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Abstract. In this paper, we prove a difference analogue of Cartan’s second main
theorem for a meromorphic mapping on C™ intersecting a finite set of fixed hyperplanes
in general position on P (C). As an application, we prove a uniqueness theorem for a
class of holomorphic curves by inverse images of n + 4 hyperplanes. This result is so far
the best result about the uniqueness problem for holomorphic curves by inverse images

of hyperplanes.
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1. INTRODUCTION AND MAIN RESULTS

Recently, Nevanlinna theory have been studied for difference operators. In 2006,
R. Halburd and R. Korhonen [6, 7] have built the second main theorem for a
difference operator of meromorphic functions. Since then, many authors have studied
applications of Nevanlinna theory for difference operators. In 2014, R. Halburd, R.
Korhonen and K. Tohge [8] proved a difference analogue of Cartan’s second main
theorem for holomorphic curves. In 2016, T. B. Cao and R. Korhonen [1] gave
a new version of the difference second main theorem for meromorphic mappings
intersecting hyperplanes in several complex variables.

However, to the best of our knowledge, a little is known concerning uniqueness
problem of holomorphic curves by applying difference second main theorems. When
one applies inequalities of type second main theorem, it is often crucial to have
an inequality with truncated counting functions. For instance, all the existing
constructions of unique range sets depend on the second main theorem with truncated
counting functions. The above quoted results motivate us to consider the difference
second main theorem for holomorphic curves intersecting hyperplanes with the
level of truncation. In order to reduce the number of hyperplanes in the uniqueness

problem, we first establish a difference analogue of Cartan’s second main theorem

!The research was sponsored by China/Shandong University International Postdoctoral
Exchange Program.
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with truncated level 1. As an application of this result, we prove a uniqueness
theorem for holomorphic curves by inverse images of n 4+ 4 hyperplanes.
To state our results, we first recall some notation and notions from Nevanlinna

theory. We set

|2|? = Z |zj|2 for all z=(z1,...,2m) € C™,

j=1

Sm(r)={2€C™:|z|=r}, Bnr)={z€C™:|z| <r},
_ Cii =

d=90+0, d 74m_(8 0),

Wm = dd®log |22, oy = d°log |z Awn™(2), vm(2) = dd°|z|*.

Let v be a divisor in C™. We set suppr = {2 : v(z) # 0}, and define the counting
function of v by

N,(r) = /1T t;&%dt, 1 <r < +oo,
where n(t) = [ 05, oy vm | form =2, and n(t) = 37, ., v(2) for m = 1. Let
M be a positive integer, we define ™ by v™(z) = min{M, v(z)} and the counting

function of v™ by

T Mt
NM(T):/ L()dt, 1 <r < +oo,
1

v f2m—1
where n™ (t) = [[ min{ M. }Bon (1) v~ tHorm > 2, and nM (1) = 30, o, min{M, v(2)}

for m = 1. When M = 1, we get the reduced counting function N, (r).

Let F' be a nonzero holomorphic function on C™. For a set a = (a1, ..., Q) of

nonnegative integers, we set |a| = ay + --- 4+ a,, and DI®IF =

We define the zero divisor vg of F' by
vp =max{p: DI*'F(z) =0 forall a:|a|<p}.

Let ¢ be a nonzero meromorphic function on C™. For each zy € C™, the zero
divisor v, of ¢ is defined as follows. We choose nonzero holomorphic functions F

F
and G defined on a neighborhood U of zy such that ¢ = o on U and dim(F~1(0)N

G71(0)) < m — 2, then we put vy = vy—o = vp, and vy—oo = v is called the
polar divisor of ¢. For each a € P1(C) with ¢~1(a) # C™, the counting function of
an a-point of ¢ is defined as follows. We denote by v4(a) the a-divisor of ¢. This
means that if ¢ = (¢o : ¢1) is an expression reducing ¢, then the a-divisor v4(a)

is the divisor associated with the holomorphic function ¢, — a¢g. Thus, we have
v(a) =3 com Vér—ado (2). We define

ng(r,a) = vy (ayvy ™

/suppu¢ (a)NBm (1)
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outside a set analysis of codimension 2, that is, dim((¢; — age) ™' (0) N ¢y *(0)) <
m — 2 for all m > 1 and r > 0, where suppvy(a) denotes the closure of the set
{z € C™ : vy(a)(z) # 0}. The counting function of an a-point of ¢ is defined by

Ny(r,a) = /17” ns(t;a) dt.

t2m—1

The prozimity function of ¢ is defined by

= | I o a# e

Js,.(m 1087 [6(2)om (2), a =00

The characteristic function of ¢ is defined by Ty(r) = me(r, 00) + Ng(r, 00). We
also define Ty(r,a) := mg(r,a) + Ny(r,a), a # oco. In some cases, we also use
the notation: Ty(r,a) = T'(r, fa) and my(r,a) = m(r, ﬁ) The first main
theorem states that Ty (r, a) = T (r)+O(1). The difference operator of a meromorphic
function ¢ is defined by

AC(¢) = d)(zl +Clv"'azm +Cm) _¢(Z17"'azm)7

where ¢ = (c1,...,¢n) € C™. The hyper-order of ¢ is defined by

S(p) = ligsgp lmgllcz;gﬁ(r)'
Let f be a meromorphic map of C™ into P™(C). For arbitrary fixed homogeneous
coordinates of P"(C), we can choose holomorphic functions fo, fi,..., fn defined
on C™ such that Iy = {z € C™: fy(2) = --- = fn(z) = 0} is of dimension at most
m—2and f = (fo:--: fn). Usually, the function f = (fo,..., fn) : C"™ — C"*!
is called a reduced representation of f. Set ||f(2)|| = max{|fo(2)], ..., |fn(2)|}. The
characteristic function of f is defined by

7yr) = [ 10gl| @)l (o)
where the above definition is independent (up to an additive constant) of the choice
of the reduced representation of f. The order of f and the hyper-order f of are
defined by

U(f) = limsup M and g(f) = limsup M

o0 logr r—o0 logr 7

respectively.
Let H be a hyperplane in P*(C), and let

n
L(zo, ..., 2n) = Zajzj
7=0
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be a linear form defined on H, where a; € C, j = 0,...,n, are constants. Denote

by a = (aq, ..., a,) the non-zero vector associated with H, and define

L(f) = (Haf) = (aaf) :Za’jfj'
=0

Under the assumption that (a, f) Z 0 for 1 < r < 400, the proximity function of
f with respect to H is defined as follows:

my(r,H) = / log Lﬁz)uam(x)7
sm) (@ f)(2)]
where the above definition is independent (up to an additive constant) of the
choice of the reduced representation of f. The counting function of f is defined
to be N, ,, (r), meaning that N, u 1) (r) = N(g, f)(r,0). In some cases, we use the
notation Ny (r, H) instead of N, (g (7).

The Casorati determinant of f is defined by

zZ4+c zZ4+c . nlz+cC
Wc(f):Wc(wa'wfn): ’ : ' : .. . ’
fo(z+mnc) fi(z4+nc) - fulz+nc)

where ¢ = (c1,...,¢n) € C™\ {0}.
Let f: C — P"(C) be a holomorphic curve, the Casorati type determinant of f
is defined by

’

fo(2) £1(2) : fn(2)
Dty = Dl fy=| PEFD HEED Rl |
folz+mnc) fi(z+ne) - fu(z+ne)

where ¢ € C\ {0}.
Let F be a nonzero holomorphic function on C™ and 2o = (20,1, - .,%0,m) € C™
be such that F(zp) = 0 with multiple p € N*, then

F(z)= Z b(z — 20)"

|k|=p

on a neighborhood of zy, where b, € C and
(Z—Zo)k = (Zl—ZO,l)kl ... (Zm—Zo,m)km,kl—f—- otk = ‘k‘|, k= (k‘l, .. .,km) e N™.

Observe that on a neighborhood of zy, we also have

o

Flz4+c)= Y alz—2)* ¢>0,
[k|=q

where c¢; are complex constants.
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~ C
We denote by N x(r,0) the counting function at all zeros zo of F(z), and observe

that zp is also a zero of F'(z + c¢) in the following sense. If zj is a zero of F'(z) with
multiplicity p > 1 and also is a zero of F(z 4 ¢) with multiplicity ¢ > 1, then z is
counted p—q times in ]?7;(7", 0). If ¢ = 0, the point zg is counted p times in Kf;(r, 0).
If F(z) = 0 implies F'(z + ¢) = 0, then we denote by NF(Z+C) (r,0) the counting
function at the points F(z + ¢) = 0 when F(z) = 0 with counting multiplicity.
This means that if z is a zero of F(z) with multiple p > 1 and 2, also is a zero of
F(z 4+ ¢) with multiple ¢ > 1, then zg is counted ¢ times in KfF(z-',—c) (r,0). We have
Ng(r,0) = Kf;(n 0) + NF(Z+C) (r,0). Note that N;(r, 0) may be negative, positive
or zero if F(z) = F(z +¢).

The following definition was given in Korhonen et. al [9].

Definition 1.1. Let n € N*, ¢ € C\ {0} and a € PY(C). An a-point 2y of

a meromorphic function h(z) is said to be n-successive and c-separated if the n

meromorphic functions h(z + jc) (j = 1,...,n) take the value a at z = zy with
multiplicity not less than that of h(z) at z = zo. All the other a-points of h(z)
~ [n,c]

are called n-aperiodic of pace c. By N, (r,a) we denote the counting function of

n-aperiodic zeros of the function h — a of pace c.

~ [n,c]

Therefore, we denote by Ny ,(r,0) the counting function of the n-aperiodic
zeros of function (H, g) for holomorphic curve g : C — P*(C). Also, we denote by
N ,E"’C] (r,a) (resp. NL“’C] (r,a)) the counting with multiplicity (resp. without counting
multiplicity) function of n-successive and c-separated a-points of a function h.

Recall that the hyperplanes Hy, ..., H,, ¢ > n, in P"(C) are said to be in general
position if for any distinct 41,...,4,41 € {1,...,q}, we have ﬂ:;r% supp(H;, ) = 0,
which is equivalent to the H;,,..., H

inss D€ing linearly independent.

In this paper, we consider the following family of meromorphic maps:
F = {f . C™ — P™(C) such that Ty, (r) < O(Ty(r)) for all i = 0, . n}
Observe that F # 0, since f = (fo : f1: -+ : fn) € F, where f; = 1 for some
i €40,...,n}. Indeed, we have for all j # i,

Tfj(r)=/s ()10g+|fj(2)|0m(2) S/S log(1+ max {[fi(2)[})om(2)

i (1) t€{0,...,n}\1
< [ toglla)llom(z) + O() = T5() + O(1),
Now we are in position to state the main results of this paper. The next theorem

is a difference analogue of Cartan’s second main theorem.
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Theorem 1.2. Let f = (fo: f1:---: fn) : C — P*(C) be a holomorphic curve
in F with s(f) = ¢ < 1, and let Hy,...,H, be hyperplanes in P"(C) in general
position such that the image of f is not contained in H;,j =1,...,q. Suppose that
D.(f) £ 0. Then for any 1 < r < 400, we have

N[nc] —Inyd]
(q—n—1)Ts(r) Z (.5 (1:0) + Ny (r,0)) + S(r, f),

Jj=1

r lies outside of a possible exceptional set E C [1,00) of finite logarithmic measure.
As an immediate consequence of Theorem 1.2, we have the following result.

Corollary 1.1. Let f = (fo: fi: -+ : fn) : C — P™(C) be a holomorphic curve
in F with s(f) = ¢ < 1, and let Hy,...,H, be hyperplanes in P"(C) in general
position such that the image of f is not contained in H;,j =1,...,q. Suppose that
D.(f)#£0 and for any 1 < r < 400,

1 ~Ind
ZN(Hj,f)(Ta 0) = S(ra f)

j=1
Then we have

q
(q—n—1)Tr) < S NGH 5 (0,0) + S0, f) SZ 1,5 (1,0) + S(r, f)
=1

Jj=1

2

for all v lying outside a of possible exceptional set E C [1,00) of finite logarithmic

measure.

Next, we consider the family § C F of holomorphic curves with the following
properties:
(i) Do(f) # 0 for all f € G;
(#7) Let Hy,...,Hy q > n+ 4, be hyperplanes in P"(C) in general position such
that the image of f is not contained in H;,j =1,...,q, and f~*(H;)Nf~Y(H;) =0

~ [n,c]

for all i # j, and f € §. We also assume that 37, Ny 1 (r,0) = S(r, f) for all
fes.
(#3i) (f) =¢ < 1forall feg.

As an application of Corollary 1.1, we have the following uniqueness theorem for

holomorphic curves from §.

Theorem 1.3. Let f and g be two holomorphic curves in G, and let Hy,...,Hy,q >

n + 4, be hyperplanes in P"(C) in general position. Suppose that f(z) = g(z) on
Ui_, (f~'(H;) Ug~'(H,)). Then we have f = g.

Remark 1.1. In 2010, Z. Chen and Q. Yan [3] have proved a uniqueness theorem

for holomorphic curves from C into P"*(C) by inverse images of 2n + 3 hyperplanes.
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Our Theorem 1.3 gives a uniqueness theorem for holomorphic curves by inverse

images of n 4+ 4 hyperplanes.

Theorem 1.4. Let f = (fo: f1: - : fn) : C™ = P*(C) be a meromorphic non-
degenerate linear map in F with ¢(f) = ¢ < 1, and let Hy,..., H, be hyperplanes
in P"(C) in general position such that H;(f(0)) # 0,5 = 1,...,q. Then for any
1 <r < 400, we have

4 .c
(q—TL—l Tf ZN(H f)TO +N(H f(z+c))(r 0))+S(T7f)’
j=1

r lies outside of a possible exceptional set E C [1,00) of finite logarithmic measure.

2. SOME RESULTS FROM NEVANLINNA THEORY

In this section we state some known results from Nevanlinna theory that will be

used in the proofs of the theorems.

Lemma 2.1 ([1]). Let f be a non-constant meromorphic function in C™ such that
f(0) # 0,00, and let c € C™. If ¢(f) =< < 1, then

i 12+
TG

for all r > 0 outside of a possible exceptional set E C [1,400) of finite logarithmic

) =5(r,f),

measure [, dt/t < +oc.

Lemma 2.2 (|8, 10]). Let f : C™ — PL(C) be a meromorphic function, and let
ceC™ Ifo(f) =¢ <1, then Ty(,ye)(r) < Ty(r) +o(Ts(r)), where r — co outside

of an exceptional set of finite logarithmic measure.

Lemma 2.3 ([8]). Let f be a non-constant meromorphic function, € > 0 and c € C.
If (f) < 1 and € > 0, then

fleto)y _  Ty(r)
7 ) )

for all r outside of a set of finite logarithmic measure.

m(r,

3. PROOF OF THEOREMS

We first prove a number of lemmas.

Lemma 3.1. Let f = (fo: fi:-: fn) : C— P*(C) be a holomorphic curve in

F with hyper-order <(f) < 1, and let H,. .., H, be arbitrary hyperplanes in P"(C)

such that the image of f is not contained in H;,j =1,...,q. Let a; by the non-zero
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vector associated with H;, 7 =1,...

inequality

1 f(re?)| L
(s, f) re“‘))|2ﬂ'

/ max Z 1og

leK

< (n+1D)Ty(r

holds for all r outside of an exceptional set of finite
mazimum is taken over all subsets K of {1,...

independent.

Proof. Let K C {1,...
Without loss of generality, we may assume that ¢ >

be the set of all injective maps p: {0,1,...,

n} —{1,...

,q- Suppose that D.(f) Z 0. Then the following

) NDC(f)(T,O)"FS(T,f)

logarithmic measure. Here the

,q} such that a;, | € K are linearly

,q} be a set such that a; (I € K) are linearly independent.

n+land #K =n+ 1. Let T

,q}. Then we can write

IF( re"’)l\ A ||f (re)|  do
log ———"—"—— = log —ATC I 4V
/ MIGZK (ay, f)(rei®)| 27 / e Z % N, N(rei®)| 27
27 i n
- mg%dog{ et } i
o 11 l@uw: Hre)|
< " maxlog{ ”f(rew)HnH _ }d@
“Jo w€T 7 UDe((@u0)s )y @y, ) (rei®)| ) 27
4 f g i0
+ 2 ma%(log{|Dc((al—l(07)1af)a ..7(~all.(n)7f))(7ﬂe )I}de +O(1)
o 1T (@0, f)(re)] T
/27T logmax{ ”f(rew)HnH _ }d&
0 HeT |DC((aH(O)7 )7 i) (au(n)a f))(r619)| ™
2m 3 3 0
+/ 1Ogmx{IDc((aM(oz,f'),---,(am(nyf))(re )I}d0+0(1)
0 neT ll:[0|(au(l)7f)(7"€w)| 2T
2 f 3 i0
</ log ‘Dc«a%‘((g’f)’ --a(flmn)vf))(?“e )I%
0 HET II:IO (@), f)(re?)]
2m Fro 0 [[nt1
|| f(re) |t do
+ol ; ————— +0(1).
\/0 Og;;|DC((au(0)7f)7"'7(au(n),f))(T€ZG)|271' ( )
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By the property of Casorati-type determinant, we see that | D.((a,,(0), f), cos (@umy, ) =

Ci,u|De(fo, - -, fn)|, where Cy ,, > 0 is a constant. So, we obtain
o I (re®)||  df
3.1 X log ——-—"———
CN A 28 e et 2
< /27r log Z |Dc((au(07)La f)v ) (Nau(n)a f))(rew” ;lj
0 er 1T l(@uw: e "
o If(re®) (™t do
+ o8 e 2 O
We have
DC((au(O)» f~)7 cee (a,u(n)a fN))(Z)
1;[ (au(z), f)(z)
(au(0), i)'(z) (A1) :)’(Z) _ (Ay(n)s :)’(Z)
(au(0), f)(2) a, 1), f)(2) a,(n), f)(2)
(au(0)7 f) NZ + C) (au(1)7 f) ~Z + C) . (au(n)v f) ~Z + C)
= (a/L(O)a f)(Z) (au(l)a f)(Z) (a,u(n)a f) (Z)
@0 DG+ @, HE+10)  @uw, -+ ne)
(au(0), f)(2) (au), f)(z) (au(n)» f)(2)

By Lemma 2.3, we obtain

(a,q), f)(f + je)
(au@), [)(2)

for all » > 0 outside of a possible exceptional set E C [1,400) of finite logarithmic

(3.2) m(r, )= O(T(au(l),f)(z)(r))’

measure fE dt/t < +oo, for all I =0,...,n and for all j =1,...,n. We have

Lo prs(1) = ;Tfj (r) +0(1) < O(Ty(r))

for all ] =0,...,n. Thus, (3.2) implies

. (au), J?)(f + je)
(au@y, f)(2)

foralll=0,...,nand forall j =1,...,n.

(3-3) I

) = o(Ty(r)),

From (3.3) and the lemma on the logarithmic derivative, for any p € T, we have

/27r 10g+ ‘Dc((au(O)a f), R (au(n), f))(’l”ew” dfe
' [1 |(au(1),f)(rei9)| 2

=0

< S(r, f).

~
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This implies that

2w Dc .
[ w3 1Pkt
0

s @y, D) (re)| o
s e e

°n IDe((au0): f): - - > (uny, ) (re?)| db
< /O log" 3" 1(0) p(n) do

HET zﬁo |(au(l)7 f)(re“’)\ o
(3.4) < Z/ZW log™ |Dc((au<oz,f),...7(au<n),f))(reie)|i€ o < s0h)
0 n i6 2m
peT ll;[0|(au(l)7f)(7"6 )l

Now the statement of the lemma follows from (3.1), (3.4) and Jensen’s formula.

Lemma 3.1 is proved. g

Lemma 3.2. (see[5]) Let fo, f1,- .., [n be linearly independent meromorphic functions
in C™, and let f = (fo, f1,..., fn). Then there are multi-indices v; € Z7', i =
1,...,n such that 0 < |v;| < i and f,0" f,..., 0"~ f are linearly independent over
cm™.

Fix multi-indices v; € Z7 with vy = 0 and |v5] > 0 (i = 1,...,n), and set
I = |vi|+ -+ + |Vn|. For meromorphic functions fo,..., f, in C™, the Wronskian

determinant is defined by

fo fi : fn
Dify Of O,
W(va"'vfn):Wvl...un(f()»"'afn): . : . :
O fo Ofr - O"fy
Observe that if fo, f1,..., fn are linearly independent meromorphic functions in
C™, then W(fo,..., fn) Z0.
Lemma 3.3. Let f = (fo: -+ : fn) : C™ — P*(C) be a non-degenerate meromorphic

map in F with <(f) < 1, and let Hy,...,H, be arbitrary hyperplanes in P™(C)
such that H;(f(0)) # 0,5 =1,...,q. Let a; be the non-zero vector associated with
H;,j=1,...,q. Then the following inequality

17 (=)
max » log ——=——0y,(2) < (n+ 1)T¢(r) — Nw(f(z+e))(1:0) + S(r, f)
/Sm(r) K l%:( (2, f)(2)]
holds for all r outside of an exceptional set of finite logarithmic measure. Here the
mazimum is taken over all subsets K of {1,...,q} such that a; (I € K) are linearly

independent.

Proof. By Lemma 3.2, there are multi-indices v; € Z7'(i = 1,...,n) such that
0 < |y| <iand f(z+¢), 8" f(z+¢),...,8" f(z+c) are linearly independent over
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C™. Therefore, we have W (fo(z +c),..., fa(2+¢)) Z0. Let K C {1,...,q} be a
set such that a; (I € K) are linearly independent. Without loss of generality, we
may assume that ¢ > n+ 1 and #K = n+ 1. Let T be the set of all injective maps
w:{0,1,....,n} = {1,...,q}. Then, we can write

IF ()l 1F )l
max log ——"——o0,(2) = max lo = om(z
/smm K 2 ® s H2)] = /sm “ETZ * 1@u- NG (@), £)(2)] )
1F(z) ||+

- om(2)
IZT( (aﬂm,f)(z)l}

By the property of Wronskian determinant, we get |W ((a,,0), e (Au(n), N+
c)| = Co W (fo,..., fn)(z+c)|, where Cy ,, > 0 is a constant. So, we obtain

max o Hf(—Z)HO' z
69 [ T e

leK ag,
W (@) s (o, ) + )
< logz n O'm(Z)
/Sm(r) neT I}()'(au(l) f)( )|
1)l
o ST g ) + O
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Next, we have

W((au() f)v"'v(au( )s f))(z+c)

I (2., f)(z +¢) I (2., f)(2)
=0 =0
1 1 : 1
0" (au0), )z +e) 9 (auw, )z+e) 8" (aum). )z +¢)
(au(o f)( +¢) (au(1), f)(z +¢) (Apu(n)s f)(z +¢)

9" (a(0), f)( +c¢) 9 (a, if)( c) 3”"(u(nif)( c)
(au(0), ) (= +¢) (aﬂ(l Nz+c¢) (@), )z +¢)

lﬁlo(a/t(l)v f)(Z + C)
M D)
=0

By Lemma 2.1, we obtain

a,, +c
m(r, (a.q) f)(f )
(au), f)(2)
for all » > 0 outside of a possible exceptional set E C [1,400) of finite logarithmic
measure [, dt/t < 4oo, for all [ =0,...,n

(3.6) ) = O(T(a“(l),f)(z)(r))’

By Lemma 2.2, we have

L o)1) = Ta, )y (1) + 50 f) < Z r)+5(r, f) < O(T¢(r))

for all l =0,...,n. Thus, (3.6) implies that

r (au(l)a f)(Z + C)

(37) : @ D)

) = o(Ty(r)),

foralll=0,...,n

Hence, by the lemma on the logarithmic derivative of several variables, for any
w € T, we have

0" (a0, f)(z + )
/ log+ L0 0n(2) = (T iy, ) Fyesey () = S(r, 1),
S (1) (a,u,(l)7 f)(Z + C) .

foralll=0,...,nand i =1,...,n. Therefore
/ 10g+ |W((au 07); f) (fl,u(n)v f))(z + C)| o

) I1 l(au@), f)(z + c)

=0

(3.8)
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Next, in view of (3.7) and (3.8), we have

/ 0g Y (W (a0, f) - () f))(2+0)|0m(z)
Sm() - ueT H (@, F)(2)]
< / 10g+ Z ‘W((aM(OT)L7 f)a R (Nau(n), f))(Z + C)| O'm(Z)
Smr) e [T [(auq), f)(z +¢)|
=0
a1y, [)(z +¢)
(3.9) + / “—~ om(z) < S(r. f).
Z () (au@y, f)(z)
The statement of the lemma follows from (3.5), (3.9) and Jensen’s formula. O
Lemma 3.4. Let f = (fo: - : fn) : C™ — P*(C) be a meromorphic map, and

let Hy,...,H, be hyperplanes in P"(C) in general position such that the image of
f is not contained in Hj,j =1,...,q. Let a; be the vector associated with H; for
j=1,...,q. Then
3 , 1F2)
my(r,H;) < maleog om(z) +0(1),
Sm (1) leK |(alaf)(z)‘
where the mazimum is taken over all subsets K of {1,...,q} such that #K = n+1.

Proof. Let a; = (aj0,...,a;,) be the associated vector of H;, 1 < j < ¢, and let T
be the set of all injective maps p: {0,1,...,n} — {1,...,q}. Slnce by hypothesis
Hy,...,H, are in general position, for any u € T, the vectors a, (), ..., a,(») are
linearly independent.

Let 1 € T, we have

(310) (f?au(t)) :au(t),0f0+"'+a/p(t),nfna t:0a17"'an

Solve the system of linear equations (3.10), to get
ft = bu,(t),O(ap,(O)7 f) +---+ bu(t),n(au(n)a f)7 = 07 17 BN

n n
where (bu(t),j> is the inverse of the matrix <aﬂ(t),j) . So, there is a
,J=0 t,j=0

constant C), to satisfy

17 ()]l < Gy max [(a,), f)(2)].

0<t<

Set C' = ma{?C Then for any p € T, we have
pne

IF ()] < © max |(au), ().

0<t<n
For any z € C™\ {U?Zl(Hj(f))_l(O) U Iy}, there exists a mapping p € T such that

for j ¢ {u(0),...,u(n)},

0 < |(au(0), N)(2)] < l@uay, N < v < @), N < @y, ()]
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Therefore, we have
T “n1 S @l
= Oq max —_———.
H 1 (2, f)(2)] hes g) (), £)(2)]
Next, we have

;:mf(’”Hj) =§_j/

S (1)

T If2)
< /Sm(r) logmaxH e

el [CHTR

17l F(2)
log—————o0,,(2) = lo - z
P TETRAR /smm gH f )\ 7m{2)

aj, j= 1

_ IS 1O
* O(l) B /Sm(r) If?EaT =0 to |(a#(t)v f) m(Z) * O(l).

Finally, we obtain

me(nHj) </ maleog HE ))H om(z) + O(1).

Sm (r) JEK |(aj’f Z)|
This completes the proof of lemma 3.4. O

Now we are in position to prove the main results of this paper.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.4, we obtain

q i0

If(re )| o
me(Tij)g/ maXZ g (a0, f)(reit)| 2r
i=1

R (CT)
(3.11) < (n+1D)Ty(r) - NDC(f)(Ta 0) + S(r, f).

By the first main theorem, we get T¢(r) = N, 5)(r,0) +my(r, H;) + O(1) for any
jeA{l,...,q}. So, from (3.11), we have

q
(g—n—1)Ty(r) ZN J,f NDc(f)(T70)+S(7",f)-
Jj=1

For zy € C, we may assume that zq is a zero of (a;, f) for 1 < j < ¢1 < n, and (a;, f)
does not vanish at zy for j > ¢;. Without loss of generality, we may assume that
zp € C is an n-successive and c-separated zero of (a;, f) for 1<j<pi <q <n.
Hence, there exist integers k; (j = 1,...,¢) and nowhere vamshlng holomorphic

functions g; (j =1,...,q), defined on a neighborhood U of 2y, such that

(aj, f)(z) = (2 — zo)kjgj(z), forj=1,...,q,
where k; = 0 for ¢; < j < g. Also, we can assume that k; > 2 for 1 < j < pg, and
k; = 1for py < j < p1. From the definition of n-successive and c-separated 0-point,
we have

(aj,f)(z+kc) (zfzo)l () forj=1,...,p1,
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for all £k = 1,...,n, where h? (j = 1,...,p1) are nowhere vanishing holomorphic
functions, defined on a neighborhood U of 2, and I; > k;,1 < j < p;. Let T be the
set of all injective maps u: {0,1,...,n} = {1,...,q}. By a property of Wronskian,

there exists a constant C,, # 0 such that

(ay(0), )’ a1y, )’ : (@) f)'
Dc(f) _ GM. (au(O)af;)(Z+C) (au(l)vf)(z+c) .' (au(n)a.f:)(z+c)
(@u0), [)(z+1n0) (aua), )z +n0) - (aum), )z +nc)

Po
Hz—zo T h(2),

where h(z) is a holomorphic function on U. Then D.(f) vanishes at zy with order

Po
at least ) (k; — 1). By the definitions of N([Z;;]f)(r, 0) and Np_(s)(r,0), we have
j=1 ’

[n,c [n.c
ZN<H 1 ZN<H,f>’“0
Therefore, we get

q
[nc]
]:1

r lies outside of a exceptional set E C [1,00) of finite logarithmic measure. O

Proof of Theorem 1.3. We denote f = (fo: -+ : fn) and g = (go : -+- : gn), and
assume that f # g. Then there are two numbers «, 5 € {0,...,n}, o # 8 such that
fa9s # f89a- Assume that zg € C is a zero of (Hj, f) for some j = 1,...,¢, then
20 is a zero of at most n entire functions (Hy, f),t € {1,...,q}. Since f~1(H;) N
J71(H;) =0 for all i # j, then z is a zero of one entire function (H;, f) for some
j €{1,...,q}. From condition f(z) = g(z), when z € UI_,(f~"(H;) Ug~"(H;)),

we get f(z0) = g(20). This implies that z, is a zero of Ja _ Ja | Therefore, we have

s 98

q
D Nump(0) SNy, g, (0) STy(r) +T,(r) + O(1).
! fs 98

Applying Corollary 1.1, we obtain

(3.12) (g =n =Ty (r) < Ty(r) + Ty(r) + o(Ty(r)).

Similarly, we get

(3.13) (g =n = 1)T(r) < Tp(r) + Ty(r) + o(Ty(r)).

Finally, combining (3.12) and (3.13), we obtain [[(g — n — 3)(T}(r) + Ty(r)) <

o(Ty(r)) + o(T4(r)), which contradicts the condition ¢ > n+4. Hence f =¢. O
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Proof of Theorem 1.4. By Lemmas 3.3 and 3.4, we have

U oy, L
Z:j f<,H]></Sm(T) ax 3 log n(2)

leK |(alaf)(z)|
(3.14) < (n + 1)Tf(7ﬂ) - NW(f(erc))(r? O) + S(T7 f)

Next, by the first main theorem, we get
Tf(?") = N(Hj,f)(T, 0) + T?”Lf(?‘7 Hj) + 0(1)

for any j € {1,...,¢}. So, in view of (3.14), we can write

(q—n—1)T¢(r ZN(H P (10) = Nw (£(zqe)) (1,0) + S(r, f)

~

q
:Z[N(H 0+ N, zren(0)] = Nw(gate)(r,0) + S(r, f)
j=1

~ ~

q
N 11,0 (1 0) + Y Naty 540 (1, 0) = Niw(pzep) (1,0) + S(r, ).
j=1

M@

BN
Il
—

We assume that zg is a zero of (H;, f) with multiple k; > 0,1 < j < ¢ <n, and
kj >n when 1 <7 <gq, k; <n when ¢ <j <q and k; =0 when 1 < j < g.
Hence, we may assume that z is also a zero of (H;, f(z + ¢)) with multiple [;,
l; >0,1<j<gq,andl; >n when 1 <j <py, 1<I; <n whenpy < j<p; and
l; =0 when p; <j < qi.

Therefore, it is easy to see that zo is counted in Nyy(f(.4c))(r,0) with order at
least >0, (I; — n). Then, we have

q q n

> Nty 540 (7, 0) = Nig(s(240 (1, 0) < > N (Hj . f (40 (15 0)-

j=1 j=1
Finally, we get

4q n
(a=n—DT5(r) < S (N, (1, 0) + s, goen) (1 0)) + S, f):
j=1

This completes the proof of theorem 1.3. O
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