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Abstract. In this paper, we focus on a conjecture concerning uniqueness problem

of meromorphic functions sharing three distinct polynomials with their di�erence

operators, which is mentioned in Chen and Yi (Result Math v. 63, pp. 557-565, 2013),

and prove that it is true for meromorphic functions of �nite order. Also, a result of

Zhang and Liao, obtained for entire functions (Sci China Math v. 57, pp. 2143-2152,

2014), we generalize to the case of meromorphic functions.
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In Nevanlinna theory, the study of relationship between two meromorphic functions

that share several values CM or IM is an important topic, resulting from the

Nevanlinna's famous �ve and four values theorems (see [5]). In 1976, Rubel and

Yang [7] showed that if a non-constant entire function f and its �rst derivative f ′

share two distinct values CM, then they are identical. This result was extended by

Mues and Steinmetz [4] in 1979 from sharing values CM to IM, and by Yang [8] in

1990 from �rst derivative to the k-th derivatives.

The di�erence analogues of Nevanlinna's theory have been studied more recently

and become very popular (see [2]). In 2013, under the restriction on the order of

meromorphic functions, Chen and Yi [1] deduced a uniqueness theorem of meromorphic

functions sharing three distinct values with their di�erence operator ∆cf = f(z +

c) − f(z), where c is a non-zero constant. More precisely, in [1] was proved the

following theorem.

Theorem A. Let f be a transcendental meromorphic function such that its order

of growth ρ(f) is �nite but is not an integer, and let c(6= 0) ∈ C. If f and ∆cf( 6≡ 0)

share three distinct values e1, e2,∞ CM, then f(z + c) = 2f(z).

1The research was supported by NNSF of China Project No. 11601521, and the Fundamental
Research Fund for Central Universities in China Project No. 15CX05061A, 15CX05063A and
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In [1], Chen and Yi conjectured that the conclusion of Theorem A still holds if

the restriction imposed on ρ(f) in Theorem A is omitted. In 2014, Zhang and Liao

[11] considered the di�erence analogue of the result by Rubel and Yang and proved

that the conjecture is true if f is an entire function of �nite order. They obtained

the following result.

Theorem B. Let f be a transcendental entire function of �nite order, and let a, b

be two distinct constants. If f and ∆f = f(z + 1)− f(z)( 6≡ 0) share a, b CM, then

∆f = f .

In 2016, L�u and L�u [3] proved that the above conjecture holds if the meromorphic

function is of �nite order.

Theorem C. Let f be a transcendental meromorphic function of �nite order, and

let c( 6= 0) be a �nite number. If ∆cf and f share three distinct values e1, e2,∞ CM,

then f = ∆cf .

In this paper, we continue the study of the above conjecture for meromorphic

functions of �nite order, and show that it remains true if the constants e1, e2,∞
are replaced by the polynomials P1, P2,∞ .

The next theorem is the main result of this paper.

Theorem 1. Let f be a transcendental meromorphic function of �nite order, and let

c(6= 0) be a �nite number. If ∆cf and f share three distinct polynomials P1, P2,∞
CM, then f = ∆cf .

Remark. Obviously, Theorem 1 is an improvement of Theorem C.

We assume that the reader is familiar with the standard notation of Nevanlinna

theory (see [9, 10]). In this paper, for two meromorphic functions f and g, we use

the notation f − g 6≡ 0 to denote that f − g is not the zero function.

Next, we recall Nevanlinna's Lemma, which plays an important role in the proof

of Theorem 1.

Nevanlinna's lemma [6]. Let ϕ1, ϕ2, . . . , ϕp be linearly independent meromorphic

functions satisfying ϕ1 + ϕ2 + · · ·+ ϕp = 1. Then, for j = 1, 2, · · · , p, we have

T (r, ϕj) ≤
p∑
k=1

N(r,
1

ϕk
)−

p∑
k=1,k 6=j

N(r, ϕk) +N(r,W )−N(r,
1

W
) + S(r),

where W = W (ϕ1, ϕ2 · · · , ϕp) is the Wronskian of ϕ1, · · · , ϕp, and

S(r) = O(log r) +O(logmax1≤k≤pT (r, ϕj)) as r →∞, r 6∈ E,

for a set E ⊂ (0,∞) of �nite Lebesgue measure. If all ϕk have �nite order, then E

can be chosen to be the empty set.
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Proof of Theorem 1. Observe �rst that if P1, P2 are constants, then the theorem

becomes Theorem C above. So, below we assume that one of P1, P2 is not constant,

and, without loss of generality, we assume that degP2 ≥ degP1. Our proof of the

theorem is based on an idea from [3].

Since f, ∆cf share P1, P2,∞ CM and f is of �nite order, then there exist two

polynomials α, β such that

(1)
f − P1

∆cf − P1
= eα,

f − P2

∆cf − P2
= eβ .

If eα = 1 or eβ = 1, then f = ∆cf . If e
α = eβ , then

f − P1

∆cf − P1
=

f − P2

∆cf − P2
,

implying that f = ∆cf.

On the contrary, suppose that f 6= ∆cf . Then

eα 6= 1, eβ 6= 1, eα 6= eβ .

Our aim below is to get a contradiction.

By (1), one has

(2) f = P1 + (P2 − P1)
eβ − 1

eγ − 1
, ∆cf = P2 + (P2 − P1)

1− e−α

eγ − 1
,

where γ = β − α.
It follows from (2) that

(3) T (r, f) ≤ T (r, eβ) + T (r, eγ) + S(r, f).

Since ∆cf = f(z + c)− f(z), we can write

(4)

∆cf = P2(z) + [P2(z)− P1(z)]
1− eγ(z)−β(z)

eγ(z) − 1

=[P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)]
β1(z)eβ(z) − 1

γ1(z)eγ(z) − 1

−[P2(z)− P1(z)]
eβ(z) − 1

eγ(z) − 1
,

where β1(z) = eβ(z+c)−β(z) and γ1(z) = eγ(z+c)−γ(z).

Next, we prove that deg β = deg γ by considering two cases.

Case 1. Assume that deg β < deg γ.

Then eβ is a small function of eγ , and hence, we have

deg[β(z + c)− β(z)] ≤ deg β(z) < deg γ(z), deg[γ(z + c)− γ(z)] < deg γ(z),

implying that β1, γ1 are also small functions of eγ . Suppose that z0 is a zero of

γ1e
γ − 1, and is not a zero of β1e

β − 1. If z0 is not a zero of eγ − 1, then by (4) it
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would be a pole of ∆cf . However, the equation (2) would imply that ∆cf is analytic

at z0, yielding a contradiction. If z0 is a zero of eγ − 1, then γ1(z0)eγ(z0) − 1 = 0

and eγ(z0) − 1 = 0 imply γ1(z0) − 1 = 0. If γ1(z) − 1 6≡ 0, then the second main

theorem gives

T (r, eγ) ≤ N(r,
1

γ1eγ − 1
) +N(r,

1

eγ
) +N(r, eγ) + S(r, eγ)

≤ N(r,
1

β1eβ − 1
) +N(r,

1

γ1 − 1
) + S(r, eγ) = S(r, eγ),

which is impossible. Thus, γ1(z) = eγ(z+c)−γ(z) = 1, which means that deg γ = 1.

Noting that by assumption deg β < deg γ, we conclude that β is a constant.

Next, by (4), we get

∆cf = [P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)]
β1e

β(z) − 1

γ1eγ(z) − 1

− [P2(z)− P1(z)]
eβ(z) − 1

eγ(z) − 1

= [P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)− P2(z) + P1(z)]
eβ(z) − 1

eγ(z) − 1
.

On the other hand, by (2) we have

∆cf = P2(z) + [P2(z)− P1(z)]
1− e−α(z)

eγ(z) − 1

= P2(z) + [P1(z)− P2(z)]e−β(z) + [P1(z)− P2(z)]
e−β(z) − 1

eγ(z) − 1
,

where γ(z) = β(z) − α(z). Here, by careful calculation, it can be shown that

degP2(z) < degP1(z), which is a contradiction.

Case 2. Let deg β > deg γ.

Then eγ is a small function of eβ , and, as in the Case 1, we can conclude that

β1, γ1 also are small functions of eβ . Assume that a0 is a zero of eβ − 1 and is not a

zero of eγ − 1. Then, a0 is a zero of f − P1. Note that f and ∆cf share P1 CM. So

a0 is also a zero of ∆cf − P1. Putting a0 into the last form of ∆cf in (4), we get

P1(a0) = [P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)]
β1(z)− 1

γ1(z)eγ(z) − 1
|a0 .

Next, we show that

(5) P1(z) = [P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)]
β1(z)− 1

γ1(z)eγ(z) − 1
.
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Indeed, otherwise, by the second main theorem, we would have

T (r, eβ) ≤ N(r,
1

eβ − 1
) +N(r,

1

eβ
) +N(r, eβ) + S(r, eβ)

≤ N(r,
1

eγ − 1
) +N(r,

1

[P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)] β1−1
γ1eγ−1 − P1(z)

)

+ S(r, eβ) = S(r, eβ),

which is absurd.

Now we rewrite (5) in the following form

[P2(z + c)− P1(z + c)]eβ(z+c)−β(z) − [P2(z + c)− P1(z + c)]

(6) = [2P1(z)− P1(z + c)]eγ(z+c) − [2P1(z)− P1(z + c)],

and show that γ is a constant. Suppose that deg γ ≥ 1. Then, combining (6) and

the assumption deg β > deg γ, we get

(7)
[P2(z + c)− P1(z + c)]eβ(z+c)−β(z) = [2P1(z)− P1(z + c)]eγ(z+c),

P2(z + c)− P1(z + c) = 2P1(z)− P1(z + c),

implying that β1(z) = eβ(z+c)−β(z) = eγ(z+c).

Next, rewriting (1.4) in the form

[P2(z)−P1(z+ c) +P1(z)](γ1e
γ − 1)(eγ − 1)eβ + [P2(z)−P1(z)](γ1e

γ − 1)(eβ − eγ)

= [P2(z+ c)−P1(z+ c)](β1e
β − 1)eβ(eγ − 1)− [P2(z)−P1(z)](eβ − 1)(γ1e

γ − 1)eβ ,

after a routine computation, we get

a0e
2β + a1e

β + a2 = 0,

where a0 = [P2(z+ c)−P1(z+ c)](eγ(z)− 1)β1(z)− [P2(z)−P1(z)](γ1(z)eγ(z)− 1),

and a1, a2 are small functions of eβ . The above equation shows that a0 = 0, and

hence, we have

(8) [P2(z + c)− P1(z + c)](eγ(z) − 1)β1(z) = [P2(z)− P1(z)](γ1(z)eγ(z) − 1).

We put β1(z) = eγ(z+c) into (7) to obtain

[P2(z + c)− P1(z + c)]eγ(z+c)+γ(z) − [P2(z + c)− P1(z + c)− P2(z) + P1(z)]eγ(z+c)

+ [P2(z)− P1(z)] = 0,

implying that γ is a constant, say γ = A. Thus, we have proved that γ is a constant.

In addition, the form of f shows that f is an entire function. Then, by (4), we can

48



MEROMORPHIC FUNCTIONS SHARING THREE POLYNOMIALS ...

get

∆cf =[P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)]
β1(z)eβ(z) − 1

γ1(z)eγ(z) − 1

− [P2(z)− P1(z)]
eβ(z) − 1

eγ(z) − 1

=
eβ(z)

eA − 1
{[P2(z + c)− P1(z + c)]β1(z)− [P2(z)− P1(z)]}

+
1

eA − 1
[P2(z)− P1(z)− P2(z + c) + P1(z + c)] + [P1(z + c)− P1(z)].

Note that by (2)

∆cf = P2(z) + [P2(z)− P1(z)]
1− e−α(z)

eγ(z) − 1
= P2(z) + [P2(z)− P1(z)]

1− eAe−β(z)

eA − 1
.

Combining the above equations, we get

h0e
2β + h1e

β + h2 = 0,

where hi (i = 0, 1, 2) are small functions of eβ and h2 = [P2(z) − P1(z)] −e
A

eA−1 .

Obviously, h2 = 0, which shows that P1(z) = P2(z), and we get a contradiction.

Thus, we have proved that deg β = deg γ. We can assume that

deg β = deg γ := n ≥ 1,

since f is a transcendental function.

Note that β1(z) = eβ(z+c)−β(z) and γ1(z) = eγ(z+c)−γ(z) are two small functions

of eβ and eγ . Multiplying both sides of equation (4) by the factor eβ(eγ−1)(γ1e
γ−1),

we get

(9)
[P2(z)− P1(z + c) + P1(z)](γ1e

γ − 1)(eγ − 1)eβ + [P2(z)− P1(z)](γ1e
γ − 1)(eβ − eγ)

= [P2(z + c)− P1(z + c)](β1e
β − 1)eβ(eγ − 1)− [P2(z)− P1(z)](eβ − 1)(γ1e

γ − 1)eβ .

From (9) we obtain

b0e
2γ + b1e

β+2γ + b2e
β+γ + b3e

2β + b4e
2β+γ + b5e

β + b6e
γ = 0,

where 

b0 = [P1(z)− P2(z)]γ1(z),

b1 = [P2(z) + P1(z)− P1(z + c)]γ1(z),

b2 = [P1(z + c)− P1(z)− P2(z)]γ1(z) + P2(z + c)− P2(z)− P1(z),

b3 = [P2(z + c)− P1(z + c)]β1(z)− P2(z) + P1(z),

b4 = [P1(z + c)− P2(z + c)]β1(z) + [P2(z)− P1(z)]γ1(z),

b5 = P1(z) + P2(z)− P2(z + c),

b6 = P2(z)− P1(z).
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Obviously, bi (i = 0, 1, · · · , 6) are small functions of eβ and eγ . The equation (9)

can be written as follows:

(10)

6∑
i=0

bie
gi = 0,

where {
g0 = 2γ, g1 = β + 2γ, g2 = β + γ,

g3 = 2β, g4 = 2β + γ, g5 = β, g6 = γ.

We claim that deg(γ−β) = n. On the contrary, suppose that deg(γ−β) < n. Then

eγ−β is a small function of eβ and eγ . We denote by NE(r) the counting function

of the common zeros of eβ − 1 and eγ − 1. Assume that c0 is a common zero of

eβ − 1 and eγ − 1. Then c0 is a zero of eγ−β − 1. Notice eβ 6= eγ , then eγ−β − 1 6= 0.

Therefore

NE(r) ≤ N(r,
1

eγ−β − 1
) = S(r, eγ).

Since eγ is of �nite order, we have S(r + |c|, eγ) = S(r, eγ). Assume that d0 is a

zero of γ1e
γ − 1, and is not a zero of β1e

β − 1. Similarly as above, we can conclude

that d0 is also a zero of eγ − 1. Furthermore, d0 is a zero of γ1 − 1. If γ1 − 1 6= 0,

then, it follows from the second main theorem that

T (r, eγ) ≤ N(r,
1

γ1eγ − 1
) +N(r,

1

eγ
) +N(r, eγ) + S(r, eγ)

≤ NE(r + |c|) +N(r,
1

γ1 − 1
) + S(r, eγ)

≤ T (r,
1

γ1 − 1
) + S(r + |c|, eγ) + S(r, eγ) = S(r, eγ),

which is a contradiction. Thus, γ1(z) = eγ(z+c)−γ(z) = 1, which implies that

eγ(z+c) = eγ(z) and deg γ = 1. As a consequence, noting that deg(β − γ) < 1, we

see that β − γ is a constant, say A1. Recall e
γ(z+c) = eγ(z). One has eβ(z+c)−β(z) =

eβ(z+c)−γ(z+c)−(β(z)−γ(z)) = eA1−A1 = 1. So eβ(z+c) = eβ(z). By (4), we can get

∆cf = [P1(z + c)− P1(z)] + [P2(z + c)− P1(z + c)− P2(z) + P1(z)]
eβ(z) − 1

eγ(z) − 1
,

where deg β ≥ 1. But in view of (2), we have deg(−α) = deg(γ − β) < 1, yielding

a contradiction. Thus, we have shown that deg(γ − β) = n.

Furthermore, one has deg(g2 − gj) = n, for j = 0, 1, 3, 4, 5, 6, because{
g2 − g0 = β − γ, g2 − g1 = −γ, g2 − g3 = γ − β,

g2 − g4 = −β, g2 − g5 = γ, g2 − g6 = β.

We assume that b2 = [P1(z+c)−P1(z)−P2(z)]γ1(z)+P2(z+c)−P2(z)−P1(z) 6≡ 0.

Then, we consider ψj = bje
gj (j = 0, · · · , 6). From (10) we deduce that there

exist a set I ⊂ {0, 1, 3, 4, 5, 6} and complex numbers λj 6= 0(j ∈ I) such that
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ψ2 =
∑
j∈I λjψj , and ψj (j ∈ I) are linearly independent. Rewriting this in the

form: ∑
j∈I

λj
bj
b2
egj−g2 = 1,

we can apply Nevanlinna's lemma to the functions

ϕj = λj
bj
b2
egj−g2 , j ∈ I,

which are linearly independent and satisfy
∑
j∈I ϕj = 1.

We use the fact that the zeros and poles of ϕj and their Wronskians can come

only from the zeros and poles of functions bj whose Nevanlinna characteristic is

T (r, bj) = O(rn−1) = S(r, ϕj),

since deg(g2 − gj) = n for j ∈ I. So, by Nevanlinna's lemma we obtain that

T (r, ϕj) ≤ S(r),

for all j ∈ I with S(r) as above. This is a contradiction. Thus, b2 ≡ 0. Now, we

consider the case

b2 = [P1(z + c)− P1(z)− P2(z)]γ1(z) + P2(z + c)− P1(z)− P2(z) = 0.

If P1(z+ c)−P1(z)−P2(z) = 0, then P2(z+ c)−P2(z)−P1(z) = 0. We can obtain

P1(z+c) = P2(z+c), which is a contradiction. Thus, P1(z+c)−P1(z)−P2(z) 6≡ 0,

and we can get

(11) γ1(z) =
P2(z + c)− P2(z)− P1(z)

P1(z + c)− P1(z)− P2(z)
.

Note that γ1 is not a constant function. This contradicts the fact that γ1(z) is an

entire function. Thus, γ1 is a constant, which implies that deg γ = n = 1. So, we

have deg β = n = 1 and γ1 is a constant. Suppose that

deg(γ + β) = n = 1, deg(γ − 2β) = n = 1.

Then, one has deg(g6 − gj) = n, for j = 0, 1, 3, 4, 5, because

g6 − g0 = −γ, g6 − g1 = −γ − β, g6 − g2 = γ − 2β, g6 − g4 = −2β, g6 − g5 = γ − β.

Again applying Nevanlinna's Lemma and replacing g2 by g6 in the above discussion,

we get a contradiction.

Now, we assume that either γ + β or γ − 2β is constant. If γ + β is constant,

then for the functions gj with some constants cj , we have

g0 = −2β + c0, g1 = −β + c1, g3 = 2β + c3, g4 = β + c4, g5 = β + c5,

and bj are polynomials (since β1 and γ1 are constants). So, the identity (10) gives

b∗0e
−2β + b∗1e

−β + b∗3e
2β + b∗4e

β = 0,
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with certain polynomials b∗j . This identity obviously implies that all b∗j are 0, where

b∗3 = {[P2(z + c)− P1(z + c)]β1 + P1(z)− P2(z)}ec3 .
If b∗3 ≡ 0, we can get [P2(z + c) − P1(z + c)]β1(z) + P1(z) − P2(z) = 0. Say

P3(z) = P2(z) − P1(z), so [P3(z + c) − P3(z)]β1(z) = P3(z)(1 − β1(z)). We show

that P3(z) is a constant. Indeed, assume the opposite that degP3(z) ≥ 1. Then, we

can get β1(z) = 1 and P3(z + c) − P3(z) = 0, implying that P3(z) is a constant,

which is a contradiction. Thus, P3(z) is a constant, say c(6= 0). This implies that

P1(z) = P2(z) + c. By (11) we can get that γ1(z) = 1 + c
P2(z+c)−2P2(z)

, showing

that γ1(z) has a pole. Taking into account that γ1(z) is an entire function, we get a

contradiction. Thus, we have b∗3 6≡ 0. This rules out the case where γ+β is constant.

The case where γ − 2β is constant can be treated in the same way. This completes

the proof of the theorem. �
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