Uszsecrust HAH Apmvmenuu, Maremaruka, Tom 54, u. 4, 2019, crp. 36 — 44

ON A WEAK TYPE ESTIMATE FOR SPARSE OPERATORS OF
STRONG TYPE

G. A. KARAGULYAN, G. MNATSAKANYAN

Yerevan State University, Armenia'
E-mails: g.karagulyan@ysu.am; mnatsakanyan_g@yahoo.com

Abstract. We define sparse operators of strong type on abstract measure spaces
with ball-bases. Weak and strong type inequalities for such operators are proved.

MSC2010 numbers: 42B20, 42B25, 28A25.

Keywords: Calderén-Zygmund operator; sparse operator; abstract measure space;
ball-basis; weak type estimate.

1. INTRODUCTION

The sparse operators are very simple positive operators recently appeared in the
study of weighted estimates of Calderén-Zygmund and other related operators. It was
proved that some well-known operators (Calderén-Zygmund operators, martingale
transforms, maximal function, Carleson operators, etc.) can be dominated by sparse
operators, and this kind of dominations imply a series of deep results for the mentioned
operators (see [1, 2, 4 — 7]). In particular, Lerner’s [6] norm domination of the
Calderén-Zygmund operators by sparse operators gave a simple alternative proof
to the As-conjecture solved by Hytonen [3]. Lacey [5] established a pointwise sparse
domination for the Calderén-Zygmund operators with an optimal condition (Dini
condition) on the modulus of continuity, getting a logarithmic gain to the result
previously proved by Conde-Alonso and Rey [1]. The paper [5] also proves a pointwise
sparse domination for the martingale transforms, providing a short approach to the
Ag-theorem proved by Treil-Thiele-Volberg [8]. For the Carleson operators norms
sparse domination was proved by Di Plinio and Lerner [2], while the pointwise
domination follows from a general result proved later in [4].

In this paper we consider sparse operators based on ball-bases in abstract measure
spaces. The concept of ball-basis was introduced by the first author in [4]. Based on

ball-basis the paper [4] defines a wide class of operators (including, in particular, the

IResearch was supported by a grant from Science Committee of Armenia 18T-1A081.

36



ON A WEAK TYPE ESTIMATE FOR SPARSE OPERATORS ...

above mentioned operators) that can be pointwisely dominated by sparse operators.
Some estimates of sparse operators in abstract spaces were obtained in [4]. In this
paper we define a stronger version of sparse operators, and prove weak and strong
type estimates for such operators.

We first recall the definition of the ball-basis from [4].

Definition 1.1. Let (X, 9, 1) be a measure space. A family of sets B C M is said

to be a ball-basis if it satisfies the following conditions.

B1) 0 < u(B) < oo for any ball B € B.

B2) For any two points x,y € X there exists a ball B > x,y.

B3) If E € M, then for any € > 0 there exists a finite or infinite sequence of balls
B, k=1,2,..., such that

u(EALﬂ%><a
k
Bj) For any B € B there is a ball B* € B (called o hull of B) satisfying the
conditions:
U ACB*, wB)<XuB),
AeB: n(A)<2u(B), ANB#D

where K is a positive constant.

A ball-basis B is said to be doubling if there is a constant > 1 such that for any
A€ B, A* # X, one can find a ball B € 5 to satisfy

(1.1) AC B, wB)<n-pu(A).

In [4], it was shown that the condition (1.1) in the definition can equivalently be
replaced by a stronger condition 7y < p(B)/un(A) < o, where 93 > np > 1. It is
well-known the non-standard features of non-doubling bases in many problems of
analysis.

One can easily check that the family of Euclidean balls in R™ forms a ball-basis
and it is doubling. An example of non-doubling ball-basis can serve us the martingale-
basis defined as follows. Let (X, 90, 1) be a measure space, and let {8, : n € Z} be a
collection of measurable sets such that 1) each 9, is a finite or countable partition of
X, 2) for each n and A € 9B, the set A is a union of sets A’ € B,,,1, 3) the collection
B = UpezB, generates the o-algebra M, 4) for any points z,y € X there is a set
A € B such that x,y € A. One can easily check that B satisfies all the ball-basis
conditions B1)-B4). On the other hand, it is not always doubling. Obviously, it is
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doubling if and only if u(pr(B)) < cu(B), B € 9B, where pr(B) (parent of B) denotes
the minimal ball satisfying B C pr(B).

Let B be a ball-basis in a measure space (X, 9, u). For f € L"(X), 1 <7r < o0,
and a ball B € ‘B we set

1 r Hr *
oo = (g [17) 0 o= 5w s
A collection of balls 8§ C B is said to be sparse or v-sparse if for any B € 8 there
is a set Ep C B such that u(Ep) > yu(B) and the sets {Ep : B € 8} are pairwise
disjoint, where 0 < v < 1 is a constant. We associate with § the operators:
Asrf(@) =D (fa, Lal@), A5, f(2) =D (A4, La),
Aes Aes

called sparse and strong type sparse operators, respectively. The weak-L! estimate of
As.1 in R™ (case r = 1) as well as its boundedness on L? (1 < p < co0) were proved
by Lerner [6]. The LP-boundedness of Asg , for general ball-bases was shown by the
first author in [4].

We will say that a constant is admissible if it depends only on p and on the
constants X and « from the above definitions, and the notation a < b will stand for
the inequality a < ¢-b, where ¢ > 0 is an admissible constant. The main result of this
paper is the weak-L" estimate of Ag . generated by general ball-bases. More precisely,

we have the following result.

Theorem 1.1. A sparse operator of strong type A% ., 1 < r < oo, corresponding to
a general ball-basis, is a bounded operator on LP for r < p < oo, and satisfies the

weak-L" estimate, that is,

(1.2) 145, (O, S 1y, 7 <p<o0,

(1.3 p s, (0 >3 5 M,

A>0.

The proof of LP-boundedness of Ag . is simple and uses the duality argument as
in [6]. Lerner’s [6] proof of weak-L! estimate in R™ applies the standard Calderén-
Zygmund decomposition argument. The Calderén-Zygmund decomposition may fail
if the ball-basis is not doubling, so for the weak-L" estimate in the case of general
ball-basis we apply the function flattening technique displayed in Lemma 2.7. That is,
we reconstruct the function f € L™ around the big values to get a A-bounded function

g € L?", having ball averages of f dominated by those of g. As a result we will have
A5 .f

roo S ||.A:§7Tg||2ryoo, reducing the weak-L" estimate of Ag . to weak-L2".
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2. AUXILIARY LEMMAS

Recall some definitions and propositions from [4]. We say that a set E C X is
bounded if £ C B for a ball B € B.

Lemma 2.1 ([4]). Let (X,9, u) be a measure space with a ball-basis B. If E C X
is bounded and G is a family of balls with E C UG€9 G, then there exists a finite or
infinite sequence of pairwise disjoint balls G, € G such that E C |J,, G}.

Definition 2.1. For a set E € 9 a point x € E is said to be a density point if for
any € > 0 there exists a ball B 3 © such that (BN E) > (1 — e)u(B). We say that
a measure space (X, 1) satisfies the density property if almost all points of any

measurable set are density points.
Lemma 2.2 ([4]). Any ball-basis satisfies the density property.

The L™ maximal function associated to the ball-basis %6 we denote by

M, f(x) = Bes%l}peBU)B,r

Lemma 2.3 ([4]). If 1 <r < p < o0, then the mazimal function M, satisfies the

strong LP and weak-L" inequalities.

Definition 2.2. We say that B € B is a A-ball for a function f € L"(X) if

<f>B77- > A\
If, in addition, there is no A-ball A D B satisfying u(A) > 2u(B), then B is said to

be a mazximal A\-ball for f.

Lemma 2.4. Let the function f € L"(X) have bounded support, and let A > 0. There

exist pairwise disjoint mazimal \-balls { By} such that

(2.1) Gr={xeX: M f(z) >\ c|JB;
k

Proof. Since f has bounded support, one can easily check that the set G, is also
bounded. Besides, any A-ball is in some maximal A-ball. Thus we conclude that G =
U, Ba, where each B, is a maximal A-ball. Applying the above covering lemma, we

find a sequence of pairwise disjoint balls By such that
G cl B
k

and so we have (2.1). O
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Let B C (a,b) be a Lebesgue measurable set. For a given positive real x < |B|

denote
a(k,B) =inf{a" : |(a,d’)N B)| >k}, L(k,B) = (a,a(k,G)) N B.

Observe that L(k, B) determines the "leftmost"set of measure x in B and a(k, B)

does not depend on the choice of a.

Lemma 2.5. Let A C B C (a,b) be Lebesgue measurable sets on the real line, and
let 0 < k <|A|. Then we have

|L(k, B)AL(k, A)| < 2|B\ Al.
Proof. Obviously, we have a < a(k, B) < a(k,A) < b. Since |L(k, B)| = |L(k, B)|,
the sets
L(”v B) \L(’ivA) = ((aaa(ﬂvB)) N (B \ A))a
L(k, A)\ L(r, B) = ((a(k, B),a(k, A)) N A).
have the same measure. So, we get
|L(k, B)AL(k, A)| = 2|((a,a(k, B)) N (B\ A))| < 2|B\ A|.

Lemma 2.6. Let (X, 9, 1) be a non-atomic measure space and Gy be a finite or
infinite sequence of measurable sets in X. If a sequence of numbers & > 0 satisfies
>k &k < 00 and the condition
(2.2) > & <uGr), k=12,

Ju(G;)<p(Gr), G;NGr#2

then there exist pairwise disjoint measurable sets G, C Gy, such that
(2.3) N(ék) :gk,k: 172,....

Proof. Without loss of generality we can suppose that x(Gy) is decreasing. Since the
measure space is non-atomic, we can also suppose that G}, are Lebesgue measurable
sets in R. We first assume that the sequence Gy, k = 1,2,...,n, is finite. We apply
backward induction. The existence of G,, C G, satisfying ,u(én) = &, follows from
(2.2), since the latter implies &, < wu(G,) and we have that the measure is non-
atomic. We define G,, to be the leftmost set in G,,, that is, G,, = L(&,, Gr). Suppose
by induction we have defined pairwise disjoint sets Gj, C G}, satisfying (2.3) for
I <k <n.From (2.2) it follows that

% <G1—1 \ U ék) > u(Gro1) — Z w(Gj) > &

k=l I<j<n:G;NG_1#D
40



ON A WEAK TYPE ESTIMATE FOR SPARSE OPERATORS ...

Hence we can define G;_1 = L(§-1,G—1 \ Up_, Gx). To proceed the general case
we apply the finite case that we have proved. Then for each n we find a family of
pairwise disjoint sets G;C”), k =1,2,...,n such that u(G,(;L)) =& for1 <k <n.
Applying Lemma 2.5 and analyzing once again the leftmost selection argument of the

tilde sets, one can observe that

n(GUAGY) < 3G N6 < gua.
j=k

So, we conclude that
WGMAGT) < ST & m>n>k.
k=n—+1
The last inequality implies that for a fixed k the sequence I om) converges in L'-norm
k

as m — oo. Moreover, one can see that the limiting function is again an indicator

function of a set G, and the sequence G, satisfies the conditions of the lemma. [

Lemma 2.7. Let (X,9M, 1) be a non-atomic measure space, and let f € L"(X),
1 < r < oo, be a boundedly supported positive function. Then for any A > 0 there

exists a measurable set Ey C X such that

(2.4) w(EX) SfIR/A" {z e X+ Mo f(z) > A} C Ey,
and the function

(2.5) 9(z) = f(z)  Ix\p, (2) + A I, (z)
satisfies the conditions:

(2.6) glx) < Xae onX, (f)pr S {(9)B+, whenever B € B, B ¢ E,.

Proof. Applying Lemma 2.4 we find a sequence of pairwise disjoint maximal -
balls By, satisfying (2.1). Thus, applying the density property (Lemma 2.2), one can

conclude that

(2.7) f(z) < A foraa. x e X\ JB;.
k

Given By, we associate the family of balls
(2.8) B, ={BeB: BNB; #, u(B)>2u(BL)}.

Observe that if one of these families, say By, , is empty, then in view of conditions
B2) and B4), one can easily check that X C B;*. Then defining Fy = X, the claim
41



G. A. KARAGULYAN, G. MNATSAKANYAN

of the lemma will be satisfied. Hence we can assume that each By is nonempty, and
so, there is a ball Gy, € B such that

(2.9) wGr) <2 inf p(B).

From A-maximality of By and the inequality pu(Gx) > 2u(Bj), we get Bf C Gy,
(f)c:.» < A. This implies

(2.10) A / M <u(Gy) <c-u(Gr),
where ¢ > 0 is an admissible constant. Denote
Dy =By, Dy =B \U<j<k-1B}, k>2,

and consider the numerical sequence &, = % ka fm, k=1,2,..., for some constant

d > 0. Taking into account (2.10), for a small admissible constant § > 0 we obtain

U fj:% /fr

J:u(G5)Sp(Gr), GiNGr#2 J (G )<M(Gk) GiNGr#2
<2 / f7 < dp(Gr) < pl(Gr),
a;

which gives condition (2.2). Since our measure space in non-atomic, applying Lemma,

2.6, we find pairwise disjoint subsets Gj, C Gy, such that
~ 0
(2.11) w(Gr) = —/ frook=1,2,....
X b,

The disjointness of the sets Dy, implies

(2'12) Zu(é )\T / fr < Hf”r
k

From the A-maximality and disjointness property of By, we get

(2.13) “(UBZ*> <Z“ By) < Nz/ < ||f||r_
k

Denote Ey = (Uk Gk) U (U, B*). From (2.12) and (2.13) we get u(Ex) < || £]7/\",

and (2.7) implies (2.6). Hence it remains to prove that the function g satisfies (2.6).

Take a ball B € %8 with B ¢ FE). First of all observe that for each By satisfying

BN B; # @ we have u(B) > 2u(Bj), since otherwise we would have B C B;* C Ej,

which is not true. Thus, whenever B N B}, # @ we have B € B, then we get

1(Gy) < 2u(B), and so G C Gy C B*. Besides, from (2.7) and the definition of g it
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follows that f(z) < g(z) a.e. on X \ UyBj. Hence, using (2.11) and the disjointness

of G, we can write

<f>%,,-=ﬁ / I+ / fr Su(lB) .Z /f’”+ / g

BN(UxB) B\Uy B;: k: BiNB#PpAp, B\Uy B

< 1 f?“ Z )‘7M(Gk> + r

~ wB) D g B I

k: B*nB;éz K k: BiNB#2
1 J +/
= * N g B*,r
0 (B k: B*nB;ﬁg G )
This implies (2.6). O

3. PROOF OF THEOREM 1.1

Proof of LP-boundedness. For any B € 8 we have (f)5, < M, f(z) for all x € B, and
therefore (f)5, < (M, f)pr, B € B. Let Ep be the disjoint portions of the sparse
collection of balls satisfying u(Fp) > 7 - u(B). Also, suppose that r < p < oo and
q=p/(p—1). Thus, for positive functions f € LP and g € L?(X), we can write

/ Ay fgdn< S (ML f) 5 / gdp =" (M )5 (951 - u(B)

Bes Bes$
<y S M f)py - (WEB)YP - (9)p1 - (u(Ep))M
BeS§
1/p 1/q
<77 <Z<MTf>§;,T : u(EB>> : <§j<g>qB,1 : u(EB)>
Be$ BeS

<M M A1 Mi(9)llg S 1M fllp - llglla S £ - lgllas

which completes the proof of LP-boundedness. a

Proof of weak-L" estimate. Without loss of generality, we can assume that our measure
space (X,9, 1) is non-atomic, since any measure space can be extended to a non-
atomic measure space by splitting the atoms as follows. Suppose A C 91 is the family
of atomic elements of the measure space (X,9M, u), that is, for any a € A we have
w(a) > 0 and there is no proper M-measurable set in a. We can suppose that each
atom is continuum and let (a,M,, 1) be a a non-atomic measure space on a € A such
that pe(a) = p(a). Denote by 9 the o-algebra on X generated by 9t and by all 9,
a € A. Let u/ be an extension of y such that p/(E) = e (E) for any 9,-measurable
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set £ C a. Hence, (X, ', /) provides a non-atomic extension of the measure space
(X, 0, ).

Now let f be a 9t-measurable function. The balls are 9t-measurable, and so they
can not contain an atom a partially. Thus, the left and right sides of inequality (1.3)
are not changed if we consider (X, 9, /) instead of the initial measure space. Hence,
we can suppose that (X, 91, u) is itself non-atomic. Applying Lemma 2.7, we find a
function g satisfying the conditions of the lemma. From (2.6) we get (f)5, < (9)5,
for any B € 8 with B ¢ E) and hence, A5 f(z) < A5 .g(z), x € X \ E\. Therefore,

using the L*" bound of A ., we obtain
plo € X A3, (@) > A} < u(Bx) + ufx € X\ By A3,9(a) > A}
P P 2| fII7
Ml L7 g MEL e B
X\Ex X\Ex

AT \2r AT \2r AT
This completes the proof of theorem 1.1. O
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