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1. DEFINITIONS AND NOTATION

We use the following notation: I is the unit interval [0, 1]; Zg is the set of all

nonnegative integers; A} and 3}9 (k € Z, i € Z) are dyadic intervals (%, 55 ) and
(=1 4
2k v 2k

Recall (see [1]) that the Haar orthonormal system h = (h,)men consists of the

|, respectively; p,q (p,q € Z, p < q) is the set [p,q] N Z.

functions defined on I in the following way: hi(z) = 1 (z € I); if m = 2¥ +i (k € Zy,
i € 1,2F), then h,,(z) = 2%/2 when z € Aijfll, hi(z) = —2%/2 when © € AZ',,,
hm(xz) = 0 when z ¢ 3}6, at the inner points of discontinuity h,, is defined as the
average of the limits from the right and from the left, and at the endpoints of 1 as
the limits from inside of the interval.

In what follows, if something else is not said, we will assume that the dimension n
is greater than 1. Let 6(1) = (97(,1)),71@;, 00 = (95,?))meN be systems of functions
on I. Their product A1) x --- x (™ is defined as the system of functions Oy, (x) =
95,2(961)97(,?2(:5”), where m = (mq,...,m,) € N* and x = (21,...,2,) € I™
The multiple Haar system is defined as the product A X --- x h.

Let E C N and A > 1. A set F is said to be A-lacunar if for every m,m* € FE
with m < m* we have m*/m > X. A set E C N" is called A-lacunar if there are

one-dimensional A-lacunar sets F1,...,F, C N such that £ C E; X --- X E,. A

*The research is supported by Shota Rustaveli National Science Foundation (project no.
217282).
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set £ C N™ is said to be lacunar if E is A-lacunar for some A > 1. A sequence
(@m)menn Or a series Y . G is said to be lacunar (vesp. M-lacunar) if the set
E ={m € N": ay, # 0} is lacunar (resp. is A-lacunar).

By H(x) (x € I") we denote the spectrum of the multiple Haar system at a
point x € I, that is, the set {m € N : hy,(x) # 0}. By I4 we denote the set of all
dyadic-irrational numbers of I.

From the definition of Haar system it easily follows that: if x € Iq, then H(x) is
a 3/2-lacunar set, and hence, taking into account that H(x) = H(z1) X+ - x H(x,,),
we have that H(x) is 3/2-lacunar at every x € I75.

Let k € Nand A > 1. A set E C N we call (k, A)-sparse if there are disjoint
A-lacunar sets Eq, ..., Ey C N such that £ = E; U --- U Ej. Obviously, the notion
of (1, A)-sparse set coincides with that of A-lacunar set. A set E C N" we call
(k, \)-sparse if there are (k, A)-sparse one-dimensional sets Ej,..., F, C N such
that E C By x --- X E,. A set E C N" we call sparse if it is (k, A)-sparse for some
keNand A > 1.

It is easy to see that if x € T\, then H(z) is a (2,3/2)-sparse set. Consequently,
taking into account that H(x) = H(x1) %X - -x H(z,,), we have that H(x) is (2,3/2)-
sparse at every x € I™ \ I7. Thus, for arbitrary point x € I" it is guaranteed
(2,3/2)-sparseness of the spectrum H(x).

A point x € R™ we call dyadic-irrational if x € I}, that is, if each coordinate of
x is a dyadic-irrational number.

A sequence (@m)menn Or a series ) . am we will call sparse (resp. (k,\)-
sparse) if the set E = {m € N : a,, # 0} is sparse (resp. is (k, \)-sparse).

Let W C R%, where R = [0,00). For a series 0 = ) _yn @m by Sw(o) we
denote its partial sum by the set W, that is, Sw (o) = > ,cy @m. Note that the
sum by empty set of indices we assume to be 0.

The convergence of partial sums S,y (o) as r — oo will be referred as W-
convergence of the series 0. Here 7W denotes the homothetic copy of the set W by
a coefficient r > 0, that is, rW = {rx : x € W}.

For the cases W =1" and W = {x € R} : 27 +---+x2 < 1}, the W-convergence
is called cubical convergence and spherical convergence, respectively.

A set W C R% we call standard if it is bounded and contains an intersection of
some neighborhood of the origin with R}.

A set E C R™ we call symmetric with respect to k-th variable if E is symmetric

with respect to hyperplane {x € R" : z;, = 0}.
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We will say that a standard convex set W C R} is of symmetric type if there
exists a symmetric with respect to each variable convex set £ C R™ for which
W =EnNRYE.

Recall that a sequence (G )menn is called convergent if a,, tends to a limit

as min(my,...,m,) — oo, and a series 0 = > am is called convergent in

mecN”»
the Pringsheim sense if the sequence of its rectangular partial sums Sy, (o) =
Sl > ai (m e N")is convergent.

By a section of a multiple sequence (am)men» we shall mean the sequence
obtained from (a,,) by fixing some coordinates of the index m, and by a section of
a series 0 = ) n» Gm We shall mean a series composed by some section of the
sequence (Gm)-

A multiple numerical series is said to converge regularly to a number s if it
converges to s in the Pringsheim sense and if each of its sections is convergent in the
Pringsheim sense (for one-dimensional sections ordinary convergence is considered).
This type of convergence for double series was studied by Hardy [2] and Moricz [3].
For the briefness of formulations, for one-dimensional series the regular convergence

will be identified with the ordinary convergence.

2. RESULTS

A rectangular partial sum of a multiple Fourier-Haar series at a dyadic-irrational
point x € I" is represented by an integral mean over an appropriate dyadic interval
containing x. From this connection and the well-known theorems by Lebesgue,
Jessen, Marcinkiewicz and Zygmund (see [4, Ch. 2]) it follows that:

1) For every function f € L(I"), the Fourier-Haar series of f cubically converges
to f(x) at almost every point x € I";

2) For every function f € L(In™ L)"~!(I"), the Fourier-Haar series of f converges
in the Pringsheim sense to f(x) at almost every point x € I".

The optimality of the class L(InT L)~ 1(I") in the last assertion was shown by
Zerekidze in [5], where it was proved that in any integral class ¢(L)(I"), wider
than L(Int L)"~(I"), there exists a function f with almost everywhere divergent
Fourier-Haar series in the Pringsheim sense. As it was proved by Karagulyan [6] (see
also [7]) a similar result is valid for Fourier series with respect to arbitrary product-
system 6 x --- x 0, where 0 is a complete orthonormal system on I consisting of
bounded functions.

Kemkhadze [8] proved that for every function f € L(In™T L)"~(I"), the Fourier-
Haar series of f spherically converges to f(x) at almost every point x € I". The
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optimality of the class L(In™ L)"~(I") in this result was established in [9] (for
n = 2) and in [10] (for arbitrary n > 2).

The following theorem shows that similar to spherical partial sums, almost
everywhere WW-convergence of Fourier-Haar series in the class L(In™ L)*~1(I") is

valid for quite general type sets W.

Theorem 2.1. Let W C R} be a standard conver set of symmetric type. Then for
every function f € L(In* L)"~1(I") the Fourier-Haar series of f is W-convergent

to f(x) at almost every point x € I".
We obtain Theorem 2.1 from the following two results.

Theorem 2.2 ([11]). For every function f € L(In" L)"~'(I") the Fourier-Haar
series of f is reqularly convergent to f(x) at almost every point x € I". Furthermore,
if f € L(In™ L)*(I"), where 0 < k < n — 2, then each (k + 1)-dimensional section

of Fourier-Haar series of f is regularly convergent at almost every point x € I™.

Theorem 2.3. Let W C R} be a standard convez set of symmetric type. Then for
an arbitrary function f € L(I") and a point x € I™ the following implication holds:
(the Fourier-Haar series of f regularly converges to f(x) at the point x) = (the

Fourier-Haar series of f W-converges to f(x) at the point x).
The next assertion is a corollary of Theorems 2.2 and 2.3.

Theorem 2.4. Let W C R} be a standard convex set of symmetric type. Then
for an arbitrary function f € L(In™ L)"»~2(I") the following implication holds: (the
Fourier-Haar series of f converges in the Pringsheim sense to f(x) at every point
x from a set E) = (the Fourier-Haar series of f W-converges to f(x) at almost

every point x from E).

Taking into account sparseness of Fourier-Haar series at every point x € 1", we

obtain Theorem 2.3 from the following result.

Theorem 2.5. Let W C R} be a standard convex set of symmetric type. Then
for an arbitrary sparse numerical series 0 = ) o am the following implication

holds: (o is regularly convergent to a number s) = (o is W-convergent to s).

Remark 2.1. For the case of lacunar series and spherical convergence, Theorem 2.4
was proved in [11]. For two-dimensional case, more complete results were obtained
in [12].
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3. PROOF OF THEOREM 2.5

Let W C R% be a standard set. Denote by ¢;(W) (i € 1,n) the supremum of
the i-th coordinates of those points of W which belong to the axes Ox;. Obviously,
t;(W) > 0. Let us consider two intervals I(W) and J(W) associated with W, defined
as follows:

I(W) = [0, £ (W)] x -+ x [0, 8 (W],

J(W) = {o, tlé:/)] X e X [0, t"gj/)}

Lemma 3.1. Let W C R be a standard convex set of symmetric type. Then
JW)cw c I(W).

Proof. We first prove the inclusion W C I(W). Assume the opposite, that is,
W\ I(W) # (. Let E be a convex set which is symmetric with respect to each
variable and such that £ N R’ = W. Observe that for each point x = (21,...,2,)
from the set W \ I(W) there is i € 1,n for which z; > t;(W). Without loss of

generality, we can assume that

(3.1) Ty >t (W).

Taking into account the symmetry of F, we have (—z1,...,—2p_1,2,) € E. The
point (0,...,0,z,) is a midpoint of the segment joining x = (x1,..., n_1, ) and
(—x1,...,—Zn_1,Ty,). Therefore, by convexity of F we conclude that (0,...,0,2,) €

FE, and consequently, we have
(3.2) 0,...,0,z,) € W.

The relations (3.1) and (3.2) contradict the definition of the number ¢, (W), and
the obtained contradiction proves the inclusion W C I(W).

Now, we prove the second inclusion J(W) C W. For every i € 1,n, by x; we
denote the point lying on the axes Oz; and having i-th coordinate equal to the
number ¢;(WW)/2. From the properties of W it follows that all points O,xy,...,%x,
belong to W (here O denotes the origin). Then we consider the convex hull of the
points O, X1, ...,X, which we denote by Conv(O,x1,...,%,). From the convexity

of W it follows that
(3.3) Conv(0,x1,...,%x,) C W.
As it is well-known, the convex hull of points y,,¥yq,...,¥,, has the following

representation {> " Ai¥; : Aoy .- Am > 0,207 A; = 1}. Consequently, we have

(3.4) Conv(0,x1,...,X,) = {ZAixi A, A, 20, ZAi < 1}.
i=1

i=1
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Let x be an arbitrary point from the interval J(W). For each i € 1,n, we take the
number )\; equal to the ratio of z; and t;(W)/2. Then we have

n

D Tt(W) (W "1 -
ZMSZ;{(%L)%g)}:Zn:L X:z;)\ixi-

i=1 i=1

From (3.3) and (3.4) we conclude that x € W. Consequently, J(W) C W. O
Let W C R", i € 1,n and t € R. Consider the section of W by hyperplane {x €

R™ : x; = t}, that is, the set W[i,t] = W N {x € R" : z; = t}). Denote by W (i, )

the projection of Wi, t] onto R"~! taken by the variables z1,..., 2 1,Zit1,- -+, Tn.

We will refer the sets W (i, t) as sections of W.

Lemma 3.2. Let n > 3 and W C R’} be a standard convex set of symmetric
type. Then for every i € 1,n and t € (0,t;(W)) the section W (i,t) C R’j_‘l is an

(n — 1)-dimensional standard convex set of symmetric type.

Proof. Without loss of generality we assume that ¢ = n. Let (e;)]—; be the
tl(W)

standard algebraic basis in R™. Suppose x = te,, x; = “5~¢; (i = 1,...,n —1)

and x,, = t*e,, where ¢* is some number from the interval (¢,¢,(W)). From the
properties of W it follows that the points x,x1,...,x, belong to W.

For each i = 1,...,n — 1 let us consider the point y, = ax, + (1 — a)x;, where
«a = t/t*. Using convexity of W we have x,y,,...,y,,_1 € W. Besides, the n-th
coordinate of each point x,y;,...,¥,_1 is equal to t. From these facts it follows
that the section W (n,t) is a standard set in R"~1,

Observe that the set W N {x € R : z,, =t} is convex as an intersection of two
convex sets. Consequently, W (n,t) is a convex subset of R"~1.

Let E be the convex set that is symmetric with respect to each variable for
which ENRY} = W. It is easy to see that EN {x € R" : x,, = t} is symmetric with
respect to variables x1,...,2,_1. Consequently, E(n,t) is a subset of R"~! that
is symmetric with respect to each variable. Now, taking into account the equality
E(n,t) "R = W(n,t), we conclude that W (n,t) is a standard convex set of
symmetric type. O

Lemma 3.3. Let W C R} be a standard conver set of symmetric type. Then for
everyt=1,...,n—1 and ty,...,t; > 0, the set

WA ([0,t1] x -+ x [0,8] x RY™)
is also a standard convex set of symmetric type.

Proof. Denote V' = [0,#] x -+ x [0,#;] x R, Tt is easy to see that V is a

convex set of symmetric type and the intersection of two convex sets of symmetric
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type is also similar one. Consequently, W NV is a convex set of symmetric type.

On the other hand, taking into account that W is standard we can conclude that

W NV is a standard set. (I
Let us introduce the following notation. We denote:

by M, the class of all subsets of 1,n;

by |M| the number of elements of a set M;

by w(n,M) (M € M,) the bijection n(n,M) : 1I,n — 1,n with the following

properties:

e 7(n, M) is increasing on the set W and maps this set onto M,

e m(n, M) is increasing on |M| + 1,n and maps this set onto 1,n \ M;
by (t,h,M) (M € M,,t € RIM h ¢ R*IMI) the point x of R™ such that
Tr(maryy = b if € 1, M| and @ () = hio v if i € [M] + 1,n;
by AxM B (M € M,,,A c RIMI B c R*IM]) the product of the sets A and B
corresponding to the set M, that is, the set {(t,h, M) :t € A, h € B} (it is clear
that A xM B = B x1n\M 4).
by A(n,M) (M € M,,1 < |M| < n) the class of “M-dimensional” intervals
A of type ([0,p1] % ... [0, pjag]) XM {(q1,- - @noyar))}, Where py,....DMps s - - -
qn—|m| € N; and by I(A) the largest among numbers g; from the definition of an
interval A € A(n, M).

By C(as,...,an) will be denoted positive constants depending on parameters

ai,...,an. For a standard set W C R’} we denote t(W) = min{t;(W),...,t,(W)}.
Obviously, we have ¢(W) > 0.

Lemma 3.4. Letk € N, A > 1, E C N" be a (k,\)-sparse set, and let W C R} be
a standard convex set of symmetric type. Then the set ENW may be decomposed
in the following way:

EnNW=(EnJW)U [ (ENA),
AEA

where A C J{A(n,M) : M e M,,,1 < |M| < n}, |A| < C(n,k,\), the intervals
A € A are disjoint and they do not intersect J(W), A CW and I(A) > t(W)/2n
for every A € A.

Proof. For i € 1,n, t € R, an one-dimensional interval I and a standard convex

set V, we denote
Pi(t) = {X eR":x; = t}, FI(I) = {X eR":z; € I},

Q:(V) = {q € (ti(v),ti(vﬂ NN:ENT;(q) # @}.

2n
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Then we have the decomposition:

(3.5) V= (Vrmqo, té?])) U (VﬂFi<(ti§:),ti(V)]>>.

Also, by virtue of (k, \)-sparseness of the set E, the following inequality holds:

(3.6) |Qi(V)] < k(1 + log,(2n)).

Let us introduce the following sets

W, =W n ([o tl(W)] X oo [07 ti(W)} xRil) (1<i<n—1)

2n 2n
Also, we define Wy = W and W,, = J(W). Obviously, we have W = Wy D Wp D
Wy D - D Wypoq D W, = J(W). Observe that by Lemma 3.3 each W; is a
standard convex set of symmetric type.
Taking into account (3.5), it is easy to see that for the cases V=W, k=1; V =
Wi, k=2;...,V =W,_1,k = n, the following decompositions hold:

(3.71) EnW=(EnW)U (J (EnWnTi(g),
q€Q1 (W)
(3.72) EnWi=(EnW)u ) (EnWinTyg),
q€Q2(Wh)
(3.7,) ENW,=(EnJW)HU | (ENW1nTa(g).
4E€EQn(Wn—1)

Consequently, we have

(3.8) ENW =(EnJW))uU O U EnwiinTi(g).
=1 qeQ;(Wi_1)

In each of decompositions (3.7;) the components W;_1 NT;(q) (¢ € Q;(W;-1)) and

W, are disjoint, and hence, we conclude that:
The components J(W) and W;_; NTi(q) (i € I,n, ¢ € Q;(Wi_1))
(3.9) in decomposition (3.8) are disjoint.
By (3.6) for every i € 1,n we have
(3.10) |Qi(Wi—1)| < k(1 + log,(2n)).
It is easy to see that for every i € 1,n
t(Wie1) =t:(W), ..., tn(Wi—1) = tn(W).

Consequently, for every i € 1,n and q € Q;(W;_1) we have

ti(Wi1)  t;(W) - t(W)
on  2n T 2n
77
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The representation (3.8) gives a possibility to prove the lemma by induction with
respect to n.

Taking into account that W; are standard convex sets of symmetric type and
using the properties (3.9)—(3.11), we easily conclude the validity of the lemma in
the case n = 2.

Let us perform the induction step from n — 1 to n.

Consider the projections of the sets ENT;(¢q) and W;_; NTy(q) (i € 1,n,q €
Qi(W;_1)) to the space R" ™1, taken with respect to variables x1, ..., Z;_1, Tit1,. .., Tn.
These projections are denoted by E(i,q) and W;_1 (%, q), respectively. It is easy to
see that E(i,q) is a (k, \)-sparse subset of N*~1. On the other hand, by Lemma 3.2,
W;_1(4,q) is an (n — 1)-dimensional standard convex set of symmetric type. Using
the induction hypothesis for the sets E(i, ¢) and W;_1 (i, ¢), we obtain a decomposition
of the set E(i,q) N W;_1(4,q) by means of the family A(i,q) C J{A(n —1,M) :
M eM,_1,1 <|M| < n—1} of lower-dimensional intervals, that is,

E(i,q) "N W;_1(i,q) = (ENJ(W;_1(i,q))) U U (E(i,q) N A),
ACA(i,q)
where the family A(i, ) has the properties stated in the lemma.

Next, for every i € T,n and ¢ € Q;(W;_1), let us consider the family A(4,q) of

the intervals {¢} x{" A, where A € A(i,q) or A = J(W;_1(i,q)). Then we have

EﬁW:(EﬂJ(W))UO U U Ena).

=1 q€Qi(Wi-1) AcA(i,q)
Finally, taking into account the properties (3.9)—(3.11), we easily see that the family
n
a=1J U AaGg
i=1 qeQ;(W;—-1)

possesses all the properties of the desired decomposition of the set £ N W. (]

Remark 3.1. If for every number r > 0 we use Lemma 3.4 for £ and W, then
we can conclude that the intervals A from the decomposition of E N rW satisfy
the inequality [(A) > rt(W)/2n. To prove this we have to take into account the
following evident equality ¢t(rW) = rt(W).

For x € R" denote |[x|| = Y1, |@i].

The following lemma was proved in [9] (see [9], Lemma 2).

Lemma 3.5. Let 0 = ) ;. ai be a numerical series, M € M, 1 < [M] < n,
p e NMI qe N~ and A = ([0,p1] x ... [0,pjar]) XM {a}. Then
SA(U) = Z (_1)“d||5(p,qfd,M)(o-)'
de{0,1}— M|
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Remark 3.2. For the general term of a series Y _n» a; the following well-known

ieN
representation holds: a; = Zde{oj}”(_1)|IdHSm*d(o’)‘
For any n € N assume that A(n,0) = {{q} : ¢ € N"}, and denote
A(n) = U amm.
MEeM,,,|M|<n
Also, for A = {q} € A(n,0) by I[(A) we denote the maximal among the coordinates
of q.

Lemma 3.6. Let n € N and 0 = ) ;. a; be a regularly convergent numerical
series. Then

lim Sa(0) = 0.
AeA(n), l(A)—oo

Proof. For the one-dimensional case the lemma is obvious. Let us perform the
induction step from n — 1 to n.

For an arbitrary given € > 0 we must find a natural number N such that
(3.12) |Sa(o)] < e

for every A € A(n) with [(A) > N.
Taking into account convergence of o in the Pringsheim sense, we can find a

natural number N7 such that
(3.13) |Sm (o) —s| < g/2"

for every m € N™ having all coordinates not less than N;. Here s denotes the sum
of the series o.

For every k € 1,n and t € 1, N7 let us consider the section o (k,t) of the series
0 = ) ienn @i Which we derive by n-tuples i = (i1, ...,i,) having k-th coordinate
equal to t. Using induction hypothesis for each (n — 1)-dimensional series o(k,t)
(k €1,n, t € 1, N;) we can find a natural number N(k,t) such that
(3.14) [Sa(o(k,t))| < /Ny
for every A € A(n — 1) with I[(A) > N(k,t).

Let Ny be the maximal among the numbers N(k,t) (k € T,n, t € 1, N;). Define
the number N as follows N = Ny + Ns.

Now, we proceed to prove the inequality (3.12). Suppose, A € A(n) and I(A) >
N. Note that: 1) for the case A € A(n,M), 1 < |[M| < n, A has the form:
([0, pa] x . [0, ppary]) XM {(q1, - - - gn—|n)) }; 2) for the case A € A(n,0), A has the
form: {(q1,...,qn)}-

Case 1. Each among the numbers p; and ¢; from the definition of A is greater

than Nj.
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We use Lemma 3.5 and Remark 3.2 to estimate |Sa(o)| by a sum of [Sm(o) —
S (0)] type expressions, where all coordinates of m and m’ are not less than N;.
Observe that the number of such expressions is not greater than 2"~!. Hence, taking
into account (3.13), we obtain |Sa(0)| < 2" 1(g/2" 4+ £/2") = e. Thus, in this case
the inequality (3.12) is proved.

Case 2. At least one among the numbers p; and ¢; from the definition of A is not
greater than V;.

Suppose that for a k-th dimension the above mentioned inequality is fulfilled and
that for a m-th dimension I(A) = g,,. Obviously, k& # m. The interval A will be
decomposed by sections A[k,1],..., A[k, N1]. Note that if a section Al[k,t] is non-
empty, then A(k,t) € A(n —1) and A(k,t) is derived from A by omitting its k-th
dimension. Consequently, taking into account that k # m, we have I(A(k,t)) =
Ggm = l(A) > Ny. From the last estimation, using (3.14) and the definition of
the number Ny, for every k € 1,n and ¢t € 1, N; with A[k,t] # 0, we obtain
| ZieA[k,t] ai’ < ¢/N;. Consequently, we have

Ny

€
‘SA(O'”: Zai SZ Z a;i <N1E:€.
ieA t=1ieAlk,t]
This completes the proof of inequality (3.12). |

Now, we proceed directly to the proof of Theorem 2.5.

By E denote the set {m € N" : ay, # 0}. According to the condition of the
theorem, the set E is (k, A)-sparse for some k£ € N and A > 1.

Let A, C A(n) (r > 0) be a family of lower-dimensional intervals constituting
a decomposition of the set £ N rW according to Lemma 3.4. Then, in view of
properties of A, (see Lemma 3.4), we have

Sow () = Sray (@) + > Salo),

A€EA,
A < C(n,k,A), L(A)>rt(W)/2n.

From the last two estimates and Lemma 3.6 we obtain
lim ) Sa(e) =0.
A€A.,
On the other hand, from the convergence of ¢ in the Pringsheim sense it follows

that lim S, ;w)(o) = s. Thus, lim S, (0)=s. Theorem 2.5 is proved. O
T—>00 T—>00
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