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1. INTRODUCTION

Let f be a 2w-periodic locally integrable function and

1 [ 1 /"
an = an(f) = — f(z) cosnzdz, by, =b,(f) = — f(z)sinnzdz
T ) T J_x
be its Fourier coefficients, and let
(1.1) Sn(f,x) = 9o (ay cos kx + by sin kx)

2
k=1

be the partial sums of the Fourier series of a function f with respect to the trigonometric
systemmn.

Let () (an, > —1) and (S,,), n € N, be sequences of real numbers, and let

n

(1.2) oo =y AnnlS, JAST,
v=0
where
(1.3) AP = (an + 1)(an +2) - oo (o + k) /R

It is clear that 00 = S,,. If (v,) is a constant sequence (a,, = o, n € N), then &=
coincide with the usual Cesdro og-means (see [18, Chapter III]). If in (1.2) instead
of S, we substitute S,(f,x) (see (1.1)), then the corresponding means oo we will
denote by ¢2"(f, x).
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These means, called generalized Cesdro (C, «,)-means, were studied by Kaplan
[6], where the author compared the (C,«,) and (C,«) summability methods, and
obtained necessary and sufficient conditions, in terms of the sequence (a,), for the
inclusion (C, o) C (C, @), and sufficient conditions for the inclusion (C, ) C (C, a,).
Later on Akhobadze [1] — [4] and Tetunashvili [11] — [16] have investigated problems
concerning (C, a,,) summability of trigonometric Fourier series. In papers [1] — [4] the
behavior of generalized Cesaro (C, a,,)-means (o, € (—1;d),d > 0) of trigonometric
Fourier series of functions from various classes of continuous functions were studied,
and the sharpness of the obtained results were shown. Lebesgue [8] proved that every
function from L[0; 27] has a Fourier series the sequence of (C, 1)-means of which is a.e.
convergent, and then M. Riesz [10] generalized this result for (C, a)-means (a > 0).

Observe that if a,, — 0+, then the behavior of (C, o, )-means for Fourier series of
integrable functions is different in the sense of pointwise convergence.

In [16], Tetunashvili proved the following theorem.

Theorem 1.1. Let the sequence (o) be such that for some positive number m we

have

(677 S T
Inn

where 0 < ¢ < In2 and n > m. Then for any series with partial sums S,, satisfying
the condition:

limsup |Sp| = +o0,
n—+oo

the following is true:

limsup |op"| = +o0.
n—-+oo

Throughout the paper the letter ¢ is used to denote positive constants depending
only on the indicated parameters, the value of which can vary from line to line.

If the sequence (., ) satisfies the condition of Theorem 1.1, then in view of Kolmogorov’s
well known result (see, e.g., [7], [5, Chapter V]), we can conclude that there exists an
integrable function fy such that the sequence o2n(fy, z) diverges almost everywhere.

On the other hand, in [13] Tetunashvili proved the following theorem.

Theorem 1.2. For any function f € L(0;27) and a number ¢ > 0, there exist a
sequence of numbers o, | 0 and a set F' C [0;2x] with |F| > 2w — &, such that

im0 (,2) = f(2)

at every point x € F, where |F| denotes the Lebesgue measure of the set F.
4
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Observe that for the function constructed by Kolmogorov the conclusion of Theorem
1.2 is true. It is clear that in this case the sequence («a,) does not satisfy the condition
of Theorem 1.1.

The theorems that follow give important information on the pointwise convergence

of (C, ayp)-means of trigonometric Fourier series in the case where a,, — 0+.

Theorem 1.3. Let 0 < «, < B,,. Then the (C, o) summability of a number sequence
(Sn) to S implies the (C, B,,) summability of (S,) to S.

Theorem 1.4. Let f € L(0;27) and o, — 0+ as n — +oo. Then for almost every
x € (0;2m) we have

ngr}rloo anon(f,x) =0.

2. PROOF OF THEOREMS 1.3 AND 1.4

Proof of Theorem 1.3. To prove it we use the scheme proposed by Kaplan [6]. Let

1 1 &
Qpn Oy a,—1
Opn" = oy, Sn - oy E :Anfk Sk
An An =

We shall express o2 by numbers c%» as their regular mean. For all k € {0,1,...,n}
we examine the sums (see [18, Chapter III, (1.10)]):
k
Spk = Slf:k*BnJr,Bn — ZA;?E;B”*IS;&L.
j=0
Let us consider these expressions as a system of linear equations with respect to the
variables S,f", k €{0,1,...,n}. Taking into account that Aoa’rﬁrﬁ1 = 1, we can easily

obtain that the determinant of this system is equal to 1. By Cramer’s rule we have

1 0 . 0 5go
A =Bt 1 0 sy
Shn =
R e 1 SOt
Agn=Pn=l Aon Pnmh gl gan

Expanding this determinant by the last n-th column, we get

n
n @
Sﬁ - ZAk,n kka

k=0

5
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where Ay, ,, is the cofactor of the element S.*, k € {0,1,...,n}. It is easy to see that

n
Apn - AR
0—571 = Z ABn o.;:k'
k=0 n
Therefore, denoting
Ank = Ak,n ' Agk /A'rBLna

we get
n
(2.1) ofn = Zanka?’“.
k=0

Now we prove that matrix (a,) is regular.

The following equalities are well known (see, e.g., [18, Chapter III, (1.10)]):
k
« ar—LFn—1 n
A =" A O AR ke {0,1,..,m}
j=0
Observe that these equalities can be considered as a system of linear equations with

respect to variables A]@ ™. Then arguing analogously as above, we get

1 0 . 0 Ago
A=t 1 . 0 A
AP =
APl goni Bt 1 A
Agn=Pn=l o pon Bl APl g

Expanding this determinant by the last n-th column, we obtain

n
APr =" A - AR
k=0

Let A, = ZZ:O ank. Then by the previous equality we have
n an
(2.2) Ay =>" % =1.
k=0 n
Thus, the first condition of regularity is fulfilled.

Next, we consider the cofactors Ay, (k € {0,1,...,n}). It is clear that A, , = 1.
Now we estimate the cofactor A,,_;, in the determinant Aﬁn. To this end, in the
determinant A", we rewrite the last n-th column by the (n — 1)-th column, and
observe that the obtained determinant is equal to zero. Then expanding it by the last
column, we get 0 = A?"iﬂ"*l «Apn+ An_1n. Since o, < B, we have A‘f"*B"*l <0,
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and hence, taking into account that A, , = 1, from the last equality we obtain
Ap—1n > 0. Analogously, we can show that the cofactor A, _s , is nonnegative. In
particular, in the given matrix the last n-th column we can rewrite by the (n — 2)-th
column. Then the value of the corresponding determinant will be 0. If we expand the

last determinant by the last column, we obtain
0= Agn_ﬁn—l . An7n 4 Allln—l_ﬁn—l i Anf]_’n + An727n-

Therefore, A,—_2, > 0. Repeating the above reasonings for each cofactor A, and
taking into account that Axy1 n,..., Ann > 0, we get Ay, >0, k € {0,1,...,n}. Thus,

we have
No=Y ol =An=1, ne{01,.}.
k=0
It is clear that
(2.3) 0<anp <1, ke{0,1,...n}.

Finally, we show that lim an,x = 0. Let o), = o, —1/2 and 3], = 8, —1/2. It is clear
n—oo

that af, — B8], = o — Bn, k € {0,1,...,n}. Therefore, the above considered cofactors

depend only on the difference oy — 3, and hence, using the above arguments applied

to these new sequences, we get
0 S a;k - Ak,n : A(]:;Q/Agg S 17
implying that A, < Ag’/”’ /AZ‘;“. Using this estimation for the inequalities 0 < apr <
1, k € {0,1,...,n}, and taking into account that for fixed k, the numbers A;* and
Az;“ are fixed, we get
0 < anp < A% - AL J(ABr . A%R) = O(nPh Jnfr) = O(1/v/m) = 0, n — oo.

Thus, we have proved that the matrix (a,) is regular. ]

Proof of Theorem 1.4. We have (see [18, Chap. III, (5.4)])

7o () = 5 [ XK (0t + £,

where
Xz(t) = flz+t)+ flx —t) — 2f(x).
In what follows we will need the following estimates for the kernel K3~ (t) (see [18,

Chapter III] and [2, Lemmas 1 and 2]):

Qlp Qn ¢
Ko@) <nt 1 K] < o
7
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Since for almost all Lebesgue point x the value of | f(x)| is finite, we have a, f(x) — 0

as n — +o00. On the other hand, for such point x, we can write

1/n T
| enrzmas - [ oo -

™ J1/n

1 4 1
— | oK (t)dt = —
QTOX() n(®) 2

= Ai(n,z) + A2(n, x).
Besides, for any € > 0 there exists d(¢) such that for all 6 (0 < ¢ < d(¢))
1 /9
5 [ Dbl <e.
0

Let ns be a natural number for which 1/ns < § < d(g). Then, for n > ns we have

o) < "2 [ o <.
™ Jo

On the other hand, using integration by parts, we get

C s
A < — SOt dt =
As(n, )] < < /1/n|x (t)

1 n T t
J ot on) / 2o / X () dudt =
1/n 0

™
C

t
SIS Eo / e ()|
0

nn

nn

1/n
=: Bi(n,z) + Ba2(n, z).

It is easy to see that
Bi(n,z) = 0,(1).

For By(n,z) we have the estimate

(/1jn+/;> f2—an /Ot Ixe (u)|dudt =: Fy(n,z) + Fa(n, ).

Next, the functions Fj(n,z) and Fy(n,z) can be estimated as follows:

5 t 5
1 3
Fy(n,z) = & / t‘l“""f/ o ()| dudt < < / 1o gt —
ner Ji/m t Jo ne Ji/m
1 1
:cg..<n0‘n_ ><CE
nen 6n an,
c ™ t
Fy(n,z) = / tiQ*”‘"/ Iz (u)|dudt <
ne Js 0

c ot 1
< W/g /0 Xa(u)|dudt = Og 5 (nan> .

Therefore, As(n,z) = 0,(1/ay), n — +oo. O
8

C
BQ(”? ‘T) S nom

and




A NOTE ON THE GENERALIZED CESARO MEANS ...

3. APPENDIX. THE CASE OF CONTINUOUS FUNCTIONS

Let C([0,27]) denote the space of 2w-periodic continuous functions with norm
L fllc (0,207 = Ig[loagcﬂu (z)]. If f e C([0,27]), then

w(d, f) = max{|f(z1) — f(z2)| : |z1 — 22| < 0, 21,22 € [0, 27|}

is called the modulus of continuity of the function f. For a given modulus of continuity
w, by H*¥ we denote the class of functions f € C([0,27]) for which (see [9]):

w(d, f) <w(d), 6 €[0,27).

If the sequence (a,) satisfies the condition of Theorem 1.1, then there exists a
continuous function fy such that 0% (fo, z) diverges at a point. On the other hand,
Tetunashvili [12] showed that for any continuous function there exists a sequence
of numbers «,, | 0, n — +oo, such that the (C,«,)-means of partial sums of
trigonometric Fourier series of this function converge at every point. Then, Akhobadze

[2] improved this result by proving the following theorem.

Theorem 3.1. If f € H¥ and a,, € (0,1], n = 3,4, ..., then

(31) ||U1?:n(af) - f()HC < c-max %w(l/n);%/%dt ’
T/n

where ¢ is an absolute constant.

From the last statement we can easily conclude that for any modulus of continuity
w there exists a positive sequence a,, = o(1) as n — 400, such that for any function
f € H“ the generalized Cesdro means o2~ (f,z) converge uniformly. Indeed, every
continuous function f € H¥, where instead of w can be considered the modulus of

continuity of f. If a,, tends to zero sufficiently “slowly”, then it can easily be proved

that
n% —1 (1)
—w|—] =0, n—4oco.
Qn,no%n n

On the other hand, we have (see [17, p. 91, (2:;8.82)]):
n [T ow( 1 1
a—/ w(2)<cw-an-w<)ln —+0, n— +oo.
n Jom t n w(l/n)
The last reasoning can be completed as follows. It is well known (see [18, Chapter
VIII, Theorem (2.1)]) that the condition w(1/n) = O(1/Inn) does not imply convergence

of S,,(f, z) for all continuous functions from H*, but for the generalized Cesdro means

we have different result.
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Theorem 3.2. Let w(1l/n) = O(1/Inn) and o, — 0+ as n — +00, and let

lim a, - -lnn = +o0,
n—-+oo

then oo~ (f,x) uniformly converge to f for every function f € H“.
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