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Abstract. Let {X(t), t ∈ R} be a centered real-valued stationary Gaussian process

with spectral density f . The paper considers a question concerning asymptotic

distribution of tapered Toeplitz type quadratic functional Qh
T of the process X(t),

generated by an integrable even function g and a taper function h. Su�cient conditions

in terms of functions f , g and h ensuring central limit theorems for standard normalized

quadratic functionals Qh
T are obtained, extending the results of Ginovyan and Sahakyan

(Probab. Theory Relat. Fields 138 (2007), 551�579) to the tapered case and sharpening
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for the Gaussian case.
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1. Introduction

1.1. The problem. Let {X(t), t ∈ R} be a centered real-valued stationary Gaussian
process with spectral density f(λ) and covariance function r(t). The functions r(t)

and f(λ) are connected by the Fourier integral:

(1.1) r(t) =

∫
R
eiλt f(λ) dλ.

We consider a question concerning asymptotic distribution (as T → ∞) of the

following tapered Toeplitz type quadratic functional of the process X(t):

(1.2) QhT =

∫ T

0

∫ T

0

ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds,

where

(1.3) ĝ(t) =

∫
R
eiλtg(λ)dλ, t ∈ R.

is the Fourier transform of some integrable even function g(λ), λ ∈ R, and hT (t) =

h(t/T ) with a taper function h(·) to be speci�ed below.
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We refer to g(λ) and to its Fourier transform ĝ(t) as a generating function and

generating kernel for the functional QhT , respectively.

Throughout the paper we assume that the taper function h(·) satis�es the

following assumption.

Assumption (T). The taper h : R → R is a continuous nonnegative function of

bounded variation and of bounded support [0, 1], such that H2 6= 0, where

(1.4) Hk :=

∫ 1

0

hk(t)dt, k ∈ N := {1, 2, . . .}.

Remark 1.1. The case where h(t) = I[0,1](t), where I[0,1](·) denotes the indicator of
the segment [0, 1], will be referred to as the non-tapered case, and the corresponding

non-tapered quadratic functional will be denoted by QT .

The limit distribution of the functional (1.2) is completely determined by the

functions f , g and h, and depending on their properties it can be either Gaussian

(that is, QhT with an appropriate normalization obey central limit theorem), or

non-Gaussian. We naturally arise the following two questions:

a) Under what conditions on f , g and h will the limits be Gaussian?

b) Describe the limit distributions, if they are non-Gaussian.

In this paper we discuss the question a), and obtain su�cient conditions in terms

of functions f , g and h ensuring central limit theorems for a standard normalized

tapered quadratic functional QhT , extending the results of Ginovyan and Sahakyan

[17] to the tapered case and sharpening the results of Ginovyan and Sahakyan [18]

for the Gaussian case.

1.2. Statistical motivation. Quadratic functionals of the form (1.2) appear both

in nonparametric and parametric estimation of the spectrum of the process X(t)

based on the tapered data:

(1.5) {hT (t)X(t), 0 ≤ t ≤ T}.

For instance, when we are interested in nonparametric estimation of a linear integral

functional in Lp(R), p > 1 of the form:

(1.6) J = J(f) =

∫
R
f(λ)g(λ)dλ,

where g(λ) ∈ Lq(R), 1/p+ 1/q = 1, then a natural statistical estimator for J(f) is

the linear integral functional of the empirical periodogram of the process X(t). To

de�ne this estimator, we �rst introduce some notation.

Denote by Hk,T (λ) the continuous-time tapered Dirichlet type kernel, de�ned by

(1.7) Hk,T (λ) =

∫
R
hkT (t)e−iλtdt =

∫ T

0

hkT (t)e−iλtdt.
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De�ne the �nite Fourier transform of the tapered data (1.5):

(1.8) dhT (λ) =

∫ T

0

hT (t)X(t)e−iλtdt,

and the tapered continuous periodogram IhT (λ) of the process X(t):

IhT (λ) : =
1

CT
dhT (λ)dhT (−λ) =

1

CT

∣∣∣∣∣
∫ T

0

hT (t)X(t)e−iλtdt

∣∣∣∣∣
2

=
1

CT

∫ T

0

∫ T

0

hT (t)hT (s)e−iλ(t−s)X(t)X(s)dtds,(1.9)

where

(1.10) CT := 2πH2,T (0) = 2π

∫ T

0

h2T (t)dt = 2πH2 T 6= 0.

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .

As an estimator JhT for functional J(f), given by (1.6), based on the tapered

data (1.5), we consider the averaged tapered periodogram (or a simple "plug-

in"statistic), de�ned by

JhT = J(IhT ) :=

∫
R
IhT (λ)g(λ)dλ

=
1

CT

∫ T

0

∫ T

0

ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds,(1.11)

where CT is as in (1.10), and ĝ(t) is the Fourier transform of function g(λ) given

by (1.3).

In view of (1.2) and (1.11) we have

JhT = C−1T QhT ,(1.12)

and thus, to study the asymptotic properties of the estimator JhT , we have to study

the asymptotic distribution (as T → ∞) of the tapered Toeplitz type quadratic

functional QhT given by (1.2).

Some brief history. The question of describing the asymptotic distribution of non-

tapered Toeplitz type quadratic forms and functionals of stationary processes has

a long history, and goes back to the classical monograph by Grenander and Szeg�o

[23], where the problem was considered as an application of authors' theory of the

asymptotic behavior of the trace of products of truncated Toeplitz matrices and

operators.

Later the problem have been studied by a number of authors. Here we mention

only some signi�cant contributions. For discrete-time short memory processes, the

problem was studied by Ibragimov [26] and M. Rosenblatt [29], in connection with

statistical estimation of the spectral and covariance functions, respectively. Since

1986, there has been a renewed interest in this problem, related to the statistical
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inferences for long memory (long-range dependent) and intermediate memory (anti-

persistent) processes (see, e.g., Avram [1], Fox and Taqqu [12], Giraitis and Surgailis

[20], Giraitis and Taqqu [21], Hhas'minskii and Ibragimov [25], Ginovian and Sahakian

[16], Terrin and Taqqu [30], and references therein). In particular, Avram [1], Fox

and Taqqu [12], Ginovian and Sahakian [16], Giraitis and Surgailis [20], Giraitis

and Taqqu [21] have obtained su�cient conditions for non-tapered quadratic form

QT to obey the central limit theorem (CLT).

For continuous-time stationary Gaussian processes the problem of describing

the asymptotic distribution of non-tapered Toeplitz type quadratic functionals was

studied in a number of papers. We cite merely the papers Avram et al. [2, 3], Bai

et al. [4, 5], Bryc and Dembo [7], Ginovyan [13, 14, 15], Ginovyan and Sahakyan

[17], Ibragimov [26], where can be found additional references.

In spectral analysis of stationary processes, however, the data are frequently

tapered before calculating the statistics of interest. Instead of the original data

{X(t), 0 ≤ t ≤ T} the tapered data {h(t)X(t), 0 ≤ t ≤ T} with the data taper

h(t) are used for all further calculations. Bene�ts of tapering the data have been

widely reported in the literature. For example, data-tapers are introduced to reduce

leakage e�ects, especially in the case when the spectrum of the model contains high

peeks. Other application of data-tapers is in situations in which some of the data

values are missing. Also, the use of tapers leads to the bias reduction, which is

especially important when dealing with spatial data. In this case, the tapers can be

used to �ght the so-called �edge e�ects� (see Brillinger [6], R. Dahlhaus [8, 9], R.

Dahlhaus and H. K�unsch [10], Guyon [24], and references therein).

Central and non-central limit theorems for tapered quadratic forms of a discrete-

time long memory Gaussian stationary �elds have been proved in Doukhan et

al. [11]. A central limit theorem for tapered quadratic functionals QhT , in the

case where the underlying model X(t) is a L�evy-driven continuous-time stationary

linear process has been proved in Ginovyan and Sahakyan [18] with time-domain

conditions.

Remark 1.2. Recall that a stationary process X(t) with spectral density f(λ) is

said to have (a) short memory, (b) long memory or (c) intermediate memory if

f(λ) (a) is bounded away from zero and in�nity at λ = 0, (b) has a pole at λ = 0,

or (c) vanishes at λ = 0, respectively.

1.3. The approach. To study the asymptotic distribution (as T → ∞) of the

functional Q̃hT , given by (1.2), we use the method of cumulants, the frequency-

domain approach, and the technique of truncated tapered Toeplitz operators.
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By Wh
T (ψ) we denote the truncated tapered Toeplitz operator generated by a

function ψ ∈ L1(R) de�ned as follows (see [19], [23], [26] for non-tapered case):

(1.13) [Wh
T (ψ)u](t) =

∫ T

0

ψ̂(t− s)hT (t)hT (s)u(s)ds, u(t) ∈ L2[0, T ],

where ψ̂(·) is the Fourier transform of ψ(·).
Let Wh

T (f) and Wh
T (g) be the truncated tapered Toeplitz operators generated

by the spectral density f , and the generating function g, respectively. Similar to

the non-tapered case, we have the following results (cf. [19], [23], [26], see also the

proof of Lemma 4.8 below).

1. The quadratic functional QhT in (1.2) has the same distribution as the sum∑∞
j=1 λ

2
j,T ξ

2
j , where {ξj , j ≥ 1} are independent N(0, 1) Gaussian random

variables and {λj,T , j ≥ 1} are the eigenvalues of the operatorWh
T (f)Wh

T (g).

2. The characteristic function ϕ(t) of QhT is given by formula:

(1.14) ϕ(t) =

∞∏
j=1

|1− 2itλj,T |−1/2.

3. The k�th order cumulant χk(QhT ) of QhT is given by formula:

χk(QT ) = 2k−1(k − 1)!

∞∑
j=1

λkj,T = 2k−1(k − 1)! tr [Wh
T (f)Wh

T (g)]k,(1.15)

where tr[A] stands for the trace of an operator A.

Thus, to describe the asymptotic distributions of the quadratic functional QhT ,

we have to control the traces and eigenvalues of the products of truncated tapered

Toeplitz operators.

Throughout the paper the letters C, c and M with or without indices are used

to denote positive constants, the values of which can vary from line to line. Also,

by IA(·) we denote the indicator of a set A ⊂ R.
The remainder of the paper is structured as follows. In Section 2 we state the

main results of the paper � Theorems 2.1 � 2.5. In Section 3 we apply the results

of Section 2 to show that the avaraged tapered periodogram is an asymptotically

normal estimator for the linear spectral functional. In Section 4 we prove preliminary

results that are used in the proofs of main results, and also represent independent

interest. Section 5 is devoted to the proofs of results stated in Section 2.

2. Central limit theorems for tapered quadratic functional QhT

Below we assume that f, g ∈ L1(R), and with no loss of generality, that g ≥ 0. We

use the following notation: By Q̃hT we denote the standard normalized quadratic
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functional:

(2.1) Q̃hT = T−1/2
(
QhT − E[QhT ]

)
.

Then by (1.15) we have

(2.2) χk(Q̃hT ) =

 0, for k = 1

T−k/22k−1(k − 1)! tr [Wh
T (f)Wh

T (g)]k, for k ≥ 2.

We set

(2.3) σ2
h := 16π3H4

∫
R
f2(λ)g2(λ) dλ,

where H4 is as in (1.4). The notation

(2.4) Q̃hT
d→ η ∼ N(0, σ2

h) as T →∞

means that the distribution of the random variable Q̃hT tends (as T → ∞) to the

centered normal distribution with variance σ2
h.

The main results of the paper are the following theorems.

Theorem 2.1. Assume that f · g ∈ L1(R) ∩ L2(R), the taper function h satis�es

assumption (T), and for T →∞

(2.5) χ2(Q̃hT ) =
2

T
tr
[
Wh
T (f)Wh

T (g)
]2 −→ σ2

h,

where σ2
h is as in (2.3). Then Q̃hT

d→ η ∼ N(0, σ2
h) as T →∞.

Theorem 2.2. Assume that the function

(2.6) ϕ(x1, x2, x3) =

∫
R
f(u)g(u− x1)f(u− x2)g(u− x3) du

belongs to L2(R3) and is continuous at (0, 0, 0), and the taper function h satis�es

assumption (T). Then Q̃hT
d→ η ∼ N(0, σ2

h) as T →∞.

Theorem 2.3. Assume that f(λ) ∈ Lp(R) (p ≥ 1) and g(λ) ∈ Lq(R) (q ≥ 1)

with 1/p + 1/q ≤ 1/2, and the taper function h satis�es assumption (T). Then

Q̃hT
d→ η ∼ N(0, σ2

h) as T →∞.

Theorem 2.4. Let f ∈ L2(R), g ∈ L2(R), fg ∈ L2(R),

(2.7)

∫
R
f2(λ)g2(λ− µ) dλ −→

∫
R
f2(λ)g2(λ) dλ as µ→ 0,

and let the taper function h satisfy assumption (T). Then Q̃hT
d→ η ∼ N(0, σ2

h) as

T →∞.
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To state the next theorem, we need to introduce a class of slowly varying at zero

functions. Recall that a function u(λ), λ ∈ R, is called slowly varying at zero if it

is nonnegative and for any t > 0

lim
λ→0

u(tλ)

u(λ)
→ 1.

Denote by SV0(R) the class of slowly varying at zero functions u(λ), λ ∈ R,
satisfying the following conditions: for some a > 0, u(λ) is bounded on [−a, a],

limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(µ) for 0 < λ < µ < a. An

example of a function belonging to SV0(R) is u(λ) = |ln |λ||−γ with γ > 0 and

a = 1.

Theorem 2.5. Assume that the functions f and g are integrable on R and bounded

outside any neighborhood of the origin, and satisfy for some a > 0

(2.8) f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ [−a, a],

for some α < 1, β < 1 with α+β ≤ 1/2, where L1(x) and L2(x) are slowly varying

at zero functions satisfying

Li ∈ SV0(R), λ−(α+β)Li(λ) ∈ L2[−a, a], i = 1, 2.(2.9)

Also, let the taper function h satisfy assumption (T). Then Q̃hT
d→ η ∼ N(0, σ2

h) as

T →∞.

Remark 2.1. The conditions α < 1 and β < 1 in Theorem 2.5 ensure that the

Fourier transforms of f and g are well de�ned. Observe that when α > 0 the process

X(t) may exhibit long-range dependence. We also allow here α + β to assume the

critical value 1/2. The assumptions f · g ∈ L1(R), f, g ∈ L∞(R \ [−a, a]) and (2.9)

imply that f · g ∈ L2(R), so that the variance σ2
h in (2.3) is �nite.

Remark 2.2. In Theorem 2.5, the assumption that L1(x) and L2(x) belong to

SV0(R) instead of merely being slowly varying at zero is done in order to deal with

the critical case α + β = 1/2. Suppose that we are away from this critical case,

namely, f(x) = |x|−αl1(x) and g(x) = |x|−βl2(x), where α + β < 1/2, and l1(x)

and l2(x) are slowly varying at zero functions. Assume also that f(x) and g(x)

are integrable and bounded on (−∞,−a) ∪ (a,+∞) for any a > 0. We claim that

Theorem 2.5 applies. Indeed, choose α′ > α, β′ > β with α′ + β′ < 1/2. Write

f(x) = |x|−α′ |x|δl1(x), where δ = α′−α > 0. Since l1(x) is slowly varying, when |x|
is small enough, for some ε ∈ (0, δ) we have |x|δl1(x) ≤ |x|δ−ε. Then one can bound

|x|δ−ε by c |ln |x||−1 ∈ SV0(R) for small |x| < 1. Hence one has when |x| < 1 is

small enough, f(x) ≤ |x|−α′
(
c |ln |x||−1

)
. Similarly, when |x| < 1 is small enough,
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one has g(x) ≤ |x|−β′
(
c |ln |x||−1

)
. All the assumptions in Theorem 2.5 are now

readily checked with α, β replaced by α′ and β′, respectively.

Remark 2.3. The analogs of Theorems 2.1 - 2.5 for non-tapered case (h(t) =

I[0,1](t)) were proved in Ginovyan and Sahakyan [17].

Remark 2.4. In Ginovyan and Sahakyan [18] was proved a central limit theorem

for tapered functional QhT for more general case where X(t) is a L�evy-driven

stationary linear process. Speci�cally, in [18] was proved the following result (see

[18], Theorem 5.1). Let {X(t), t ∈ R} be a stationary linear process de�ned by

X(t) =

∫
R
a(t− s)ξ(ds),

where a(·) is a �lter from L2(R), and ξ(t) is a L�evy process satisfying the conditions:

Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) < ∞. Assume that the �lter a(·) and the

generating kernel ĝ(·) are such that

(2.10) a(·) ∈ Lp(R) ∩ L2(R), ĝ(·) ∈ Lq(R), 1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
,

and the taper h satis�es assumption (T). Then Q̃hT
d→ η ∼ N(0, σ2

L,h) as T → ∞,

where

(2.11) σ2
L,h = 16π3H4

∫
R
f2(λ)g2(λ)dλ+ κ44π2H4

[∫
R
f(λ)g(λ)dλ

]2
.

Notice that if the underlying process X(t) is Gaussian, then in formula (2.11) we

have only the �rst term and so σ2
L,h = σ2

h, because in this case κ4 = 0. On the other

hand, the condition (2.10) is more restrictive than the conditions in Theorems 2.1

- 2.5. Thus, for Gaussian processes Theorems 2.1 - 2.5 improve the above stated

result.

3. An application

In this section we apply the results of Section 2 to prove that the statistic JhT

given by (1.11) is an asymptotically normal estimator for the linear functional J(f)

given by (1.6). To state the corresponding result we introduce the Lp-H�older class

and set up an assumption.

Given numbers p ≥ 1, 0 < α < 1, r ∈ N0 := N∪{0}, we set β = α+r and denote

by Hp(β) the Lp-H�older class, that is, the class of those functions ψ(λ) ∈ Lp(R),

which have r-th derivatives in Lp(R) and with some positive constant C satisfy

||ψ(r)(·+ h)− ψ(r)(·)||p ≤ C|h|α.
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Assumption (A). Let the spectral density f(λ) ∈ Hp(β1), β1 > 0, p ≥ 1 and let

the generating function g(λ) ∈ Hq(β2), β2 > 0, q ≥ 1 with 1/p+ 1/q = 1. Assume

that one of the conditions a)�d) is ful�lled:

a) β1 > 1/p, β2 > 1/q

b) β1 ≤ 1/p, β2 ≤ 1/q and β1 + β2 > 1/2

c) β1 > 1/p, 1/q − 1/2 < β2 ≤ 1/q

d) β2 > 1/q, 1/p− 1/2 < β1 ≤ 1/p.

Theorem 3.1. Let the functionals J = J(f) and JhT = J(IhT ) be de�ned by (1.6)

and (1.11), respectively. Then under the conditions (A) and (T) the statistic JhT is

an asymptotically normal estimator for functional J . More precisely, we have

T 1/2
[
JhT − J

] d→ η as T →∞,(3.1)

where η is a normally distributed random variable with mean zero and variance

σ2
h(J) given by

(3.2) σ2
h(J) = 4πe(h)

∫
R
f2(λ)g2(λ)dλ, e(h) := H4H

−2
2 ,

and Hk is as in (1.4).

Remark 3.1. In Theorem 2.3 of Ginovyan and Sahakyan [18] was proved the

asymptotic normality of the estimator JhT for more general case where X(t) is a

L�evy-driven stationary linear process, but under the additional restrictive condition

(2.10). Thus, for Gaussian processes Theorem 3.1 improve Theorem 2.3 of Ginovyan

and Sahakyan [18].

4. Preliminaries

For a number k (k = 2, 3, . . .) and a taper function h satisfying assumption (T)

consider the following �tapered� Fej�er type kernel function:

(4.1) Φhk,T (u) =
Gk,T (u)

(2π)k−1Hk,T (0)
, u = (u1, . . . , uk−1) ∈ Rk−1,

where

(4.2) Gk,T (u) = H1,T (u1) · · ·H1,T (uk−1)H1,T

− k−1∑
j=1

uj

,
and the function Hk,T is de�ned by (1.7) with Hk,T (0) = T ·Hk 6= 0 (see (1.4)).

Remark 4.1. Observe that by a change of variables u1 = x1 − x2, u2 = x2 − x3,
. . ., uk−1 = xk−1−xk, the function Gk,T (u) in (4.2) can be written in the following

�symmetric� form:

(4.3) Gk,T (x) = H1,T (x1 − x2)H1,T (x2 − x3) · · ·H1,T (xk−1 − xk)H1,T (xk − x1),
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where x = (x1, . . . , xk) ∈ Rk.

In Lemma 3.4 of Ginovyan and Sahakyan [18], it was proved that, similar to the

classical Fej�er kernel, the "tapered"kernel Φhk,T (u) is an approximation identity. In

particular, it was shown that the kernel Φhk,T possesses the following property.

Lemma 4.1. If a function ψ(u) ∈ L1(Rk−1)
⋂
Lk−2(Rk−1) is continuous at v =

(v1, . . . , vk−1) (k = 2, 3, . . .), then

(4.4) lim
T→∞

∫
Rk−1

ψ(u + v)Φhk,T (u)du = Ψ(v),

where u = (u1, . . . , uk−1) and Φhk,T (u) is de�ned by (4.1) and (4.2).

The next lemma contains a formula for trace of product of truncated tapered

Toeplitz operators.

Lemma 4.2. Let Wh
T (f) and Wh

T (g) be the truncated tapered Toeplitz operators

generated by functions f ∈ L1(R) and g ∈ L1(R), respectively. Then

tr
[
Wh
T (f)Wh

T (g)
]2

=

∫
R4

GT (x)f(x1)g(x2)f(x3)g(x4) dx,(4.5)

where x = (x1, x2, x3, x4), GT (x) := G4,T (x), that is,

(4.6) GT (x) := H1,T (x1 − x2)H1,T (x2 − x3)H1,T (x3 − x4)H1,T (x4 − x1),

and H1,T (·) is as in (1.7) with k = 1.

Proof. It is easy to check that the result follows from (1.1), (1.3), (1.7), (1.13),

and the formula for traces of integral operators (see [22], �3.10). Lemma 4.2 is

proved.

Denote

(4.7) µT (A) =
1

T

∫
A

GT (x) dx,

where x = (x1, x2, x3, x4) and GT (x)) is as in (4.6), and let Cloc(Rn) be the space

of continuous functions on Rn with bounded support.

Lemma 4.3. If φ ∈ Cloc(R4), then

(4.8) lim
T→∞

∫
R4

φ(x) dµT = 8π3H4

∫
R
φ(u, u, u, u)du,

where x = (x1, x2, x3, x4), µT (A) is as in (4.7) and H4 is as in (1.4).

Proof. Making a change of variables

x1 = u, x1 − x2 = u1, x2 − x3 = u2, x3 − x4 = u3,
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in view of (4.1), (4.2) and (4.7), we can write∫
R4

φ(x) dµT =
1

T

∫
R3

∫
R
φ(u, u− u1, u− u1 − u2, u− u1 − u2 − u3)du

× H1,T (u1)H1,T (u2)H1,T (u3)H1,T (−u1 − u2 − u3) du1 du2 du3

= 8π3H4

∫
R3

Ψ(u) ΦhT (u) du,(4.9)

where u = (u1, u2, u3), ΦhT (u) := Φh4,T (u) and

Ψ(u) =

∫
R
φ(u, u− u1, u− u1 − u2, u− u1 − u2 − u3) du.

It is not di�cult to check that the function Ψ satis�es conditions of Lemma 4.1 and

(4.10) lim
u→(0,0,0)

Ψ(u) =

∫
R
φ(u, u, u, u) du.

Hence applying Lemma 4.1 from (4.9) and (4.10) we get (4.8). Lemma 4.3 is proved.

Lemma 4.4. Let φ(u1, u2, u3, u4) =
4∏
i=1

φi(ui), where φi ∈ L1(R)
⋂
L∞(R), i =

1, 2, 3, 4. Then the asymptotic relation (4.8) holds.

Proof. Suppose ‖φi‖∞ ≤ M < ∞, i = 1, 2, 3, 4. Using Lusin's theorem for any

ε > 0 we can �nd functions ϕi, ψi, i = 1, 2, 3, 4, satisfying

(4.11) φi = ϕi + ψi, ϕi ∈ Cloc(R), ‖ψi‖L1(R) ≤ ε, ‖ϕi‖C ≤M.

Therefore

(4.12)

∫
R4

φdµT =

∫
R4

4∏
i=1

(ϕi + ψi)dµT =

∫
R4

4∏
i=1

ϕidµT + IT ,

where by (4.11) and Lemma 4.5 below

|IT | ≤
4∑
j=1

∫
R4

|ψj |
4∏

i=1,i6=j

(|ϕi|+ |ψi|)d|µT |

≤ CM
4∑
j=1

∫
R4

|ψj |d|µT | ≤ CM
4∑
j=1

‖ψj‖L1(R) ≤ CMε.(4.13)

By Lemma 4.3 we have

lim
T→∞

∫
R4

4∏
i=1

ϕi(ui)dµT =

∫
R

4∏
i=1

ϕi(u)du

=

∫
R

4∏
i=1

[φi(u)− ψi(u)] du =

∫
R
φ(u, u, u, u)du+ J,(4.14)

where

(4.15) |J | ≤
4∑
j=1

∫
R
|ψj(u)|

4∏
i=1,i6=j

(|φi(u)|+ |ϕi(u)|)du ≤ CMε.

From (4.12) � (4.15) we get (4.8). Lemma 4.4 is proved.
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Lemma 4.5. If f ∈ L1(R), then the following inequalities hold:

1)

∫
R4

|f(xi)|d|µT | ≤ C1‖f‖L1(R), i = 1, 2, 3, 4,(4.16)

2)

∫
R4

|f(xi)f(xj)|d|µT | ≤ C2‖f‖2L2(R), i, j = 1, 2, 3, 4, i 6= j.(4.17)

where C1 and C2 are absolute constants, and µT is as in (4.7).

Proof. Since h is a function of bounded variation with support on [0, 1], in view of

(1.7), for T > 0 we have

(4.18) |H1,T (x)| ≤ ChTψT (x), where ψT (x) =
1

1 + T |x|
, x ∈ R.

We use the following inequality for function ψT (x), which was proved in Ginovyan

and Sahakyan [17] (see proof of Lemma 5):

(4.19) T

∫
R
ψT (x+ u)ψT (x+ v)dx ≤ Cδψ1−δ

T (u− v), δ > 0, u, v ∈ R.

To prove (4.16) for i = 1 (say), we use (4.6), (4.7) and the inequality (4.19) with

δ = 1/4 to obtain∫
R4

|f(x1)|d|µT | ≤ CT 3

∫
R4

|f(x1)|ψT (x1 − x3)ψT (x3 − x2)

×ψT (x4 − x1)ψT (x2 − x4)dx1dx2dx3dx4

≤ CT
∫
R
|f(x1)|

∫
R
ψ
3/2
T (x1 − x2)dx2dx1 ≤ C1‖f‖L1(R).

This proves (4.16). To prove (4.17) for i = 1, j = 2 (say), we use (4.6), (4.7), the

inequality (4.19) with δ = 1/4, and Cauchy inequality to obtain∫
R4

|f(x1)f(x2)|d|µT | ≤ CT 3

∫
R4

|f(x1)f(x2)|ψT (x1 − x3)ψT (x3 − x2)ψT (x4 − x1)

≤ CT
∫
R2

|f(x1)f(x2)|ψ3/2
T (x1 − x2)dx1dx2

≤ C
{
T

∫
R2

f2(x1)ψ
3/2
T (x1 − x2)dx1dx2

}1/2

+

{
T

∫
R2

f2(x2)ψ
3/2
T (x1 − x2)dx1dx2

}1/2

≤ C2

∫
R
f2(x)dx.

Lemma 4.5 is proved.

Lemma 4.6. Let ψ(u) ∈ L1(R)∩Lp(R), with 1 < p <∞, and let the taper function

h satisfy assumption (T). Then

(4.20) λT := ||Wh
T (ψ)||∞ = o

(
T 1/p

)
as T →∞.

Proof. Let NT be a positive function of T , which we will specify later. We set

(4.21) MT = {λ ∈ R; |ψ(λ)| > NT }.
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We have

λT = ||Wh
T (ψ)||∞ = sup

||u||2=1

|(Wh
T (ψ)u, u)| =

sup
||u||2=1

∣∣∣∣∣
∫ T

0

∫ T

0

ψ̂(t− s)u(t)u(s)h(t)h(s) dt ds

∣∣∣∣∣ =

(4.22) sup
||u||2=1

∣∣∣∣∣
∫ T

0

∫ T

0

[∫
R
eiλ(t−s)ψ(λ) dλ

]
u(t)u(s)h(t)h(s) dt ds

∣∣∣∣∣.
A square integrable function u(t) is also integrable on [0, T ]. Hence, switching the

order of integration in (4.22), we get

λT = sup
||u||2=1

∣∣∣∣∣
∫
R
ψ(λ)

[∫ T

0

u(t)h(t)eitλ dt

∫ T

0

u(s)h(s)e−isλ ds

]
dλ

∣∣∣∣∣
(4.23) ≤ sup

||u||2=1

∫
R
|ψ(λ)|

∣∣∣∣∫ T

0

u(t)h(t) eiλtdt

∣∣∣∣2dλ.
Since for u(t) ∈ L2[0, T ] with ||u||2 = 1 and h is bounded, we have

∣∣∫ T
0
u(t)h(t) eiλtdt

∣∣2 ≤
ChT , and by Plancherel's theorem from (4.23) we obtain

(4.24) λT ≤ Ch
(
NT + T

∫
MT

|ψ(λ)| dλ
)
,

where MT is as in (4.21). We show that for every p (1 < p <∞)

(4.25)

∫
MT

|ψ(λ)| dλ ≤ γpT N
(1−p)
T ,

where

(4.26) γT =

(∫
MT

|ψ(λ)|p dλ
)1/p

.

Indeed, by H�older inequality

(4.27)

∫
MT

|ψ(λ)| dλ ≤ γT
[
m(MT )

](p−1)/p
,

wherem(MT ) is the Lebesgue measure of the setMT . Next, by Chebyshev inequality

(4.28) m(MT ) ≤ γpT N
−p
T .

A combination of (4.27) and (4.28) yields (4.25). Now from (4.24) and (4.25) we

have

(4.29) λT ≤ Ch
(
NT + TγpT N

(1−p)
T

)
.

If ψ ∈ L∞(R), then putting NT = ‖ψ‖∞ for all T > 0, we will have γT = 0 and

(4.29) implies λT = O(1).

Now suppose ψ 6∈ L∞(R) and for �xed T > 0 consider the function

F (N) = N − T 1/p

(∫
{λ:|ψ(λ)|>N}

|ψ(λ)|p dλ
)1/p

, N ∈ [0,∞).
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Since F (0) < 0 and limN→∞ F (N) = +∞ there exists a positive number N = NT

with F (NT ) = 0, that is,

(4.30) NT = T 1/p

(∫
{λ:|ψ(λ)|>NT }

|ψ(λ)|p
)

= T 1/pγT .

It is easy to see that for ψ 6∈ L∞(R) the equality (4.30) implies limT→∞NT = ∞.

Hence γT = o(1) and from (4.29) and (4.30) we obtain λT < ChT
1/pγT = o(T 1/p)

as T →∞. Lemma 4.6 is proved.

Lemma 4.7. Let ψ ∈ L1(R) ∩ L2(R), and let Wh
T (ψ) be the tapered truncated

Toeplitz operator de�ned by (1.13) with taper function h satisfying assumption (T).

Then

(4.31)
1

T
||Wh

T (ψ)||22 −→ 2πH4||ψ||22 as T →∞,

where H4 is as in (1.4).

Proof. Using the formula for Hilbert�Schmidt norm of integral operators (see [22]),

by (1.13) we have

(4.32) ||Wh
T (ψ)||22 =

∫ T

0

∫ T

0

|ψ̂(t− s)|2|hT (t)hT (s)|2 dt ds.

Using the change of variables t−s = u and taking into account that by assumption

(T) the taper function h is supported on [0, 1], from (4.32) we get

(4.33) ||Wh
T (ψ)||22 =

∫
R

∫
R
|ψ̂(u)|2|hT (s+ u)hT (s)|2 du ds.

Next, taking into account that hT (t) = h(t/T ) and using the change of variables

s/T = v, from (4.33) we can write

1

T
||Wh

T (ψ)||22 =
1

T

∫
R
|ψ̂(u)|2|

[∫ T

0

|h(s/T + u/T )h(s/T )|2 ds

]
du

=

∫
R
|ψ̂(u)|2|

[∫ 1

0

|h(v + u/T )h(v)|2 dv
]
du.(4.34)

For the inside integral on the right-hand side of (4.34), in view of (1.4), we have

lim
T→∞

∫ 1

0

|h(v + u/T )h(v)|2 dv =

∫ 1

0

h4(v) dv = H4.(4.35)

Finally, using Parseval-Plancherel's equality, from (4.34) and (4.35), we obtain

(4.31). Lemma 4.7 is proved.

Lemma 4.8. Let Y (t), t ∈ R, be a real-valued, centered, separable stationary

Gaussian process with the spectral density fY (λ) ∈ L1(R) ∩L2(R), and let hT (t) =

h(t/T ) with a taper function h satisfying assumption (T). De�ne

(4.36) LhT :=

∫ T

0

[hT (t)Y (t)]2 dt.
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Then the distribution of the normalized quadratic functional

(4.37) L̃hT := T−1/2
(
LhT − ELhT

)
tends (as T →∞) to the normal distribution N(0, σ2

Y ) with variance

(4.38) σ2
Y = 4πH4

∫
R
f2Y (λ) dλ,

where H4 is as in (1.4).

Proof. Let R(t) be the covariance function of Y (t). For T > 0 denote by λj = λj(T ),

j ∈ N, the eigenvalues of the operatorWh
T (fY ) (see (1.13)), and let ej(t) = ej(t, T ) ∈

L2[0.T ], j ∈ N, be the corresponding orthonormal eigenfunctions, that is,

(4.39)

∫ T

0

K(t− s)ej(s) ds = λjej(t), j ∈ N,

where K(t − s) := R(t − s)hT (t)hT (s). Since by Mercer's theorem (see, e.g., [22],

�3.10)

(4.40) K(t− s) =

∞∑
j=1

λjej(t)ej(s)

with positive and summable eigenvalues {λj}, we have the Karhunen�Lo�eve expansion:

(4.41) hT (t)Y (t) =

∞∑
j=1

√
λjξjej(t),

where {ξj} are independent N(0, 1) random variables. Therefore by (4.37) and

(4.41)

(4.42) L̃hT = T−1/2
∞∑
j=1

λj(ξ
2
j − 1).

Denote by χk(L̃hT ) the k-th order cumulant of L̃hT . By (4.42) (cf. (2.2)) we have

(4.43) χk(L̃hT ) =

{
0, for k = 1,

(k − 1)! 2k−1T−k/2tr[Wh
T (fY )]k, for k ≥ 2.

By (4.43) and Lemma 4.7 we have

(4.44) χ2(L̃hT ) =
2

T
||Wh

T (fY )||22 −→ 4πH4

∫
R
f2Y (λ) dλ as T →∞.

Next, by (4.43) for k ≥ 3, we have

(4.45) |χk(L̃hT )| ≤ C 1

T
||Wh

T (fY )||22 T 1−k/2λk−2T ,

where λT = ||Wh
T (fY )||∞. By Lemmas 4.6 and 4.7 the right hand side of (4.45)

tends to zero as T →∞. Lemma 4.8 is proved.

The next lemma, which is the well-known Hardy-Littlewood type embedding

theorem for the H�older classes Hp(β) (see Nikol'skii [28]), will be used in the proof

of Theorem 3.1.
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Lemma 4.9. Let ψ(λ) ∈ Hp(β) with β > 0 and p ≥ 1. The following assertions

hold:

a) if β ≤ 1/p and p < p1 < p/(1− βp), then

ψ(λ) ∈ Hp1(β − 1

p
+

1

p1
)

b) if β > 1/p, then ψ(λ) is continuous and ||ψ||∞ <∞.

5. Proofs

Since the proofs of Theorems 2.3 and 2.4 are almost the same (with some minor

changes) as in the non-tapered case given in Ginovyan and Sahakyan [17], here we

prove only Theorems 2.1, 2.2 and 2.5.

Proof of Theorem 2.1. By Theorem 16.7.2 from [27] the underlying process X(t)

admits the moving average representation

(5.1) X(t) =

∫
R
â(t− s) dξ(s),

where â(·) is a function from L2(R), and ξ(s) is a process with orthogonal increments

such that E[dξ(s)] = 0 and E|dξ(s)|2 = ds. Moreover the spectral density f(λ) can

be represented as

(5.2) f(λ) = 2π |a(λ)|2,

where a(λ) is the inverse Fourier transform of â(t). We set

(5.3) a1(λ) = (2π)1/2 a(λ) · [g(λ)]1/2,

where g(λ) is the generating function, and consider a process Y (t) (t ∈ R) de�ned

by

(5.4) Y (t) =

∫
R
â1(t− s) dξ(s),

where â1(t) is the Fourier transform of a1(λ) and ξ(s) is as in (5.1). Since fg ∈ L1(R)

by Parseval-Plancherel's identity we have

(5.5)

∫
R
|â1(t)|2 dt = 2π

∫
R
|a1(λ)|2 dλ = 4π2

∫
R
f(λ) g(λ) dλ <∞.

So, Y (t) is well-de�ned stationary process with spectral density

(5.6) fY (λ) := |a1(λ)|2 = 2π f(λ) g(λ).

Since by assumption f(λ)g(λ) ∈ L1(R) ∩ L2(R), the process Y (t) de�ned by (5.4)

satis�es the conditions of Lemma 4.8. Hence Lemma 4.8 and Lemma 5.1 that follows

imply Theorem 2.1.
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Lemma 5.1. Under assumptions of Theorem 2.1

(5.7) Var(QhT − LhT ) = o(T ) as T →∞,

where QhT and LhT are as in (1.2) and (4.36) respectively.

Proof. By (1.2) and (5.1) we have

(5.8) QhT =

∫
R2

[∫ T

0

∫ T

0

ĝ(t− s)â(t−u1)â(s−u2)hT (t)hT (s) dt ds

]
dξ(u1) dξ(u2).

Similarly, by (4.36) and (5.4)

(5.9) LhT =

∫
R2

[∫ T

0

â1(t− u1)â1(t− u2)h2T (t) dt

]
dξ(u1) dξ(u2).

Setting

(5.10) d1T (u1, u2) :=

∫ T

0

∫ T

0

ĝ(t− s)â(t− u1)â(s− u2)hT (t)hT (s) dt ds

and

d2T (u1, u2) :=

∫ T

0

∫ T

0

â1(t− u1)â1(s− u2)h2T (t) dt ds

=

∫ T

0

â1(t− u1)â1(t− u2)h2T (t) dt,(5.11)

from (5.8)�(5.11) we get

(5.12) QhT − LhT =

∫
R2

[
d1T (u1, u2)− d2T (u1, u2)

]
dξ(u1) dξ(u2).

Since the underlying process X(t) is Gaussian, we obtain

(5.13) Var(QhT − LhT ) = 2

∫
R2

[
d1T (u1, u2)− d2T (u1, u2)

]2
du1 du2.

We set

p1(λ1, λ2, µ) = a(λ1)a(λ2)g(µ),(5.14)

p2(λ1, λ2, µ) = a1(λ1)a1(λ2)δ(µ) = a(λ1)a(λ2)[g(λ1)]1/2[g(λ2)]1/2.(5.15)

By Parseval-Plancherel's identity we have∫
R2

d2iT (u1, u2) du1 du2

= (2π)2
∫
R2

∣∣∣∣∫
R
H1,T (λ1 − µ)H1,T (µ− λ2)pi(λ1, λ2, µ) dµ

∣∣∣∣2 dλ1 dλ2
= (2π)2T ||pi||2T , i = 1, 2,(5.16)

where H1,T (u) is given by (1.7), ||p||2T = (p, p)T ,

(5.17) (p, p′)T =

∫
R4

p(λ1, λ2, λ3)p′(λ1, λ2, λ4) dµT ,

and the measure µT is de�ned by (4.7).
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As in (5.16) (see also (5.13)), we have

(5.18) Var(QT − LT ) = 8π2T‖p1 − p2‖2T .

For any K > 0 we consider the sets

(5.19) EK1 = {u ∈ R : |a(u)| < K}, EK2 = {u ∈ R : g(u) < K},

and denote

pK1 (u) = p1(u)χK1 (u1)χK1 (u2)χK2 (u3),(5.20)

pK2 (u) = p2(u)χK1 (u1)χK1 (u2)χK2 (u1)χK2 (u2),

where u = (u1, u2, u3) ∈ R3 and χKj (u) is the characteristic function of the set EKj ,

j = 1, 2. Then

(5.21) ‖p1 − p2‖2T ≤ 3
(
‖pK1 − pK2 ‖2T + ‖p1 − pK1 ‖2T + ‖p2 − pK2 ‖2T

)
.

Now, (5.14), (5.15) and (5.20) imply that ‖pK1 − pK2 ‖2T =
∫
R4 ΓdµT , where Γ =

Γ(u1, u2, u3, u4) is a sum of four functions satisfying the conditions of Lemma 4.4.

Since Γ(u, u, u, u) = 0 for u ∈ R, applying Lemma 4.4 we get

(5.22) lim
T→∞

‖pK1 − pK2 ‖T =

∫
R

Γ(u, u, u, u)du = 0.

Next, according to (5.17) we have

‖p1‖2T = ‖pK1 + (p1 − pK1 )‖2T = ‖p1‖2T + 2(pK1 , p1 − pK1 )T + ‖p1 − pK1 ‖2T .

Therefore

(5.23) ‖p1 − pK1 ‖2T ≤
∣∣‖p1‖2T − ‖pK1 ‖2T ∣∣+ 2

∣∣(pK1 , p1 − pK1 )T
∣∣.

By (2.5), (5.16) and Lemma 4.2 we have

(5.24) ‖p1‖2T = (2π)−2
1

T
tr
[
Wh
T (f)Wh

T (g)
]2 → 2πH4

∫
R
f2(u)g2(u)du,

while according to Lemma 4.4 and (5.16)

(5.25) ‖pK1 ‖2T → 2πH4

∫
FK

f2(u)g2(u)du,

where FK := {u ∈ R : f(u) < K, g(u) < K}. From (5.24) and (5.25) we get

(5.26) lim
T→∞

(
‖p1‖2T − ‖pK1 ‖2T

)
= 2πH4

∫
R\FK

f2(u)g2(u)du = o(1) as K →∞.

To estimate the last term on the right hind side of (5.23) we denote

ΓK(u1, u2, u3, u4) = pK1 (u1, u2, u3)
[
p1(u1, u2, u4)− pK1 (u1, u2, u4)

]
.

From (5.19) and (5.20) for ΓK(u1, u2, u3, u4) 6= 0 we have

(5.27) |a(u1)| < K, |a(u2)| < K, g(u3) < K, g(u4) > K,
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Next, for any L > K and u = (u1, u2, u3, u4) we have

(5.28) (pK1 , p1 − pK1 )T =

∫
R4

ΓK(u)dµT =

∫
R4

ΓK(u)χL2 (u4)dµT + I,

where with some constant CK depending on K

(5.29) |I| ≤ CK
∫
R4

g(u4)
(
1− χL2 (u4)

)
d|µT |.

It follows from (5.14), (5.15) and (5.20) that ΓK(u)χL2 (u4) is a linear combination of

functions satisfying the conditions of Lemma 4.4. Applying Lemma 4.4 and taking

into account that ΓK(u, u, u, u) = 0 for u ∈ R (see (5.27)), we obtain

(5.30) lim
T→∞

∫
R4

ΓK(u)χL2 (u4)dµT =

∫
R

ΓK(u, u, u, u)χL2 (u)du = 0.

For given ε > 0 and su�ciently large L by (4.16) we get

(5.31) CK

∫
R4

g(u)
(
1− χL2 (u)

)
d|µT | ≤ CK

∫
{u: g(u)>L}

g(u)du ≤ ε.

From (5.28) � (5.31) we obtain

lim
T→∞

(pK1 , p1 − pK1 )T = 0.

This combined with (5.23) and (5.26) yields

(5.32) lim
T→∞

‖p1 − pK1 ‖T = 0.

Finally, we prove that

(5.33) lim
T→∞

‖p2 − pK2 ‖T = 0.

Indeed, according to (5.15), (5.20) and (4.17), we have

‖p2 − pK2 ‖T ≤
∫
R4

[1− χK1 (u1)]f(u1)g(u1)f(u2)g(u2)d|µT |

+

∫
R4

[1− χK1 (u2)]f(u1)g(u1)f(u2)g(u2)d|µT |
≤

∫
{u:|f(u)|>

√
K}

f2(u)g2(u)du+

∫
{u:|g(u)|>K}

f2(u)g2(u)du = o(1),

when K →∞ (uniformly on T ). A combination of (5.18), (5.22), (5.32) and (5.33)

yields (5.7). This completes the proof of Lemma 5.1. Theorem 2.1 is proved.

Proof of Theorem 2.2. By a change of variables x1 = u, x1−x2 = u1, x2−x3 = u2,

x3 − x4 = u3, in view of (4.1), (4.2), (4.5) and (4.6), we can write

tr
[
Wh
T (f)Wh

T (g)
]2

=

∫
R3

∫
R
f(u)g(u− u1)f(u− u1 − u2)g(u− u1 − u2 − u3)du

× H1,T (u1)H1,T (u2)H1,T (u3)H1,T (−u1 − u2 − u3)du1du2du3

= : 8π3H4

∫
R3

Ψ(u)ΦhT (u)du,(5.34)
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where u = (u1, u2, u3), ΦhT (u) := Φh4,T (u) is de�ned by (4.1), Ψ(u) := ϕ(u1, u1 +

u2, u1 + u2 + u3) and ϕ(u1, u2, u3) is de�ned by (2.6). By Theorem 2.1 and (5.34)

we need to prove that

(5.35) lim
T→∞

∫
R3

Ψ(u)ΦhT (u)du =

∫
R
f2(x)g2(x)dx.

Now, since both functions ϕ(u1, u2, u3) and Ψ(u1, u2, u3) = ϕ(u1, u1 +u2, u1 +u2 +

u3) are square integrable and continuous at (0, 0, 0), and

Ψ(0, 0, 0) =

∫
R
f2(x)g2(x)dx,

from Lemma 4.1 we obtain (5.35). Theorem 2.2 is proved.

Proof of Theorem 2.5. In view of (4.5) and (4.7), we need to prove that (2.8) and

(2.9) imply

(5.36) lim
T→∞

1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT = 8π3H4

∫
R
f2(x)g2(x)dx.

If α, β ≥ 0, then (2.8), (2.9) imply f ∈ L1/α(R), g ∈ L1/β(R), and the result follows

from Theorem 2.3. Assuming β < 0, from (2.8) we have g ∈ L∞(R).

Denote

f(x) =

{
0, if x ∈

[
−a2 ,

a
2

]
f(x), otherwise

, g(x) =

{
0, if x ∈ [−a, a]

g(x), otherwise,

where the number a > 0 is as in the statement of the theorem, and let f = f − f ,
g = g − g. Then we have

1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT =
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT

+
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT +
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT

= I1T + I2T + I3T .(5.37)

Since f, g ∈ L∞(R) and f ∈ L1(R) we obtain

lim
T→∞

I1T = 8π3H4

∫
R
f(x)f(x)g2(x)dx = 8π3H4

∫
|x|> a

2

f2(x)g2(x)dx,

lim
T→∞

I2T = 8π3H4

∫
R
f(x)f(x)g2(x)dx = 0.(5.38)

Next, we can write

I3T =
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT +
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT

+
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT +
1

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dµT =

4∑
i=1

J iT .

(5.39)
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We have

J1
T =

1

T

∫
[−a,a]4

f(x1)f(x2)g(x3)g(x4)dµT .

Arguments similar to those leading to equality (4.3) from [16] may be used to prove

that

(5.40) lim
T→∞

J1
T = 8π3H4

∫ a

−a
f2(x)g2(x)dx = 8π3H4

∫ a/2

−a/2
f2(x)g2(x)dx.

Since f(x1)f(x2) ∈ L1(R2) for any ε > 0 we can �nd δ > 0 satisfying∫
|x1−x2|<δ

|f(x1)f(x2)|dx1dx2 < ε.

Because g ∈ L∞(R), in view of (4.18) and (4.19) for su�ciently large T we obtain

|J2
T | ≤ C · T

a/2∫
−a/2

a/2∫
−a/2

|f(x1)f(x2)|
a/2∫
−a/2

ψT (x1 − x3)ψT (x2 − x3)

×
∫

|x4|>a

x−24 dx4dx3dx1dx2

≤ C
a/2∫
−a/2

a/2∫
−a/2

|f(x1)f(x2)|(1 + T |x1 − x2|)−1/2dx1dx2

≤ C
∫

|x1−x2|<δ

|f(x1)f(x2)|dx1dx2

+ (1 + Tδ)−1/2
∫

|x1−x2|≥δ

|f(x1)f(x2)|dx1dx2 ≤ 2ε.

This means that

(5.41) lim
T→∞

J2
T = 0.

Likewise, we get

(5.42) lim
T→∞

J3
T = 0.

To estimate the integral J4
T in (5.39) note that in this case |xi − xj | > a

2 , i = 1, 2,

j = 3, 4. Therefore

|J4
T | ≤ C

T

∫
R4

f(x1)f(x2)g(x3)g(x4)dx1dx2dx3dx4

≤ C

T
‖f‖2L1(R)‖g‖

2
L1(R) → 0 as T →∞.(5.43)

From (5.39) � (5.43) we obtain

lim
T→∞

I3T = 8π3H4

∫ a/2

−a/2
f2(x)g2(x)dx,

which combined with (5.37) and (5.38) yields (5.36). Theorem 2.5 is proved.
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Proof of Theorem 3.1. Taking into account the equality

T 1/2
[
JhT − J

]
= T 1/2

[
E(JhT )− J

]
+ T 1/2

[
JhT − E(JhT )

]
,(5.44)

to prove the theorem we have to establish the following two asymptotic relations:

T 1/2
[
E(JhT )− J

]
→ 0 as T →∞,(5.45)

T 1/2
[
JhT − E(JhT )

] d→ η ∼ N
(
0, σ2

h(J)
)

as T →∞,(5.46)

where σ2
h(J) is given by (3.2).

Observe �rst that the relation (5.45) is an immediate consequence of Theorem

2.1 of Ginovyan and Sahakyan [18], since under each of the conditions a)-d) in

assumption (A), we have β1 + β2 > 1/2.

Now we proceed to show that the relation (5.46) follows from Theorem 2.3. To

do this we need to show that, under the assumption (A), there exist numbers p1

(p1 > p) and q1 (q1 > q), such that Hp(β1) ⊂ Lp1 , Hq(β2) ⊂ Lq1 and 1/p1 + 1/q1 ≤
1/2.

The case β1 > 1/p, β2 > 1/q is obvious, since in view of Lemma 4.9 b) we have

Hp(β1) ⊂ L∞ and Hq(β2) ⊂ L∞.
Let β1 ≤ 1/p, β2 ≤ 1/q and β1 + β2 > 1/2. For an arbitrary number ε > 0

satisfying β1 > ε and β2 > ε, we set

1

p1
=

1

p
− β1 + ε and

1

q1
=

1

q
− β2 + ε.

It is easy to see that p < p1 < p/(1− β1p) and q < q1 < q/(1− β2q). Hence by

Lemma 4.9 a) we obtain Hp(β1) ⊂ Lp1 and Hq(β2) ⊂ Lq1 . On the other hand, we

have
1

p1
+

1

q1
=

1

p
+

1

q
− (β1 + β2) + 2ε = 1− (β1 + β2) + 2ε.

Since β1 + β2 > 1/2, choosing ε su�ciently small, we obtain 1/p1 + 1/q1 ≤ 1/2.

Now let β1 > 1/p and 1/q − 1/2 < β2 ≤ 1/q. By Lemma 4.9 b) we have

Hp(β1) ⊂ L∞. For an arbitrary number ε > 0 satisfying β2 > ε, we set

1

q1
=

1

q
− β2 + ε.

Obviously q < q1 < q/(1− β2q), and hence Hq(β2) ⊂ Lq1 by Lemma 4.9 a).

Further, we have
1

p1
+

1

q1
=

1

q
− β2 + ε.

Since 1/q − β2 < 1/2, choosing ε su�ciently small we obtain 1/p1 + 1/q1 ≤ 1/2.

The case β2 > 1/q and 1/p− 1/2 < β1 ≤ 1/p can be treated similarly.

Thus, we can apply Theorem 2.3, to obtain that

QhT = T−1/2
(
QhT − E[QhT ]

) d→ η ∼ N(0, σ2
h) as T →∞,(5.47)
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where QhT and σ2
h = σ2

h(Q) are given by (1.2) and (2.3), respectively.

Also, in view of (1.10), (1.12) and (2.3), we have

σ2
h(J) =

1

4π2H2
2

σ2
h(Q) = 4πe(h)

∫
R
f2(λ)g2(λ)dλ, e(h) = H4H

−2
2 .(5.48)

Putting together (5.47) and (5.48), we obtain the relation (5.46). Theorem 3.1 is

proved.
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