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1. Introduction

The basic Ulam stability problem of functional equations, formulated by Ulam

in 1940 (see [23]), has been studied and generalized by many researchers to various

kinds of di�erential equations, integral equations, di�erence equations and fractional

di�erential equations. The basic idea behind Ulam stability of any kind of equation

is to deal with the existence of an exact solution near to every approximate solution.

The concept of Ulam stability is applicable in various branches of mathematical

analysis and is used in the cases where �nding the exact solution is very di�cult.

In recent years, many researchers have involved in the study on Ulam type

stabilities of di�erential and integro-di�erential equations and obtained a number

of remarkable results. At start, using the �xed point approach, implemented by

Cadariu and Radu [1], S. M. Jung [9] has proved the Hyers�Ulam�Rassias stability

of the Volterra integral equation x(t) =
∫ t
c
f(s, x(s))ds, where f is a continuous

function and c is a �xed real number. Applying the �xed point arguments used in

[9], Castro and Ramos [3] obtained Hyers�Ulam�Rassias stability and Hyers�Ulam

stability for the following more general nonlinear Volterra integral equation:

x(t) =

∫ t

a

f(t, s, x(s))ds,−∞ < a ≤ t ≤ b < +∞

both in �nite and in�nite intervals.
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The concept of �xed point approach to study Ulam�Hyers stability has been

extended by many authors. Here we mention few interesting contributions on Ulam

type stabilities of di�erent kinds of di�erential and integral equations. Tunc and

Bicer [22] obtained results on the Hyers�Ulam�Rassias and Hyers�Ulam stability

for the �rst order delay di�erential equation. Castro and Guerra [2] obtained weak

conditions guaranteeing the Hyers�Ulam� Rassias stability of nonlinear Volterra

integral equations with delay. Otrocol and Ilea [17] investigated Ulam stability for

a delay di�erential equation. Using the idea of Cadariu, Radu and Jung, the Ulam�

Hyers stability results for Volterra integral integro-di�erential equations was proved

in [8] and [21]. Gachpazan and Baghani [5, 6] and Morales and Rojas [13] applied the

successive approximation method to prove the Hyers�Ulam stability of a nonlinear

integral equation. Using the method of successive approximation Huang and Li [7]

established Ulam�Hyers stability of delay di�erential equations.

Recently, employing Pachpatte's inequality, Kucche and Shikhare [10] have discussed

Ulam�Hyers stabilities of semilinear Volterra integro-di�erential equations in Banach

spaces.

Motivated by the work of Rus [20] and Otrocol et al.[16, 17], in the present

paper we obtain existence and uniqueness results and establish Ulam type stabilities

(viz. Ulam�Hyers stability, generalized Ulam�Hyers stability, Ulam�Hyers�Rassias

stability and generalized Ulam�Hyers�Rassias stability) for nonlinear Volterra delay

integro-di�erential equation (VDIE) of the form:

x′(t) = f

(
t, x(t), x(g(t)),

∫ t

0

h(t, s, x(s), x(g(s)))ds

)
, t ∈ I = [0, b], b > 0,(1.1)

where f ∈ C
(
I × R3,R

)
, h ∈ C

(
I × I × R2,R

)
, g ∈ C (I, [−r, b]), 0 < r < ∞

and g(t) ≤ t.
We apply Picard's operator theory, the abstract Gronwall lemma and the Pachpatte's

inequality to achieve our results. The results obtained in this paper are more

general than the known results and include the study of [3, 9, 16, 17, 20] � [22]

as special cases of (1.1). For existence, uniqueness and other qualitative properties

of various forms of nonlinear delay integro-di�erential equations we refer the papers

by Ntouyas et al. [14, 15], Dauer and Balchandran [4], Kucche et al. [11, 12] and

the references cited therein.

The rest of this paper is organized as follows. In Section 2, we de�ne the Ulam

type stability concepts for equation (1.1) and state theorems, needed to obtain our

main results. In Section 3, we establish di�erent Ulam type stability results for
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VDIE (1.1) on a �nite interval. Further, we give some applications of the obtained

results, and discuss examples illustrating the results.

2. Preliminaries

In what follows we use the notation and de�nitions given in [20] to discuss the

Ulam type stabilities of VDIE (1.1). Consider the following nonlinear Volterra delay

integro-di�erential equations:

x′(t) = f

(
t, x(t), x(g(t)),

∫ t

0

h(t, s, x(s), x(g(s)))ds

)
, t ∈ I,(2.1)

x(t) = φ(t), t ∈ [−r, 0],(2.2)

where φ ∈ C ([−r, 0],R).

De�nition 2.1. A function x ∈ C ([−r, b],R)∩C ′
([0, b],R) that veri�es the equations

(2.1) and (2.2) is called a solution of the initial value problem (2.1), (2.2).

For a given ε > 0 and a positive nondecreasing continuous function ψ ∈ C ([−r, b],R+),

we consider the following inequalities:∣∣∣∣y′(t)− f (t, y(t), y(g(t)),∫ t

0

h(t, s, y(s), y(g(s)))ds

)∣∣∣∣ ≤ ε, t ∈ I,(2.3) ∣∣∣∣y′(t)− f (t, y(t), y(g(t)),∫ t

0

h(t, s, y(s), y(g(s)))ds

)∣∣∣∣ ≤ ψ(t), t ∈ I,(2.4) ∣∣∣∣y′(t)− f (t, y(t), y(g(t)),∫ t

0

h(t, s, y(s), y(g(s)))ds

)∣∣∣∣ ≤ εψ(t), t ∈ I.(2.5)

De�nition 2.2. The equation (2.1) is said to be Ulam�Hyers stable if there exists a

real number C > 0 such that for each ε > 0 and for each solution y ∈ C ′
([−r, b],R)

of (2.3) there exists a solution x ∈ C ′
([−r, b],R) of (2.1) with |y(t) − x(t)| ≤ C ε

for t ∈ [−r, b].

De�nition 2.3. The equation (2.1) is said to be generalized Ulam�Hyers stable if

there exists θf ∈ C(R+,R+), θf (0) = 0 such that for each solution y ∈ C ′
([−r, b],R)

of (2.3) there exists a solution x ∈ C ′
([−r, b],R) of (2.1) with |y(t)− x(t)| ≤ θf (ε)

for t ∈ [−r, b].

De�nition 2.4. The equation (2.1) is said to be Ulam�Hyers�Rassias stable with

respect to the positive nondecreasing continuous function ψ : [−r, b] → R+ if there

exists Cψ > 0 such that for each ε > 0 and for each solution y ∈ C ′
([−r, b],R) of

(2.5) there exists a solution x ∈ C ′
([−r, b],R) of (2.1) with |y(t)−x(t)| ≤ Cψε ψ(t)

for t ∈ [−r, b].
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De�nition 2.5. The equation (2.1) is said to be generalized Ulam�Hyers�Rassias

stable with respect to the positive nondecreasing continuous function ψ : [−r, b] →
R+ if there exists Cψ > 0 such that for each solution y ∈ C ′

([−r, b],R) of (2.4)

there exists a solution x ∈ C ′
([−r, b],R) of (2.1) with |y(t) − x(t)| ≤ Cψ ψ(t) for

t ∈ [−r, b].

Remark 2.1. Observe that a function y ∈ C ′
(I,R) is a solution of the inequality

(2.3) if there exists a function qy ∈ C(I,R) (which depends on y) such that

(i) |qy(t)| ≤ ε, t ∈ I;
(ii) y

′
(t) = f

(
t, y(t), y(g(t)),

∫ t
0
h(t, s, y(s), y(g(s)))ds

)
+ qy(t), t ∈ I.

Similar arguments hold for the inequalities (2.4) and (2.5).

Remark 2.2. If y ∈ C ′
(I,R) satis�es the inequality (2.3), then y is a solution of

the following integral inequality:

∣∣∣∣y(t)− y(0)− ∫ t

0

f

(
s, y(s), y(g(s)),

∫ s

0

h(s, τ, y(τ), y(g(τ)))dτ

)
ds

∣∣∣∣ ≤ εt, t ∈ I.
(2.6)

Indeed, if y ∈ C ′
(I,R) satis�es the inequality (2.3), then by Remark 2.1, we have

y
′
(t) = f

(
t, y(t), y(g(t)),

∫ t

0

h(t, s, y(s), y(g(s)))ds

)
+ qy(t), t ∈ I.

This gives∣∣∣∣y(t)− y(0)− ∫ t

0

f

(
s, y(s), y(g(s)),

∫ s

0

h(s, τ, y(τ), y(g(τ)))dτ

)
ds

∣∣∣∣ ≤ ∫ t

0

|qy(s)|ds

≤ εt, t ∈ I.

Similar estimates can also be obtained for the inequalities (2.4) and (2.5).

We use the following inequality to obtain our main results.

Theorem 2.1 (Pachpatte's inequality (see [18], p. 39)). Let u(t), f(t) and q(t)

be nonnegative continuous functions de�ned on R+, and let n(t) be a positive and

nondecreasing continuous function de�ned on R+ for which the inequality

u(t) ≤ n(t) +
∫ t

0

f(s)

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds,

holds for t ∈ R+. Then

u(t) ≤ n(t)
[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(τ) + q(τ)]dτ

)
ds

]
,

for t ∈ R+.

Now we give the de�nition of the Picard operator and state the abstract Gronwall

lemma (see Rus [19]), which are used in our subsequent analysis.
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De�nition 2.6 (Picard operator [19]). Let (X, d) be a metric space. An operator

A : X → X is said to be a Picard operator if there exists x∗ ∈ X such that:

(i) FA = {x∗}, where FA = {x ∈ X : A(x) = x} is the �xed point set of A;

(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Lemma 2.1 (Gronwall lemma [19]). Let (X, d,≤) be an ordered metric space and

let A : X → X be an increasing Picard operator (FA = x∗A). Then for x ∈ X,

x ≤ A(x) implies x ≤ x∗A, while x ≥ A(x) implies x ≥ x∗A.

3. Ulam type stabilities for VDIE on I = [0, b]

3.1. The main results. The following assumptions are needed to state and prove

our main results.

(H1) (i) Let f ∈ C
(
[0, b]× R3,R

)
, h ∈ C

(
[0, b]× [0, b]× R2,R

)
and g ∈ C ([0, b], [−r, b])

be such that g(t) ≤ t.
(ii) There exist constants Lf , Lh > 0 such that

|f(t, u1, u2, u3)− f(t, v1, v2, v3)| ≤ Lf (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) ;

|h(t, s, u1, u2)− h(t, s, v1, v2)| ≤ Lh (|u1 − v1|+ |u2 − v2|)

for all t, s ∈ I, ui, vi ∈ R (i = 1, 2, 3).

(H2) The function ψ : [−r, b] → R+ is positive, nondecreasing and continuous

and there exists λ > 0 such that∫ t

0

ψ(s)ds ≤ λψ(t), t ∈ [0, b].

Theorem 3.1. Let the functions f and h in (2.1) satisfy (H1) and assume that

(H2) holds. If bLf [2 + Lhb] < 1, then the following assertions hold:

(i) the initial value problem (2.1), (2.2) has a unique solution x ∈ C ([−r, b],R)∩
C

′
([0, b],R) ;

(ii) the equation (2.1) is Ulam�Hyers�Rassias stable with respect to the function

ψ.

Proof. (i) Observe �rst that in view of assumption (H1)(i), the initial value

problem (2.1), (2.2) is equivalent to the following integral equations:

x(t) = φ(0) +

∫ t

0

f

(
s, x(s), x(g(s)),

∫ s

0

h(s, τ, x(τ), x(g(τ)))dτ

)
ds, t ∈ I,

x(t) = φ(t), t ∈ [−r, 0].
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Consider the Banach space X = C ([−r, b],R) with Chebyshev norm ‖·‖C , and
de�ne the operator Bf : X → X by

Bf (x)(t) = φ(0) +

∫ t

0

f

(
s, x(s), x(g(s)),

∫ s

0

h(s, τ, x(τ), x(g(τ)))dτ

)
ds, t ∈ I,

Bf (x)(t) = φ(t), t ∈ [−r, 0].

Now using the contraction principle we show that Bf has a �xed point. Note that

|Bf (x)(t)−Bf (y)(t)| = 0, x, y ∈ C ([−r, b],R) , t ∈ [−r, 0].(3.1)

Next, for any t ∈ I, we can write

|Bf (x)(t)−Bf (y)(t)|

≤
∫ t

0

Lf {|x(s)− y(s)|+ |x(g(s))− y(g(s))|

+

∫ s

0

Lh [|x(τ)− y(τ)|+ |x(g(τ))− y(g(τ))|] dτ
}
ds

≤
∫ t

0

Lf

{
max

0≤σ1≤s
|x(σ1)− y(σ1)|+ max

0≤σ1≤s
|x(g(σ1))− y(g(σ1))|

+

∫ s

0

Lh

[
max

0≤σ2≤τ
|x(σ2)− y(σ2)|+ max

0≤σ2≤τ
|x(g(σ2))− y(g(σ2))|

]
dτ

}
ds

≤
∫ t

0

Lf

{
max

−r≤σ1≤b
|x(σ1)− y(σ1)|+ max

−r≤τ1≤b
|x(τ1)− y(τ1)|

+

∫ s

0

Lh

[
max

−r≤σ2≤b
|x(σ2)− y(σ2)|+ max

−r≤τ2≤b
|x(τ2)− y(τ2)|

]
dτ

}
ds

≤
∫ t

0

Lf

{
2 ‖x− y‖C + 2

∫ s

0

Lh ‖x− y‖C dτ
}
ds

≤ bLf (2 + Lhb) ‖x− y‖C .
(3.2)

From (3.1) and (3.2), it follows that

‖Bf (x)−Bf (y)‖C ≤ bLf (2 + Lhb) ‖x− y‖C , x, y ∈ C ([−r, b],R) .

Since bLf (2 + Lhb) < 1, the operator Bf is a contraction on the complete space

X. Hence by Banach contraction principle the operator Bf has a �xed point x∗ :

[−r, b]→ R, which is a solution of the problem (2.1), (2.2).

(ii) Let y ∈ C ([−r, b],R)∩C ′
([0, b],R) be a solution of the inequality (2.5). Denote

by x ∈ C ([−r, b],R) ∩ C ′
([0, b],R) the unique solution of the problem:

x
′
(t) = f

(
t, x(t), x(g(t)),

∫ t

0

h(t, s, x(s), x(g(s)))ds

)
, t ∈ I,

x(t) = y(t), t ∈ [−r, 0].
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Then assumption (H1)(i) allows to write the following (equivalent to the above

problem) integral equation:

x(t) = y(0) +

∫ t

0

f

(
s, x(s), x(g(s)),

∫ s

0

h(s, τ, x(τ), x(g(τ)))dτ

)
ds, t ∈ I,(3.3)

x(t) = y(t), t ∈ [−r, 0].(3.4)

If y ∈ C ([−r, b],R)∩C ′
([0, b],R) satis�es the inequality (2.5), then using assumption

(H2) and Remarks 2.1 and 2.2, we obtain

∣∣∣∣y(t)− y(0)− ∫ t

0

f

(
s, y(s), y(g(s)),

∫ s

0

h(s, τ, y(τ), y(g(τ)))dτ

)
ds

∣∣∣∣
≤
∫ t

0

|qy(s)| ds ≤
∫ t

0

εψ(s)ds ≤ λεψ(t), t ∈ I.(3.5)

Note that |y(t)− x(t)| = 0 for t ∈ [−r, 0]. Next, using assumption (H1)(ii), the

equation (3.3) and the estimate in (3.5), for any t ∈ I, we can write

|y(t)− x(t)| =
∣∣∣∣y(t)− y(0)− ∫ t

0

f

(
s, x(s), x(g(s)),

∫ s

0

h(s, τ, x(τ), x(g(τ)))dτ

)
ds

∣∣∣∣
≤
∣∣∣∣y(t)− y(0)− ∫ t

0

f

(
s, y(s), y(g(s)),

∫ s

0

h(s, τ, y(τ), y(g(τ)))dτ

)
ds

∣∣∣∣
+

∫ t

0

∣∣∣∣f (s, y(s), y(g(s)),∫ s

0

h(s, τ, y(τ), y(g(τ)))dτ

)
−f
(
s, x(s), x(g(s)),

∫ s

0

h(s, τ, x(τ), x(g(τ)))dτ

)∣∣∣∣ ds
≤ ελψ(t) +

∫ t

0

Lf

{
|y(s)− x(s)|+ |y(g(s))− x(g(s))|

+

∫ s

0

Lh [|y(τ)− x(τ)|+ |y(g(τ))− x(g(τ))|] dτ
}
ds.(3.6)

According to (3.6), we consider operator A : C ([−r, b],R+) → C ([−r, b],R+)

de�ned by

A(u)(t) = 0, t ∈ [−r, 0],

A(u)(t) = ελψ(t) + Lf

∫ t

0

{
u(s) + u(g(s)) + Lh

∫ s

0

[u(τ) + u(g(τ))] dτ

}
ds, t ∈ [0, b].

Next, we prove that A is a Picard operator (see De�nition 2.6). To this end, observe

�rst that for any u, v ∈ C ([−r, b],R+) we have |A(u)(t)−A(v)(t)| = 0, t ∈ [−r, 0].
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Using hypothesis (H1)(ii), for all t ∈ I, we can write

|A(u)(t)−A(v)(t)|

≤ Lf
∫ t

0

{
|u(s)− v(s)|+ |u(g(s))− v(g(s))|+ Lh

∫ s

0

[|u(τ)− v(τ)|+ |u(g(τ))− v(g(τ))|] dτ
}
ds

≤
∫ t

0

Lf

{
max

0≤σ1≤s
|u(σ1)− v(σ1)|+ max

0≤σ1≤s
|u(g(σ1))− v(g(σ1))|

+

∫ s

0

Lh

[
max

0≤σ2≤τ
|u(σ2)− v(σ2)|+ max

0≤σ2≤τ
|u(g(σ2))− v(g(σ2))|

]
dτ

}
ds

≤
∫ t

0

Lf

{
max

−r≤σ1≤b
|u(σ1)− v(σ1)|+ max

−r≤τ1≤b
|u(τ1)− v(τ1)|

+

∫ s

0

Lh

[
max

−r≤σ2≤b
|u(σ2)− v(σ2)|+ max

−r≤τ2≤b
|u(τ2)− v(τ2)|

]
dτ

}
ds

≤
∫ t

0

Lf

{
2 ‖u− v‖C + 2

∫ s

0

Lh ‖u− v‖C dτ
}
ds ≤ bLf (2 + Lhb) ‖u− v‖C .

Therefore,

‖A(u)−A(v)‖C ≤ bLf (2 + Lhb) ‖u− v‖C , for all u, v ∈ C ([−r, b],R+) .

Since bLf (2 + Lhb) < 1, A is a contraction on C ([−r, b],R+), using Banach contraction

principle, we conclude that A is a Picard operator and FA = {u∗} . Then, for t ∈ I,
we have

u∗(t) = ελψ(t) + Lf

∫ t

0

{
u∗(s) + u∗(g(s)) + Lh

∫ s

0

[u∗(τ) + u∗(g(τ)] dτ

}
ds.

Note that u∗ is increasing and (u∗)
′ ≥ 0 on I. Therefore u∗(g(t)) ≤ u∗(t) for

g(t) ≤ t, t ∈ I, and hence

u∗(t) ≤ ελψ(t) +
∫ t

0

2Lf

(
u∗(s) +

∫ s

0

Lhu
∗(τ)dτ

)
ds.

Next, applying Pachpatte's inequality given in Theorem 2.1, we obtain

u∗ ≤ ελψ(t)
[
1 +

∫ t

0

2Lf exp

(∫ s

0

[2Lf + Lh] dτ

)
ds

]
≤ ελψ(t)

{
1 + 2Lf

(
exp(2Lf + Lh)b− 1

2Lf + Lh

)}
.(3.7)

Taking Cψ = λ
{
1 + 2Lf

(
exp(2Lf+Lh)b−1

2Lf+Lh

)}
, from inequality (3.7) we get

u∗(t) ≤ Cψ ε ψ(t), t ∈ [−r, b].

For u(t) = |y(t)− x(t)| the inequality (3.6) gives that u(t) ≤ A(u)(t). So, we have

proved that A : C ([−r, b],R+) → C ([−r, b],R+) is an increasing Picard operator

such that for u ∈ C ([−r, b],R+), u(t) ≤ Au(t) and FA = {u∗}. Hence, applying
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the abstract Gronwall lemma (Lemma 2.1), we obtain u(t) ≤ u∗(t), t ∈ [−r, b],
implying that

|y(t)− x(t)| ≤ Cψ ε ψ(t), ∀ t ∈ [−r, b].(3.8)

Thus, the equation (2.1) is Ulam�Hyers�Rassias stable with respect to the function

ψ. Theorem 3.1 is proved. �

Corollary 3.1. Let the functions f and h in (2.1) satisfy (H1) and assume that

(H2) holds. If bLf [2 + Lhb] < 1, then the problem (2.1), (2.2) has a unique solution

and the equation (2.1) is generalized Ulam�Hyers�Rassias stable with respect to the

function ψ.

Proof. By taking ε = 1 in the proof of Theorem 3.1, we obtain (cf. (3.8)):

|y(t)− x(t)| ≤ Cψ ψ(t), ∀ t ∈ [−r, b],

showing that the equation (2.1) is generalized Ulam�Hyers�Rassias stable with

respect to the function ψ. �

Using arguments similar to those applied in the proof of Theorem 3.1, one can

prove Ulam�Hyers stability of equation (2.1).

Observing that for ψ(t) = 1, ∀ t ∈ [−r, b] the assumption (H2) holds, we can

state the following corollary of Theorem 3.1.

Corollary 3.2. Let the functions f and h in (2.1) satisfy the hypothesis (H1).

If bLf [2 + Lhb] < 1, then the problem (2.1), (2.2) has a unique solution and the

equation (2.1) is Ulam�Hyers stable.

Proof. By taking ψ(t) = 1, ∀ t ∈ [−r, b] in the proof of Theorem 3.1, we obtain

(cf. (3.8)):

|y(t)− x(t)| ≤ C ε, ∀ t ∈ [−r, b],

and the result follows. �

Corollary 3.3. Let the functions f and h in (2.1) satisfy the hypothesis (H1).

If bLf [2 + Lhb] < 1, then the problem (2.1), (2.2) has a unique solution and the

equation (2.1) is generalized Ulam�Hyers stable.

Proof. The result follows from Corollary 3.2, by taking θf (ε) = C ε. �

3.2. Applications. In this section we consider some important special cases of the

problem (2.1), (2.2).
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Fix any r > 0, and de�ne g1(t) = t − r, t ∈ [0, b]. Then we get the following

special case of the problem (2.1), (2.2):

x
′
(t) = f1

(
t, x(t), x(t− r),

∫ t

0

h1(t, s, x(s), x(s− r))ds
)
, t ∈ [0, b],(3.9)

x(t) = φ(t), t ∈ [−r, 0],(3.10)

which is an initial value problem for a nonlinear Volterra integro-di�erential di�erence

equation. Consider the following inequality:∣∣∣∣y′
(t)− f1

(
t, y(t), y(t− r),

∫ t

0

h1(t, s, y(s), y(s− r))ds
)∣∣∣∣ ≤ εψ(t), t ∈ [0, b],

where ε, ψ and φ are as speci�ed in Section 2 (Preliminaries).

As an application of Theorem 3.1, we have the following theorem for the problem

(3.9), (3.10).

Theorem 3.2. Suppose that the following assumptions are ful�lled:

(A1) (i) f1 ∈ C
(
[0, b]× R3,R

)
, h1 ∈ C

(
[0, b]× [0, b]× R2,R

)
and g1 ∈ C ([0, b], [−r, b])

be such that g1(t) ≤ t;
(ii) there exist constants Lf1 , Lh1

> 0 such that

|f1(t, u1, u2, u3)− f1(t, v1, v2, v3)| ≤ Lf1 (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) ;

|h1(t, s, u1, u2)− h1(t, s, v1, v2)| ≤ Lh1
(|u1 − v1|+ |u2 − v2|) ;

for all t, s ∈ [0, b], ui, vi ∈ R (i = 1, 2, 3);

(A2) the function ψ : [−r, b] → R+ is positive, nondecreasing and continuous,

and there exists λ > 0 such that
∫ t
0
ψ(s)ds ≤ λψ(t), t ∈ [0, b];

(A3) bLf1 [2 + Lh2
b] < 1.

Then the problem (3.9), (3.10) has a unique solution x ∈ C ([−r, b],R)∩C ′
([0, b],R),

and the equation (3.9) is Ulam�Hyers�Rassias stable with respect to the function

ψ.

Another special case of the problem (2.1), (2.2) we obtain by taking the delay

g2(t) = t2, t ∈ I = [0, 1]. Then we have

x
′
(t) = f2

(
t, x(t), x(t2),

∫ t

0

h2(t, s, x(s), x(s
2))ds

)
, t ∈ I = [0, 1],(3.11)

x(t) = φ(t), t ∈ [−r, 0],(3.12)

which is an initial value problem for a nonlinear Volterra integro-di�erential equation.

Consider the following inequality:∣∣∣∣y′
(t)− f2

(
t, y(t), y(s2),

∫ t

0

h2(t, s, y(s), y(s
2))ds

)∣∣∣∣ ≤ εψ(t), t ∈ [0, 1].

where ε, ψ and φ are as speci�ed in Section 2 (Preliminaries).
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As an application of Theorem 3.1, we have the following theorem for the problem

(3.11), (3.12).

Theorem 3.3. Suppose that the following assumptions are ful�lled:

(B1) (i) f2 ∈ C
(
[0, 1]× R3,R

)
, h2 ∈ C

(
[0, 1]× [0, 1]× R2,R

)
and g2 ∈ C ([0, 1], [−r, 1])

be such that g2(t) ≤ t;
(ii) there exist constants Lf2 , Lh2

> 0 such that

|f2(t, u1, u2, u3)− f2(t, v1, v2, v3)| ≤ Lf2 (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) ;

|h2(t, s, u1, u2)− h2(t, s, v1, v2)| ≤ Lh2
(|u1 − v1|+ |u2 − v2|) ;

for all t, s ∈ [0, 1], ui, vi ∈ R (i = 1, 2, 3);

(B2) the function ψ : [−r, 1] → R+ is positive, nondecreasing and continuous,

and there exists λ > 0 such that
∫ t
0
ψ(s)ds ≤ λψ(t), t ∈ [0, 1];

(B3) Lf2 [2 + Lh2
] < 1.

Then the problem (3.11), (3.12) has a unique solution x ∈ C ([−r, 1],R)∩C ′
([0, 1],R),

and the equation (3.11) is Ulam�Hyers�Rassias stable with respect to the function

ψ.

Other Ulam type stability results for equations (3.9) and (3.11) can be obtained

by using the corresponding results from Section 3.1.

3.3. Examples. In this section, we present concrete examples to illustrate our

main results obtained in Section 3.1.

Example 1. Consider the following nonlinear delay Volterra integro-di�erential

equations:

x
′
(t) = 1 +

t cos(x(t))

140
− 3x(t)

140
+
t cos(x(g(t)))

70
+

1

20

∫ t

0

t

70
{sin(x(s))− sin(x(g(s)))} ds, t ∈ [0, 5],

(3.13)

x(t) = 0, t ∈ [−1, 0],
(3.14)

where g(t) = t
2 , t ∈ [0, 5]. Clearly we have g(t) ≤ t, t ∈ [0, 5].

(i) De�ne h : [0, 5]× [0, 5]× R× R→ R by

h (t, s, x(s), x(g(s))) =
t

70
[sin(x(s))− sin(x(g(s)))] , t, s ∈ [0, 5].

Then, for any t, s ∈ [0, 5] and x1, x2, y1, y2 ∈ R, we have

|h(t, s, x1, x2)− h(t, s, y1, y2)| ≤
t

70
{|sinx1 − sin y1|+ |sinx2 − sin y2|}

≤ 5

70
{|x1 − y1|+ |x2 − y2|} .
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(ii) De�ne f : [0, 5]× R× R× R→ R by

f

(
t, x(t), x(g(t)),

∫ t

0

h(t, s, x(s), x(g(s)))ds

)
= 1 +

t cos(x(t))

140
− 3x(t)

140
+
t cos(x(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(x(s))− sin(x(g(s)))] ds, t ∈ [0, 5]

= 1 +
t cos(x(t))

140
− 3x(t)

140
+
t cos(x(g(t)))

70
+

1

20

∫ t

0

h (t, s, x(s), x(g(s))) ds.

Then, for any t ∈ [0, 5] and x1, x2, x3, y1, y2, y3 ∈ R, we have

|f(t, x1, x2, x3)− f(t, y1, y2, y3)|

≤
{

t

140
| cosx1 − cos y1|+

3

140
|x1 − y1|

}
+

t

70
| cosx2 − cos y2|+

1

20
|x3 − y3|.

Next, for any x, y ∈ R with x < y, by mean value theorem, there exists

p, x < p < y such that cos x−cos y
x−y = − sin p ⇒ | cosx − cos y| ≤ |x − y|.

Therefore, we have

|f(t, x1, x2, x3)− f(t, y1, y2, y3)| ≤
{

5

140
|x1 − y1|+

3

140
|x1 − y1|

}
+

5

70
|x2 − y2|+

1

20
|x3 − y3|

≤ 5

70
{|x1 − y1|+ |x2 − y2|+ |x3 − y3|} .

Hence the above de�ned functions f and h verify the assumptions (H1) and (H2)

with Lf = 5
70 , Lh = 5

70 , b = 5. Further, we see that bLf (2+bLh) = 5 5
70

[
2 + 5

705
]
=

0.84183673 < 1. Therefore, by Corollary 3.2, the problem (3.13), (3.14) has a unique

solution on [−1, 5] and the equation (3.13) is Ulam�Hyers stable on [0, 5]. Other

stability results for the equation (3.13) can be discussed similarly.

In fact, we see that the function

(3.15) x(t) =

{
t if t ∈ [0, 5],

0 if t ∈ [−1, 0]

is the unique solution of the problem (3.13), (3.14). The veri�cation is given below.

For x(t) = t, t ∈ [0, 5] and g(t) = t
2 , t ∈ [0, 5], we have

1 +
t cos(x(t))

140
− 3x(t)

140
+
t cos(x(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(x(s))− sin(x(g(s)))] ds

= 1 +
t cos(t)

140
− 3t

140
+
t cos( t2 )

70
+

1

140

∫ t

0

t
[
sin(s)− sin

(s
2

)]
ds = 1 = x

′
(t).

Next, we discuss the Ulam�Hyers stability of the equation (3.13) with �xed delay

g(t) = t
2 , t ∈ [0, 5] by �nding the exact solution x(t) of equation (3.13) corresponding

to given values of ε and given solutions y(t) of the inequalities.
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(i) Take ε = 0.7 and y1(t) =

{
t
2 if t ∈ [0, 5],

0 if t ∈ [−1, 0].
Then for t ∈ [0, 5], we have

∣∣∣∣y′

1(t)−
(
1 +

t cos(y1(t))

140
− 3y1(t)

140
+
t cos(y1(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y1(s))− sin(y1(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣y′

1(t)− 1− t cos(y1(t))

140
+

3y1(t)

140
− t cos(y1(g(t)))

70
− 1

20

∫ t

0

t

70
[sin(y1(s))− sin(y1(g(s)))] ds

∣∣∣∣
≤

∣∣∣∣∣12 − 1−
t cos( t2 )

140
+

3
(
t
2

)
140

−
t cos( t4 )

70
− 1

140

∫ t

0

t
[
sin
(s
2

)
− sin

(s
4

)]
ds

∣∣∣∣∣ ≤ 0.667499 < ε.

For the solution x(t) of the problem (3.13), (3.14) given in (3.15) and the constant

C = 4, we have |y1(t)− x(t)| =
∣∣ t
2 − t

∣∣ ≤ 2.5 < Cε, t ∈ [0, 5], and |y1(t)− x(t)| =
0, t ∈ [−1, 0]. Therefore

|y1(t)− x(t)| < Cε, t ∈ [−1, 5].

(ii) Let y2(t) = 0, t ∈ [−1, 5] and ε = 1.2. Then, for t ∈ [0, 5], we have∣∣∣∣y′

2(t)−
(
1 +

t cos(y2(t))

140
− 3y2(t)

140
+
t cos(y2(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y2(s))− sin(y2(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣y′

2(t)− 1− t cos(y2(t))

140
+

3y2(t)

140
− t cos(y2(g(t)))

70
− 1

20

∫ t

0

t

70
[sin(y2(s))− sin(y2(g(s)))] ds

∣∣∣∣
=

∣∣∣∣−1− t

140
− t

70

∣∣∣∣ ≤ 155

140
< 1.2 = ε.

For the solution x(t) of the problem (3.13), (3.14) given in (3.15) and the constant

C = 6, we have

|y2(t)− x(t)| = |0− t| ≤ 5 < Cε, t ∈ [0, 5].

Further, |y2(t)− x(t)| = 0 < Cε, t ∈ [−1, 0]. Therefore corresponding to y2(t) =

0, t ∈ [−1, 5] and ε = 1.2 we have the solution x(t) given in (3.15) and the constant

C = 6 that satisfy

|y2(t)− x(t)| < Cε, t ∈ [−1, 5].

(iii) For ε = 1.5 and y3(t) =

{
t
10 if t ∈ [0, 5],

0 if t ∈ [−1, 0],
we have

∣∣∣∣y′

3(t)−
(
1 +

t cos(y3(t))

140
− 3y3(t)

140
+
t cos(y3(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y3(s))− sin(y3(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣y′

3(t)− 1− t cos(y3(t))

140
+

3y3(t)

140
− t cos(y3(g(t)))

70
− 1

20

∫ t

0

t

70
[sin(y3(s))− sin(y3(g(s)))] ds

∣∣∣∣
≤ 1.0557 < ε.

The solution x(t) of the problem (3.13), (3.14) given in (3.15) and the constant

C = 3 verify

|y3(t)− x(t)| ≤ 4.5 = Cε, t ∈ [−1, 5].
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(iv) Take ε = 10 and y4(t) =

{
t2 if t ∈ [0, 5],

0 if t ∈ [−1, 0].
Then, for t ∈ [0, 5], we have

∣∣∣∣y′

4(t)−
(
1 +

t cos(y4(t))

140
− 3y4(t)

140
+
t cos(y4(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y4(s))− sin(y4(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣y′

4(t)− 1− t cos(y4(t))

140
+

3y4(t)

140
− t cos(y4(g(t)))

70
− 1

20

∫ t

0

t

70
[sin(y4(s))− sin(y4(g(s)))] ds

∣∣∣∣ < ε.

Further, for the solution x(t) of the problem (3.13), (3.14) given in (3.15) and the

constant C = 2, we have

|y4(t)− x(t)| ≤ 20 = Cε, t ∈ [−1, 5].

(v) Finally, we take ε = 77 and y5(t) =

{
t3 if t ∈ [0, 5],

0 if t ∈ [−1, 0],
to obtain

∣∣∣∣y′

5(t)−
(
1 +

t cos(y5(t))

140
− 3y5(t)

140
+
t cos(y5(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y5(s))− sin(y5(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣y′

5(t)− 1− t cos(y5(t))

140
+

3y5(t)

140
− t cos(y5(g(t)))

70
− 1

20

∫ t

0

t

70
[sin(y5(s))− sin(y5(g(s)))] ds

∣∣∣∣ < ε.

For the solution x(t) of the problem (3.13), (3.14) given in (3.15) and the constant

C = 2, we have

|y5(t)− x(t)| ≤ 120 < Cε, t ∈ [−1, 5].

Remark 3.1. If y(t) is a solution of the inequality∣∣∣∣y′
(t)−

(
1 +

t cos(y(t))

140
− 3y(t)

140
+
t cos(y(g(t)))

70
+

1

20

∫ t

0

t

70
[sin(y(s))− sin(y(g(s)))] ds

)∣∣∣∣ < ε,

and x(t) is the exact solution of the problem (3.13), (3.14), then from the inequality

|y(t)− x(t)| ≤ Cε, t ∈ [−1, 5], it follows that y(t)→ x(t) as ε→ 0.

The same fact can be observed from the example given above and Figure 1 below.

Ðèñ. 1
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Remark 3.2. The equation (2.1) is not Ulam�Hyers stable on the in�nite interval

I = [0,∞).

The next example supports the assertion of Remark 3.2.

Example 2. Consider the following Volterra delay integro-di�erential equations:

x
′
(t) =

17

30
+

1

60
sin(x(t))− 1

15
cos(x(g(t)))− 1

12

∫ t

0

1

10
[cos(x(s)) + sin(x(g(s)))] ds, t ∈ [0,∞),

(3.16)

x(t) = 0, t ∈ [−1, 0],
(3.17)

where g(t) = t
4 ≤ t, t ∈ [0,∞).

(i) De�ne the function h : [0,∞)× [0,∞)× R× R→ R by

h (t, s, x(s), x(g(s))) =
1

10
[cos(x(s)) + sin(x(g(s)))] , t, s ∈ [0,∞), t ≥ s.

Then, for any t, s ∈ [0,∞) and x1, x2, y1, y2 ∈ R, we have

|h(t, s, x1, x2)− h(t, s, y1, y2)| ≤
1

10
{|cosx1 − cos y1|+ |sinx2 − sin y2|}

≤ 1

10
{|x1 − y1|+ |x2 − y2|} .

(ii) De�ne f : [0,∞)× R× R× R→ R by

f

(
t, x(t), x(g(t)),

∫ t

0

h(t, s, x(s), x(g(s)))ds

)
=

17

30
+

1

60
sin(x(t))− 1

15
cos(x(g(t)))− 1

12

∫ t

0

[cos(x(s)) + sin(x(g(s)))] ds

=
17

30
+

1

60
sin(x(t))− 1

15
cos(x(g(t)))− 1

12

∫ t

0

h (t, s, x(s), x(g(s))) ds.

Then, for any t ∈ [0,∞) and x1, x2, x3, y1, y2, y3 ∈ R, we have

|f(t, x1, x2, x3)− f(t, y1, y2, y3)| ≤
1

60
|sinx1 − sin y1|+

1

15
|cosx2 − cos y2|+

1

12
|x3 − y3|

≤ 1

12
{|x1 − y1|+ |x2 − y2|+ |x3 − y3|} .

The above de�ned functions f and h verify the assumptions (H1) and (H2) with

Lf = 1
12 and Lh = 1

10 . Further, one can easily verify that the function

x(t) =

{
t
2 if t ∈ [0,∞),

0 if t ∈ [−1, 0]

is the solution of the initial value problem (3.16), (3.17). Now, choose any ε > 1
2

and let

y(t) =

{
t
3 if t ∈ [0,∞),

0 if t ∈ [−1, 0].
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Then, for any t ∈ [0,∞), we have∣∣∣∣y′
(t)−

(
17

30
+

1

60
sin(y(t))− 1

15
cos(y(g(t)))− 1

12

∫ t

0

1

10
[cos(y(s)) + sin(y(g(s)))] ds

)∣∣∣∣
=

∣∣∣∣13 − 17

30
− 1

60
sin

(
t

3

)
+

1

15
cos

(
t

12

)
+

1

120

∫ t

0

[
cos
(s
3

)
+ sin

( s
12

)]
ds

∣∣∣∣ ≤ 19

120
< ε.

But for any solution x(t) of equation (3.16) we have

|x(t)− y(t)| =
∣∣∣∣x(t)− t

3

∣∣∣∣ ≤ |x(t)|+ t

3
→∞ as t→∞.

Therefore, the equation (3.16) is not Ulam�Hyers stable on the in�nite interval

I = [0,∞).
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