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1. Introduction

Let f be a 2π-periodic locally integrable function and

an = an(f) =
1

π

∫ π

−π
f(x) cosnxdx, bn = bn(f) =

1

π

∫ π

−π
f(x) sinnxdx

be its Fourier coe�cients, and let

(1.1) Sn(f, x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

be the partial sums of the Fourier series of a function f with respect to the trigonometric

system.

Let (αn) (αn > −1) and (Sn), n ∈ N, be sequences of real numbers, and let

(1.2) σαn
n ≡

n∑
ν=0

Aαn−1
n−ν Sν/A

αn
n ,

where

(1.3) Aαn

k = (αn + 1)(αn + 2) · ... · (αn + k)/k!.

It is clear that σ0
n = Sn. If (αn) is a constant sequence (αn = α, n ∈ N), then σαn

n

coincide with the usual Ces�aro σαn -means (see [18, Chapter III]). If in (1.2) instead

of Sν we substitute Sν(f, x) (see (1.1)), then the corresponding means σαn
n we will

denote by σαn
n (f, x).
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These means, called generalized Ces�aro (C,αn)-means, were studied by Kaplan

[6], where the author compared the (C,αn) and (C,α) summability methods, and

obtained necessary and su�cient conditions, in terms of the sequence (αn), for the

inclusion (C,αn) ⊂ (C,α), and su�cient conditions for the inclusion (C,α) ⊂ (C,αn).

Later on Akhobadze [1] � [4] and Tetunashvili [11] � [16] have investigated problems

concerning (C,αn) summability of trigonometric Fourier series. In papers [1] � [4] the

behavior of generalized Ces�aro (C,αn)-means (αn ∈ (−1; d), d > 0) of trigonometric

Fourier series of functions from various classes of continuous functions were studied,

and the sharpness of the obtained results were shown. Lebesgue [8] proved that every

function from L[0; 2π] has a Fourier series the sequence of (C, 1)-means of which is a.e.

convergent, and then M. Riesz [10] generalized this result for (C,α)-means (α > 0).

Observe that if αn → 0+, then the behavior of (C,αn)-means for Fourier series of

integrable functions is di�erent in the sense of pointwise convergence.

In [16], Tetunashvili proved the following theorem.

Theorem 1.1. Let the sequence (αn) be such that for some positive number m we

have

αn ≤
c

lnn
,

where 0 ≤ c < ln 2 and n > m. Then for any series with partial sums Sn satisfying

the condition:

lim sup
n→+∞

|Sn| = +∞,

the following is true:

lim sup
n→+∞

|σαn
n | = +∞.

Throughout the paper the letter c is used to denote positive constants depending

only on the indicated parameters, the value of which can vary from line to line.

If the sequence (αn) satis�es the condition of Theorem 1.1, then in view of Kolmogorov's

well known result (see, e.g., [7], [5, Chapter V]), we can conclude that there exists an

integrable function f0 such that the sequence σαn
n (f0, x) diverges almost everywhere.

On the other hand, in [13] Tetunashvili proved the following theorem.

Theorem 1.2. For any function f ∈ L(0; 2π) and a number ε > 0, there exist a

sequence of numbers αn ↓ 0 and a set F ⊂ [0; 2π] with |F | > 2π − ε, such that

lim
n→+∞

σαn
n (f, x) = f(x)

at every point x ∈ F , where |F | denotes the Lebesgue measure of the set F .
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Observe that for the function constructed by Kolmogorov the conclusion of Theorem

1.2 is true. It is clear that in this case the sequence (αn) does not satisfy the condition

of Theorem 1.1.

The theorems that follow give important information on the pointwise convergence

of (C,αn)-means of trigonometric Fourier series in the case where αn → 0+.

Theorem 1.3. Let 0 ≤ αn ≤ βn. Then the (C,αn) summability of a number sequence

(Sn) to S implies the (C, βn) summability of (Sn) to S.

Theorem 1.4. Let f ∈ L(0; 2π) and αn → 0+ as n → +∞. Then for almost every

x ∈ (0; 2π) we have

lim
n→+∞

αnσ
αn
n (f, x) = 0.

2. Proof of theorems 1.3 and 1.4

Proof of Theorem 1.3. To prove it we use the scheme proposed by Kaplan [6]. Let

σαn
n =

1

Aαn
n
Sαn
n =

1

Aαn
n

n∑
k=0

Aαn−1
n−k Sk.

We shall express σβn
n by numbers σαn

n as their regular mean. For all k ∈ {0, 1, ..., n}
we examine the sums (see [18, Chapter III, (1.10)]):

Sαk

k = Sαk−βn+βn

k =

k∑
j=0

Aαk−βn−1
k−j Sβn

j .

Let us consider these expressions as a system of linear equations with respect to the

variables Sβn

k , k ∈ {0, 1, ..., n}. Taking into account that Aαk−βn−1
0 = 1, we can easily

obtain that the determinant of this system is equal to 1. By Cramer's rule we have

Sβn
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 Sα0
0

Aα1−βn−1
1 1 . . . 0 Sα1

1

. . . . . . . . . . . . . . .

A
αn−1−βn−1
n−1 A

αn−1−βn−1
n−2 . . . 1 S

αn−1

n−1

Aαn−βn−1
n Aαn−βn−1

n−1 . . . Aαn−βn−1
1 Sαn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant by the last n-th column, we get

Sβn
n =

n∑
k=0

Ak,nS
αk

k ,
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where Ak,n is the cofactor of the element Sαk

k , k ∈ {0, 1, ..., n}. It is easy to see that

σβn
n =

n∑
k=0

Ak,n ·Aαk

k

Aβn
n

σαk

k .

Therefore, denoting

ank := Ak,n ·Aαk

k /Aβn
n ,

we get

(2.1) σβn
n =

n∑
k=0

ankσ
αk

k .

Now we prove that matrix (ank) is regular.

The following equalities are well known (see, e.g., [18, Chapter III, (1.10)]):

Aαk

k =

k∑
j=0

Aαk−βn−1
k−j Aβn

j , k ∈ {0, 1, ..., n} .

Observe that these equalities can be considered as a system of linear equations with

respect to variables Aβn

j . Then arguing analogously as above, we get

Aβn
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 Aα0
0

Aα1−βn−1
1 1 . . . 0 Aα1

1

. . . . . . . . . . . . . . .

A
αn−1−βn−1
n−1 A

αn−1−βn−1
n−2 . . . 1 A

αn−1

n−1

Aαn−βn−1
n Aαn−βn−1

n−1 . . . Aαn−βn−1
1 Aαn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant by the last n-th column, we obtain

Aβn
n =

n∑
k=0

Ak,n ·Aαk

k .

Let An =
∑n
k=0 ank. Then by the previous equality we have

(2.2) An =

n∑
k=0

Ak,n ·Aαk

k

Aβn
n

= 1.

Thus, the �rst condition of regularity is ful�lled.

Next, we consider the cofactors Ak,n (k ∈ {0, 1, ..., n}). It is clear that An,n = 1.

Now we estimate the cofactor An−1,n in the determinant Aβn
n . To this end, in the

determinant Aβn
n , we rewrite the last n-th column by the (n − 1)-th column, and

observe that the obtained determinant is equal to zero. Then expanding it by the last

column, we get 0 = Aαn−βn−1
1 ·An,n+An−1,n. Since αn ≤ βn we have Aαn−βn−1

1 ≤ 0,
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and hence, taking into account that An,n = 1, from the last equality we obtain

An−1,n ≥ 0. Analogously, we can show that the cofactor An−2,n is nonnegative. In

particular, in the given matrix the last n-th column we can rewrite by the (n− 2)-th

column. Then the value of the corresponding determinant will be 0. If we expand the

last determinant by the last column, we obtain

0 = Aαn−βn−1
2 ·An,n +A

αn−1−βn−1
1 ·An−1,n +An−2,n.

Therefore, An−2,n ≥ 0. Repeating the above reasonings for each cofactor Ak,n and

taking into account that Ak+1,n, ..., An,n ≥ 0, we get Ak,n ≥ 0, k ∈ {0, 1, ..., n}. Thus,
we have

Nn =

n∑
k=0

|ank| = An = 1, n ∈ {0, 1, ...} .

It is clear that

(2.3) 0 ≤ ank ≤ 1, k ∈ {0, 1, ..., n} .

Finally, we show that lim
n→∞

ank = 0. Let α′n = αn− 1/2 and β′n = βn− 1/2. It is clear

that α′k − β′n = αk − βn, k ∈ {0, 1, ..., n}. Therefore, the above considered cofactors

depend only on the di�erence αk−βn, and hence, using the above arguments applied

to these new sequences, we get

0 ≤ a′nk = Ak,n ·A
α′k
k /A

β′n
n ≤ 1,

implying that Ak,n ≤ A
β′n
n /A

α′k
k . Using this estimation for the inequalities 0 ≤ ank ≤

1, k ∈ {0, 1, ..., n}, and taking into account that for �xed k, the numbers Aαk

k and

A
α′k
k are �xed, we get

0 ≤ ank ≤ Aαk

k ·A
β′n
n /(Aβn

n ·A
α′k
k ) = O(nβ

′
n/nβn) = O(1/

√
n)→ 0, n→∞.

Thus, we have proved that the matrix (ank) is regular. �

Proof of Theorem 1.4. We have (see [18, Chap. III, (5.4)])

σαn
n (f, x) =

1

2π

∫ π

0

χx(t)K
αn
n (t)dt+ f(x),

where

χx(t) = f(x+ t) + f(x− t)− 2f(x).

In what follows we will need the following estimates for the kernel Kαn
n (t) (see [18,

Chapter III] and [2, Lemmas 1 and 2]):

|Kαn
n (t)| ≤ n+ 1, |Kαn

n (t)| ≤ c

nαnt1+αn
.
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Since for almost all Lebesgue point x the value of |f(x)| is �nite, we have αnf(x)→ 0

as n→ +∞. On the other hand, for such point x, we can write

1

2π

∫ π

0

χx(t)K
αn
n (t)dt =

1

2π

∫ 1/n

0

χx(t)K
αn
n (t)dt+

1

2π

∫ π

1/n

χx(t)K
αn
n (t)dt =

:= A1(n, x) +A2(n, x).

Besides, for any ε > 0 there exists δ(ε) such that for all δ (0 < δ < δ(ε))

1

δ

∫ δ

0

|χx(t)|dt < ε.

Let nδ be a natural number for which 1/nδ < δ < δ(ε). Then, for n > nδ we have

|A1(n, x)| ≤
n+ 1

2π

∫ 1/n

0

|χx(t)|dt < ε.

On the other hand, using integration by parts, we get

|A2(n, x)| ≤
c

nαn

∫ π

1/n

|χx(t)|t−1−αndt =

=
c

nαn
t−1−αn

∫ t

0

|χx(u)|du
∣∣∣∣π
1/n

+
c(1 + αn)

nαn

∫ π

1/n

t−2−αn

∫ t

0

|χx(u)|dudt =

=: B1(n, x) +B2(n, x).

It is easy to see that

B1(n, x) = Ox(1).

For B2(n, x) we have the estimate

B2(n, x) ≤
c

nαn

(∫ δ

1/n

+

∫ π

δ

)
t−2−αn

∫ t

0

|χx(u)|dudt =: F1(n, x) + F2(n, x).

Next, the functions F1(n, x) and F2(n, x) can be estimated as follows:

F1(n, x) =
c

nαn

∫ δ

1/n

t−1−αn
1

t

∫ t

0

|χx(u)|dudt ≤
cε

nαn

∫ δ

1/n

t−1−αndt =

=
cε

nαn
· 1

αn
·
(
nαn − 1

δαn

)
<

cε

αn

and

F2(n, x) =
c

nαn

∫ π

δ

t−2−αn

∫ t

0

|χx(u)|dudt ≤

≤ c

nαnδ2+αn

∫ π

δ

∫ t

0

|χx(u)|dudt = Ox,δ

(
1

nαn

)
.

Therefore, A2(n, x) = ox(1/αn), n→ +∞. �
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3. Appendix. The case of continuous functions

Let C([0, 2π]) denote the space of 2π-periodic continuous functions with norm

||f ||C([0,2π]) = max
x∈[0,2π]

|f (x) |. If f ∈ C([0, 2π]), then

ω(δ, f) = max{|f(x1)− f(x2)| : |x1 − x2| ≤ δ, x1, x2 ∈ [0, 2π]}

is called the modulus of continuity of the function f . For a given modulus of continuity

ω, by Hω we denote the class of functions f ∈ C([0, 2π]) for which (see [9]):

ω(δ, f) ≤ ω(δ), δ ∈ [0, 2π).

If the sequence (αn) satis�es the condition of Theorem 1.1, then there exists a

continuous function f0 such that σαn
n (f0, x) diverges at a point. On the other hand,

Tetunashvili [12] showed that for any continuous function there exists a sequence

of numbers αn ↓ 0, n → +∞, such that the (C,αn)-means of partial sums of

trigonometric Fourier series of this function converge at every point. Then, Akhobadze

[2] improved this result by proving the following theorem.

Theorem 3.1. If f ∈ Hω and αn ∈ (0, 1], n = 3, 4, ..., then

(3.1) ||σαn
n (·, f) − f(·)||C ≤ c ·max

 nαn − 1

αn · nαn
ω(1/n),

αn
n

π∫
π/n

ω(t)

t2
dt

 ,

where c is an absolute constant.

From the last statement we can easily conclude that for any modulus of continuity

ω there exists a positive sequence αn = o(1) as n→ +∞, such that for any function

f ∈ Hω the generalized Ces�aro means σαn
n (f, x) converge uniformly. Indeed, every

continuous function f ∈ Hω, where instead of ω can be considered the modulus of

continuity of f . If αn tends to zero su�ciently �slowly�, then it can easily be proved

that
nαn − 1

αnnαn
ω

(
1

n

)
→ 0, n→ +∞.

On the other hand, we have (see [17, p. 91, (2;8.82)]):

αn
n

∫ π

π/n

ω(t)

t2
≤ cω · αn · ω

(
1

n

)
ln

1

ω(1/n)
→ 0, n→ +∞.

The last reasoning can be completed as follows. It is well known (see [18, Chapter

VIII, Theorem (2.1)]) that the condition ω(1/n) = O(1/ lnn) does not imply convergence

of Sn(f, x) for all continuous functions from Hω, but for the generalized Ces�aro means

we have di�erent result.
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Theorem 3.2. Let ω(1/n) = O(1/ lnn) and αn → 0+ as n→ +∞, and let

lim
n→+∞

αn · lnn = +∞,

then σαn
n (f, x) uniformly converge to f for every function f ∈ Hω.
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