2; \ldots, V = W_{n-1}, k = n$, the following decompositions hold:

(3.7₁)
$$E \cap W = (E \cap W_1) \cup \bigcup_{q \in Q_1(W)} (E \cap W \cap \Gamma_1(q)),$$

(3.7₂)
$$E \cap W_1 = (E \cap W_2) \cup \bigcup_{q \in Q_2(W_1)} (E \cap W_1 \cap \Gamma_2(q)),$$

(3.7_n)
$$E \cap W_{n-1} = (E \cap J(W)) \cup \bigcup_{q \in Q_n(W_{n-1})} (E \cap W_{n-1} \cap \Gamma_n(q)).$$

Consequently, we have

(3.8)
$$E \cap W = (E \cap J(W)) \cup \bigcup_{i=1}^{n} \bigcup_{q \in Q_i(W_{i-1})} (E \cap W_{i-1} \cap \Gamma_i(q)).$$

In each of decompositions (3.7_i) the components $W_{i-1} \cap \Gamma_i(q)$ $(q \in Q_i(W_{i-1}))$ and W_i are disjoint, and hence, we conclude that:

The components J(W) and $W_{i-1} \cap \Gamma_i(q)$ $(i \in \overline{1, n}, q \in Q_i(W_{i-1}))$

By (3.6) for every $i \in \overline{1, n}$ we have

(3.10)
$$|Q_i(W_{i-1})| \le k(1 + \log_\lambda(2n)).$$

It is easy to see that for every $i \in \overline{1, n}$

$$t_i(W_{i-1}) = t_i(W), \ldots, t_n(W_{i-1}) = t_n(W).$$

Consequently, for every $i \in \overline{1, n}$ and $q \in Q_i(W_{i-1})$ we have

(3.11)
$$q > \frac{t_i(W_{i-1})}{2n} = \frac{t_i(W)}{2n} \ge \frac{t(W)}{2n}.$$

G. ONIANI, F. TULONE

The representation (3.8) gives a possibility to prove the lemma by induction with respect to n.

Taking into account that W_i are standard convex sets of symmetric type and using the properties (3.9)-(3.11), we easily conclude the validity of the lemma in the case n = 2.

Let us perform the induction step from n-1 to n.

Consider the projections of the sets $E \cap \Gamma_i(q)$ and $W_{i-1} \cap \Gamma_i(q)$ $(i \in \overline{1, n}, q \in$ $Q_i(W_{i-1})$ to the space \mathbb{R}^{n-1} , taken with respect to variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$. These projections are denoted by E(i,q) and $W_{i-1}(i,q)$, respectively. It is easy to see that E(i,q) is a (k,λ) -sparse subset of \mathbb{N}^{n-1} . On the other hand, by Lemma 3.2, $W_{i-1}(i,q)$ is an (n-1)-dimensional standard convex set of symmetric type. Using the induction hypothesis for the sets E(i,q) and $W_{i-1}(i,q)$, we obtain a decomposition of the set $E(i,q) \cap W_{i-1}(i,q)$ by means of the family $\Delta(i,q) \subset \bigcup \{ \Delta(n-1,M) :$ $M \in \mathbb{M}_{n-1}, 1 \leq |M| < n-1$ of lower-dimensional intervals, that is,

$$E(i,q) \cap W_{i-1}(i,q) = (E \cap J(W_{i-1}(i,q))) \cup \bigcup_{\Delta \in \mathbf{\Delta}(i,q)} (E(i,q) \cap \Delta),$$

where the family $\Delta(i,q)$ has the properties stated in the lemma.

Next, for every $i \in \overline{1,n}$ and $q \in Q_i(W_{i-1})$, let us consider the family $\Delta(i,q)$ of the intervals $\{q\} \times^{\{i\}} \Delta$, where $\Delta \in \mathbf{\Delta}(i,q)$ or $\Delta = J(W_{i-1}(i,q))$. Then we have

$$E \cap W = (E \cap J(W)) \cup \bigcup_{i=1}^{n} \bigcup_{q \in Q_i(W_{i-1})} \bigcup_{\Delta \in \widetilde{\mathbf{\Delta}}(i,q)} (E \cap \Delta).$$

Finally, taking into account the properties (3.9)-(3.11), we easily see that the family

$$\mathbf{\Delta} = \bigcup_{i=1}^{n} \bigcup_{q \in Q_i(W_{i-1})} \widetilde{\mathbf{\Delta}}(i,q)$$

possesses all the properties of the desired decomposition of the set $E \cap W$.

Remark 3.1. If for every number r > 0 we use Lemma 3.4 for E and rW, then we can conclude that the intervals Δ from the decomposition of $E \cap rW$ satisfy the inequality $l(\Delta) > rt(W)/2n$. To prove this we have to take into account the following evident equality t(rW) = rt(W).

For $\mathbf{x} \in \mathbb{R}^n$ denote $||\mathbf{x}|| = \sum_{i=1}^n |x_i|$.

The following lemma was proved in [9] (see [9], Lemma 2).

Lemma 3.5. Let $\sigma = \sum_{i \in \mathbb{N}^n} a_i$ be a numerical series, $M \in \mathbb{M}_n$, $1 \leq |M| < n$, $\mathbf{p} \in \mathbb{N}^{|M|}, \mathbf{q} \in \mathbb{N}^{n-|M|} \text{ and } \Delta = ([0, p_1] \times \dots [0, p_{|M|}]) \times^M {\mathbf{q}}.$ Then

$$S_{\Delta}(\sigma) = \sum_{\mathbf{d} \in \{0,1\}^{n-|M|}} (-1)^{||\mathbf{d}||} S_{(\mathbf{p},\mathbf{q}-\mathbf{d},M)}(\sigma).$$

Remark 3.2. For the general term of a series $\sum_{\mathbf{i}\in\mathbb{N}^n} a_{\mathbf{i}}$ the following well-known representation holds: $a_{\mathbf{i}} = \sum_{\mathbf{d}\in\{0,1\}^n} (-1)^{||\mathbf{d}||} S_{\mathbf{m}-\mathbf{d}}(\sigma)$.

For any $n \in \mathbb{N}$ assume that $\Delta(n, \emptyset) = \{\{\mathbf{q}\} : \mathbf{q} \in \mathbb{N}^n\}$, and denote

$$\boldsymbol{\Delta}(n) = \bigcup_{M \in \mathbb{M}_n, |M| < n} \boldsymbol{\Delta}(n, M)$$

Also, for $\Delta = {\mathbf{q}} \in \mathbf{\Delta}(n, \emptyset)$ by $l(\Delta)$ we denote the maximal among the coordinates of \mathbf{q} .

Lemma 3.6. Let $n \in \mathbb{N}$ and $\sigma = \sum_{i \in \mathbb{N}^n} a_i$ be a regularly convergent numerical series. Then

$$\lim_{\Delta \in \mathbf{\Delta}(n), \ l(\Delta) \to \infty} S_{\Delta}(\sigma) = 0.$$

Proof. For the one-dimensional case the lemma is obvious. Let us perform the induction step from n-1 to n.

For an arbitrary given $\varepsilon > 0$ we must find a natural number N such that

$$(3.12) |S_{\Delta}(\sigma)| < \varepsilon$$

for every $\Delta \in \mathbf{\Delta}(n)$ with $l(\Delta) \ge N$.

Taking into account convergence of σ in the Pringsheim sense, we can find a natural number N_1 such that

$$(3.13) \qquad \qquad |S_{\mathbf{m}}(\sigma) - s| < \varepsilon/2^n$$

for every $\mathbf{m} \in \mathbb{N}^n$ having all coordinates not less than N_1 . Here s denotes the sum of the series σ .

For every $k \in \overline{1, n}$ and $t \in \overline{1, N_1}$ let us consider the section $\sigma(k, t)$ of the series $\sigma = \sum_{\mathbf{i} \in \mathbb{N}^n} a_{\mathbf{i}}$ which we derive by *n*-tuples $\mathbf{i} = (i_1, \ldots, i_n)$ having *k*-th coordinate equal to *t*. Using induction hypothesis for each (n - 1)-dimensional series $\sigma(k, t)$ $(k \in \overline{1, n}, t \in \overline{1, N_1})$ we can find a natural number N(k, t) such that

$$(3.14) |S_{\Delta}(\sigma(k,t))| < \varepsilon/N_1$$

for every $\Delta \in \mathbf{\Delta}(n-1)$ with $l(\Delta) \ge N(k,t)$.

Let N_2 be the maximal among the numbers N(k,t) $(k \in \overline{1,n}, t \in \overline{1,N_1})$. Define the number N as follows $N = N_1 + N_2$.

Now, we proceed to prove the inequality (3.12). Suppose, $\Delta \in \Delta(n)$ and $l(\Delta) \geq N$. Note that: 1) for the case $\Delta \in \Delta(n, M)$, $1 \leq |M| < n$, Δ has the form: $([0, p_1] \times \ldots [0, p_{|M|}]) \times^M \{(q_1, \ldots, q_{n-|M|})\}$; 2) for the case $\Delta \in \Delta(n, \emptyset)$, Δ has the form: $\{(q_1, \ldots, q_n)\}$.

Case 1. Each among the numbers p_j and q_j from the definition of Δ is greater than N_1 .

G. ONIANI, F. TULONE

We use Lemma 3.5 and Remark 3.2 to estimate $|S_{\Delta}(\sigma)|$ by a sum of $|S_{\mathbf{m}}(\sigma) - S_{\mathbf{m}'}(\sigma)|$ type expressions, where all coordinates of \mathbf{m} and \mathbf{m}' are not less than N_1 . Observe that the number of such expressions is not greater than 2^{n-1} . Hence, taking into account (3.13), we obtain $|S_{\Delta}(\sigma)| < 2^{n-1}(\varepsilon/2^n + \varepsilon/2^n) = \varepsilon$. Thus, in this case the inequality (3.12) is proved.

Case 2. At least one among the numbers p_j and q_j from the definition of Δ is not greater than N_1 .

Suppose that for a k-th dimension the above mentioned inequality is fulfilled and that for a m-th dimension $l(\Delta) = q_m$. Obviously, $k \neq m$. The interval Δ will be decomposed by sections $\Delta[k, 1], \ldots, \Delta[k, N_1]$. Note that if a section $\Delta[k, t]$ is nonempty, then $\Delta(k, t) \in \mathbf{\Delta}(n-1)$ and $\Delta(k, t)$ is derived from Δ by omitting its k-th dimension. Consequently, taking into account that $k \neq m$, we have $l(\Delta(k, t)) =$ $q_m = l(\Delta) \geq N_2$. From the last estimation, using (3.14) and the definition of the number N_2 , for every $k \in \overline{1, n}$ and $t \in \overline{1, N_1}$ with $\Delta[k, t] \neq \emptyset$, we obtain $|\sum_{\mathbf{i} \in \Delta[k, t]} a_{\mathbf{i}}| < \varepsilon/N_1$. Consequently, we have

$$|S_{\Delta}(\sigma)| = \left|\sum_{\mathbf{i}\in\Delta} a_{\mathbf{i}}\right| \le \sum_{t=1}^{N_1} \left|\sum_{\mathbf{i}\in\Delta[k,t]} a_{\mathbf{i}}\right| < N_1 \frac{\varepsilon}{N_1} = \varepsilon.$$

This completes the proof of inequality (3.12).

Now, we proceed directly to the proof of Theorem 2.5.

By *E* denote the set $\{\mathbf{m} \in \mathbb{N}^n : a_{\mathbf{m}} \neq 0\}$. According to the condition of the theorem, the set *E* is (k, λ) -sparse for some $k \in \mathbb{N}$ and $\lambda > 1$.

Let $\Delta_r \subset \Delta(n)$ (r > 0) be a family of lower-dimensional intervals constituting a decomposition of the set $E \cap rW$ according to Lemma 3.4. Then, in view of properties of Δ_r (see Lemma 3.4), we have

$$S_{rW}(\sigma) = S_{rJ(W)}(\sigma) + \sum_{\Delta \in \mathbf{\Delta}_r} S_{\Delta}(\sigma),$$
$$|\mathbf{\Delta}_r| \le C(n, k, \lambda), \quad l(\Delta) > rt(W)/2n.$$

From the last two estimates and Lemma 3.6 we obtain

$$\lim_{r \to \infty} \sum_{\Delta \in \mathbf{\Delta}_r} S_{\Delta}(\sigma) = 0.$$

On the other hand, from the convergence of σ in the Pringsheim sense it follows that $\lim_{r\to\infty} S_{rJ(W)}(\sigma) = s$. Thus, $\lim_{r\to\infty} S_{rW}(\sigma) = s$. Theorem 2.5 is proved. \Box

Список литературы

- B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow (1984); English transl., Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI (1989).
- [2] G. H. Hardy, "On the convergence of certain multiple series", Proc. Cambridge Philos. Soc., 19, 86 - 95 (1916-1919).

ON THE ALMOST EVERYWHERE CONVERGENCE ...

- [3] F. Moricz, "On the convergence in a restricted sense of multiple series", Anal. Math., 5(2), 135 - 147 (1979).
- [4] M. de Guzmán, Differentiation of Integrals in \mathbb{R}^n , Lecture Notes in Math., 481, Springer-Verlag, Berlin-New York (1975).
- [5] T. Sh. Zerekidze, "Convergence of multiple Fourier-Haar series and strong differentiablity of integrals [in Russian]", Trudy Tbilis. Mat. Inst. Razmadze, 76, 80 - 99 (1985).
- [6] G. A. Karagulyan, "Divergence of double Fourier series in complete orthonormal systems [in Russian]", Izv. Akad. Nauk Arm. SSR. Ser. Mat., 24, no. 2, 147 - 159 (1989); translation in: Soviet J. Contemporary Math. Anal. 24, no. 2, 44 - 56 (1989).
- [7] G. Gat and G. Karagulyan, "On convergence properties of tensor products of some operator sequences", The Journal of Geometric Analysis, 26, no. 4, 3066 - 3089 (2016).
- [8] G. G. Kemkhadze, "Convergence of spherical partial sums of multiple Fourier-Haar series [in Russian]", Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 55, 27 – 38 (1977).
- [9] G. E. Tkebuchava, "On the divergence of spherical sums of double Fourier-Haar series", Anal. Math. 20 (2), 147 - 153 (1994).
- [10] G. G. Oniani, "On the divergence of multiple Fourier-Haar series", Anal. Math., 38 (3), 227 - 247 (2012).
- [11] G. G. Oniani, "On the convergence of multiple Haar series", Izv. RAN: Ser. Mat., 78 (1), 99 116 (2014); translation in Izv. Math. 78 (1), 90 105 (2014).
- [12] G. G. Oniani, "The convergence of double Fourier-Haar series over homothethic copies of sets", Mat. Sb. 205 (7), 73 - 94 (2014); translation in Sb. Mat. 205 (7), 983 - 1003 (2014).

Поступила 24 октября 2017

После доработки 16 апреля 2018

Принята к публикации 25 апреля 2019