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with spectral density f. The paper considers a question concerning asymptotic
distribution of tapered Toeplitz type quadratic functional Q% of the process X (t),
generated by an integrable even function g and a taper function h. Sufficient conditions
in terms of functions f, g and h ensuring central limit theorems for standard normalized
quadratic functionals Q% are obtained, extending the results of Ginovyan and Sahakyan
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1. INTRODUCTION

1.1. The problem. Let {X(t), ¢ € R} be a centered real-valued stationary Gaussian
process with spectral density f(\) and covariance function r(¢). The functions r(t)

and f(A) are connected by the Fourier integral:

(1.1) r(t) = /Rei)‘t FN) dA.

We consider a question concerning asymptotic distribution (as T — oo) of the

following tapered Toeplitz type quadratic functional of the process X (t):

T T
h — gt — s)hr(t)hr(s s s,
(1.2) Q= / / 3t — $)hr () ()X ()X (s) dt d
where
~ _ eikt .
(1.3) g(t)—/R gVdA, teR

is the Fourier transform of some integrable even function g(A), A € R, and hp(t) =
h(t/T) with a taper function h(-) to be specified below.
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We refer to g(\) and to its Fourier transform g(t) as a generating function and
generating kernel for the functional Q%, respectively.

Throughout the paper we assume that the taper function h(-) satisfies the
following assumption.
Assumption (T). The taper h : R — R is a continuous nonnegative function of

bounded variation and of bounded support [0, 1], such that Hy # 0, where
1
(1.4) Hy = / WE(dt, ke Ni={1,2,...}.
0

Remark 1.1. The case where h(t) = Ijo 1)(t), where Ijo 1)(-) denotes the indicator of
the segment [0, 1], will be referred to as the non-tapered case, and the corresponding

non-tapered quadratic functional will be denoted by Q.

The limit distribution of the functional (1.2) is completely determined by the
functions f, g and h, and depending on their properties it can be either Gaussian
(that is, Q’% with an appropriate normalization obey central limit theorem), or
non-Gaussian. We naturally arise the following two questions:

a) Under what conditions on f, g and h will the limits be Gaussian?

b) Describe the limit distributions, if they are non-Gaussian.

In this paper we discuss the question a), and obtain sufficient conditions in terms
of functions f, g and h ensuring central limit theorems for a standard normalized
tapered quadratic functional Q% extending the results of Ginovyan and Sahakyan
[17] to the tapered case and sharpening the results of Ginovyan and Sahakyan [18]

for the Gaussian case.

1.2. Statistical motivation. Quadratic functionals of the form (1.2) appear both
in nonparametric and parametric estimation of the spectrum of the process X (t)
based on the tapered data:

(1.5) {hr()X(t), 0<t < T}

For instance, when we are interested in nonparametric estimation of a linear integral

functional in LP(R), p > 1 of the form:

(1.6) J=J(f) = / FNg(A)dA,

where g(A) € LY(R), 1/p+1/q = 1, then a natural statistical estimator for J(f) is
the linear integral functional of the empirical periodogram of the process X (). To
define this estimator, we first introduce some notation.

Denote by Hy 7 ()) the continuous-time tapered Dirichlet type kernel, defined by

T
(1.7) Hyr(\) = / hE.(t)e= Mt = / RE.(t)e =M dt.
R 0
13
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Define the finite Fourier transform of the tapered data (1.5):

(1.8) / he ()X (t)e~Mdt,

and the tapered continuous periodogram I%()\) of the process X (t):
2

T
o : = —dh(A)dg(—A):i/ hop ()X (t)e”Mdt
Cr Cr | Jo
1 [T /T )
(1.9) N / / hor () ()= X () X (s)dtds,
Cr Jo Jo
where
T
(1.10) Cr:= 27TH2,T(0)=27r/ hA(t)dt = 2mHy T # 0.
0

Notice that for non-tapered case (h(t) = Ijg11(t)), we have Cr = 27T

As an estimator JJ for functional J(f), given by (1.6), based on the tapered
data (1.5), we counsider the averaged tapered periodogram (or a simple "plug-
n"statistic), defined by

o= (1) = / IE(V)g(A)dA

(1.11) CT/ / (t — $)he(t)hp(s) X (£) X (s) dt ds,

where Cr is as in (1.10), and g(t) is the Fourier transform of function g(\) given
by (1.3).

In view of (1.2) and (1.11) we have

(1.12) Jr = Cr'Qr,
and thus, to study the asymptotic properties of the estimator J%, we have to study
the asymptotic distribution (as T' — oo) of the tapered Toeplitz type quadratic
functional Q% given by (1.2).
Some brief history. The question of describing the asymptotic distribution of non-
tapered Toeplitz type quadratic forms and functionals of stationary processes has
a long history, and goes back to the classical monograph by Grenander and Szegd
[23], where the problem was considered as an application of authors’ theory of the
asymptotic behavior of the trace of products of truncated Toeplitz matrices and
operators.

Later the problem have been studied by a number of authors. Here we mention
only some significant contributions. For discrete-time short memory processes, the
problem was studied by Ibragimov [26] and M. Rosenblatt [29], in connection with
statistical estimation of the spectral and covariance functions, respectively. Since

1986, there has been a renewed interest in this problem, related to the statistical
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inferences for long memory (long-range dependent) and intermediate memory (anti-
persistent) processes (see, e.g., Avram [1], Fox and Taqqu [12], Giraitis and Surgailis
[20], Giraitis and Taqqu [21], Hhas’minskii and Ibragimov [25], Ginovian and Sahakian
[16], Terrin and Taqqu [30], and references therein). In particular, Avram [1], Fox
and Taqqu [12], Ginovian and Sahakian [16], Giraitis and Surgailis [20], Giraitis
and Taqqu [21] have obtained sufficient conditions for non-tapered quadratic form
Q1 to obey the central limit theorem (CLT).

For continuous-time stationary Gaussian processes the problem of describing
the asymptotic distribution of non-tapered Toeplitz type quadratic functionals was
studied in a number of papers. We cite merely the papers Avram et al. [2, 3], Bai
et al. [4, 5], Bryc and Dembo [7], Ginovyan [13, 14, 15], Ginovyan and Sahakyan
[17], Ibragimov [26], where can be found additional references.

In spectral analysis of stationary processes, however, the data are frequently
tapered before calculating the statistics of interest. Instead of the original data
{X(t), 0 <t < T} the tapered data {h(t)X(¢), 0 < t < T} with the data taper
h(t) are used for all further calculations. Benefits of tapering the data have been
widely reported in the literature. For example, data-tapers are introduced to reduce
leakage effects, especially in the case when the spectrum of the model contains high
peeks. Other application of data-tapers is in situations in which some of the data
values are missing. Also, the use of tapers leads to the bias reduction, which is
especially important when dealing with spatial data. In this case, the tapers can be
used to fight the so-called “edge effects” (see Brillinger [6], R. Dahlhaus [8, 9], R.
Dahlhaus and H. Kiinsch [10], Guyon [24], and references therein).

Central and non-central limit theorems for tapered quadratic forms of a discrete-
time long memory Gaussian stationary fields have been proved in Doukhan et
al. [11]. A central limit theorem for tapered quadratic functionals Q%, in the
case where the underlying model X (t) is a Lévy-driven continuous-time stationary
linear process has been proved in Ginovyan and Sahakyan [18] with time-domain

conditions.

Remark 1.2. Recall that a stationary process X (t) with spectral density f(X) is
said to have (a) short memory, (b) long memory or (c) intermediate memory if
f(A) (a) is bounded away from zero and infinity at X =0, (b) has a pole at A = 0,

or (c¢) vanishes at A = 0, respectively.

1.3. The approach. To study the asymptotic distribution (as T — o0) of the
functional @%, given by (1.2), we use the method of cumulants, the frequency-

domain approach, and the technique of truncated tapered Toeplitz operators.
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By Wk(¢)) we denote the truncated tapered Toeplitz operator generated by a
function ¢ € L'(R) defined as follows (see [19], [23], [26] for non-tapered case):

(113)  (Wh)ul(t) = / bt — )hr(hr(s)yu(s)ds, u(t) € L2[0,T),

where ¢(-) is the Fourier transform of v(-).

Let WA(f) and W!(g) be the truncated tapered Toeplitz operators generated
by the spectral density f, and the generating function g, respectively. Similar to
the non-tapered case, we have the following results (cf. [19], [23], [26], see also the

proof of Lemma 4.8 below).

1. The quadratic functional Q% in (1.2) has the same distribution as the sum
Z;i1 )\?J{?, where {{;,j > 1} are independent N(0,1) Gaussian random
variables and {\; r,j > 1} are the eigenvalues of the operator WX (f) W2i(g).

2. The characteristic function ¢(¢) of Q% is given by formula:

(1.14) o(t) =[] 11— 2ithjr|~/2

Jj=1

3. The k—th order cumulant xx(Q%) of Q% is given by formula:
(115)  xk(Qr) =21 (k= 1)1 Y Ny = 287N (k= 1)l er (W () W (9)]",
j=1

where tr[A] stands for the trace of an operator A.

Thus, to describe the asymptotic distributions of the quadratic functional Q%
we have to control the traces and eigenvalues of the products of truncated tapered
Toeplitz operators.

Throughout the paper the letters C, ¢ and M with or without indices are used
to denote positive constants, the values of which can vary from line to line. Also,
by I4(-) we denote the indicator of a set A C R.

The remainder of the paper is structured as follows. In Section 2 we state the
main results of the paper — Theorems 2.1 — 2.5. In Section 3 we apply the results
of Section 2 to show that the avaraged tapered periodogram is an asymptotically
normal estimator for the linear spectral functional. In Section 4 we prove preliminary
results that are used in the proofs of main results, and also represent independent

interest. Section 5 is devoted to the proofs of results stated in Section 2.

2. CENTRAL LIMIT THEOREMS FOR TAPERED QUADRATIC FUNCTIONAL er}

Below we assume that f,g € L!'(R), and with no loss of generality, that g > 0. We
use the following notation: By @é‘p we denote the standard normalized quadratic
16
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functional:
(2.1) QF =777 (QF —E[Q}).
Then by (1.15) we have

= 0, for k=1
2.2 Qr) =
(2.2) Xk(Qr) T=R/228 =1 (ke — 1)l tr [WE(f)Wh(g)]*, for k> 2.

We set

(2.3) o} = 167r3H4/]Rf2(/\)92()\) d,
where Hy is as in (1.4). The notation

(2.4) Qb &~ N(0,02) as T — oo

means that the distribution of the random variable (55& tends (as T — o0) to the
centered normal distribution with variance o7.

The main results of the paper are the following theorems.

Theorem 2.1. Assume that f-g € L'(R) N L?(R), the taper function h satisfies
assumption (T), and for T — oo

(25) x(@) = 26 [WEHWE)] — of,
where o3 is as in (2.3). Then @’% 4 n~N(0,07) as T — <.
Theorem 2.2. Assume that the function

(2.6) o(x1, 2, T3) / fw)glu —x1) f(u —x2)g(u — x3) du

belongs to L*(R3) and is continuous at (0,0,0), and the taper function h satisfies
assumption (T). Then Qv% 4 n~ N(0,0%) as T — cc.

Theorem 2.3. Assume that f(A\) € LP(R) (p > 1) and g(A\) € LYR) (¢ > 1)
with 1/p 4+ 1/q < 1/2, and the taper function h satisfies assumption (T). Then
@%ian(O,ai) as T — oo.

Theorem 2.4. Let f € L?(R), g € L3(R), fg € L3(R),
(2.7) /f 2N — ud)\—>/f (AN d\ as pu—0,

and let the taper function h satisfy assumption (T). Then é% 4 n~ N(0,07) as
T — o0.
17
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To state the next theorem, we need to introduce a class of slowly varying at zero
functions. Recall that a function u(A), A € R, is called slowly varying at zero if it

is nonnegative and for any ¢ > 0
i u(t\)
A—=0 u(/\)

— 1.

Denote by SVu(R) the class of slowly varying at zero functions u(\), A € R,
satisfying the following conditions: for some a > 0, u(A) is bounded on [—a,a],
limyou(A) =0, w(A) = u(=X) and 0 < u(A) < u(p) for 0 < A < p < a. An
example of a function belonging to SVo(R) is u(A) = [In|A||”" with v > 0 and

a=1.

Theorem 2.5. Assume that the functions f and g are integrable on R and bounded

outside any neighborhood of the origin, and satisfy for some a > 0
(2.8) FO) ST L), [N < ATPLa(A), A€ [—a,d,

for some a < 1, § <1 with o+ < 1/2, where Ly(z) and La(x) are slowly varying

at zero functions satisfying
(2.9) L; € SVo(R), AL, (\) € L*[—a,a], i=1,2.

Also, let the taper function h satisfy assumption (T). Then @% LS n~ N(0,0%) as
T — oc.

Remark 2.1. The conditions o < 1 and 8 < 1 in Theorem 2.5 ensure that the
Fourier transforms of f and g are well defined. Observe that when a > 0 the process
X (t) may exhibit long-range dependence. We also allow here o + 8 to assume the
critical value 1/2. The assumptions f - g € L*(R), f,g € L>(R\ [—a,a]) and (2.9)
imply that f-g € L*(R), so that the variance o7 in (2.3) is finite.

Remark 2.2. In Theorem 2.5, the assumption that L;(z) and Ls(x) belong to
SVo(R) instead of merely being slowly varying at zero is done in order to deal with
the critical case a + 8 = 1/2. Suppose that we are away from this critical case,
namely, f(z) = |z|~%l1(z) and g(x) = || Ply(x), where a + 3 < 1/2, and I, (=)
and ly(z) are slowly varying at zero functions. Assume also that f(x) and g(x)
are integrable and bounded on (—oo, —a) U (a, +o0) for any a > 0. We claim that
Theorem 2.5 applies. Indeed, choose o' > «, f/ > 8 with o/ + 8’ < 1/2. Write
f(x) = |z|~ |2|°l1 (z), where § = o/ —a > 0. Since I; (x) is slowly varying, when |z|
is small enough, for some € € (0,d) we have |z|°l;(z) < |#|°~¢. Then one can bound
1z|~¢ by ¢|n|z||”" € SV,(R) for small || < 1. Hence one has when |z| < 1 is
small enough, f(z) < |z~ (c [In |x||_1> . Similarly, when |z| < 1 is small enough,
18
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one has g(z) < |z|~F (c|ln \J;||_1> . All the assumptions in Theorem 2.5 are now

readily checked with «, 3 replaced by o and f’, respectively.

Remark 2.3. The analogs of Theorems 2.1 - 2.5 for non-tapered case (h(t) =
ljo,1)(t)) were proved in Ginovyan and Sahakyan [17].

Remark 2.4. In Ginovyan and Sahakyan [18] was proved a central limit theorem
for tapered functional Q% for more general case where X(t) is a Lévy-driven
stationary linear process. Specifically, in [18] was proved the following result (see
[18], Theorem 5.1). Let {X (¢), t € R} be a stationary linear process defined by

X(t) = / alt — 5)¢(ds),

where a(-) is a filter from L?(R), and £(t) is a Lévy process satisfying the conditions:
E&(t) = 0, E€2(1) = 1 and E€4(1) < oo. Assume that the filter a(-) and the

generating kernel g(-) are such that

(2.10)  a() € LP(R)NL*(R), §(-) € LUR), 1<pqg<2, ~+->

)

Do | Ot

[N
SN

and the taper h satisfies assumption (T). Then @}% 4 n ~ N(O,o%’h) as T — oo,

where

2
(2.11) ﬁﬁ:umﬁuéf%mf@mA+mmﬁm{éfumumq.

Notice that if the underlying process X (¢) is Gaussian, then in formula (2.11) we
have only the first term and so o7 , = o7, because in this case x4 = 0. On the other
hand, the condition (2.10) is more restrictive than the conditions in Theorems 2.1
- 2.5. Thus, for Gaussian processes Theorems 2.1 - 2.5 improve the above stated

result.

3. AN APPLICATION

In this section we apply the results of Section 2 to prove that the statistic J*
given by (1.11) is an asymptotically normal estimator for the linear functional J(f)
given by (1.6). To state the corresponding result we introduce the LP-Holder class
and set up an assumption.

Given numbers p > 1,0 < a < 1, r € Ny := NU{0}, we set § = a+r and denote
by H,(5) the LP-Holder class, that is, the class of those functions ¢(X) € LP(R),

which have r-th derivatives in LP(R) and with some positive constant C' satisfy

1+ h) =@ O)llp < Clr|*.
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Assumption (A). Let the spectral density f(\) € H,(81), /1 > 0, p > 1 and let
the generating function g(\) € H,(B2), B2 > 0, ¢ > 1 with 1/p+ 1/g = 1. Assume
that one of the conditions a)—d) is fulfilled:

a) /1 >1/p, B2 >1/q

b) B1 <1/p, B2 <1/q and By + 2 > 1/2

) B1>1/p, 1/q—1/2<p2<1/q

d) B2 >1/q, 1/p—1/2 <1 < 1/p.

Theorem 3.1. Let the functionals J = J(f) and Jh = J(IL) be defined by (1.6)
and (1.11), respectively. Then under the conditions (A) and (T) the statistic J% is
an asymptotically normal estimator for functional J. More precisely, we have
(3.1) /2 [J% —J] 4 n as T — oo,
where n is a normally distributed random variable with mean zero and variance
o2 (J) given by
(3.2) o2 (J) = dme(h) / AN (NdN,  e(h) :== HyHy 2,

R
and Hy, is as in (1.4).

Remark 3.1. In Theorem 2.3 of Ginovyan and Sahakyan [18] was proved the
asymptotic normality of the estimator J for more general case where X (t) is a
Lévy-driven stationary linear process, but under the additional restrictive condition
(2.10). Thus, for Gaussian processes Theorem 3.1 improve Theorem 2.3 of Ginovyan
and Sahakyan [18].

4. PRELIMINARIES

For a number k (k= 2,3,...) and a taper function h satisfying assumption (T)

consider the following “tapered” Fejér type kernel function:

G T(u) k—
4.1 o = &I = (uqy.... up_q1) € RF1
( ) k,T(u) (27T)k71Hk,T(O) 5 u (ula , Uk 1) S 5
where
k—1
(4.2) Grr(u) = Hyp(w) -+ Hip(ug—1)Hir | — Zuj ,
j=1

and the function Hy r is defined by (1.7) with Hy 7(0) =T - Hy, # 0 (see (1.4)).

Remark 4.1. Observe that by a change of variables u; = ©1 — 3, us = x2 — 3,
.e oy Uk—1 = Tk—1 — Tk, the function G r(u) in (4.2) can be written in the following

“symmetric” form:

(4.3) Grr(x)=Hir(z1w —x2)Hir(22 — x3) - - Hip(2p—1 — ox)Hir(2) — 1),
20
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where x = (x1,...,71) € RF.

In Lemma 3.4 of Ginovyan and Sahakyan [18], it was proved that, similar to the
classical Fejér kernel, the "tapered"kernel <I>Z’T(u) is an approximation identity. In

particular, it was shown that the kernel @Z’T possesses the following property.

Lemma 4.1. If a function (u) € L*(RF¥1) (N LF=2(RF1) is continuous at v =
(v1,...,v-1) (k=2,3,...), then
(4.4) lim Y(u+v)®! 1 (u)du = U(v),

T—oo Jrk—1 ’

where u = (u1,...,ux—1) and <I>Z7T(u) is defined by (4.1) and (4.2).

The next lemma contains a formula for trace of product of truncated tapered

Toeplitz operators.

Lemma 4.2. Let Wh(f) and Wk(g) be the truncated tapered Toeplitz operators
generated by functions f € L'(R) and g € L*(R), respectively. Then

@) e WHOWH] = [ Greo ot fa)gar) dx.

where x = (21, T2, x3,24), Gr(x) := Gy 1(x), that is,

(4.6) Gr(x) = Hir(z1 — z2)Hir(ze — 23)Hiw (23 — 24) Hir (24 — 21),
and Hy 7 (-) is as in (1.7) with k = 1.

Proof. Tt is easy to check that the result follows from (1.1), (1.3), (1.7), (1.13),

and the formula for traces of integral operators (see [22], §3.10). Lemma 4.2 is

proved.
Denote
1
(4.7) pr(4) = 7. [ Grlx)ax,
A

where x = (21, %2, 73,24) and Gr(x)) is as in (4.6), and let Cj,.(R™) be the space

of continuous functions on R"” with bounded support.
Lemma 4.3. If ¢ € Cj,.(R?), then

(4.8) lim b(x) dur = 873 Hy / o(u, u,u, u)du,
R

T—o0 R4
where x = (x1, T2, x3,24), ur(A) is as in (4.7) and Hy is as in (1.4).
Proof. Making a change of variables

1 =U, X1 —T2=U1, T2 —T3=U2, I3 — Tq4= U3,
21
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in view of (4.1), (4.2) and (4.7), we can write
/ O(x)dur = —/ /qﬁ — U, U — UL — U2, U — U — Ug — Ug)dU
R4 R3
X Hyp(uwi)Hyr(ue)Hyr(us)Hy r(—un — ug — ug) dug dus dusg
(4.9) = 8n°H, / T (u) d4(u) du,
RS

where u = (u1,ug, us), . (u) := &} 1(u) and
/(;5 — UL, U — U] — Uz, U — U] — Ug — U3) dU.
It is not difficult to check that the function ¥ satisfies conditions of Lemma 4.1 and

(4.10) lim T(u) —/(buuuu)du
u—(0,0,0)

Hence applying Lemma 4.1 from (4.9) and (4.10) we get (4.8). Lemma 4.3 is proved.

Lemma 4.4. Let ¢(uy,uz, us,ug) = H ¢i(u;), where ¢; € LY(R)NL*®(R), i =
1,2,3,4. Then the asymptotic relation (4 8) holds.

Proof. Suppose ||¢il]lcc < M < o0, i = 1,2,3,4. Using Lusin’s theorem for any
¢ > 0 we can find functions ¢;, v¥;, i = 1,2, 3,4, satisfying

(4.11) bi = 0i +1bi,  0i € Cloc(R),  YillLrw) <&, lwille < M.
Therefore

4 4
(4.12) / pdpr = / 11w + vi)dur = / 11 eidpr + Ir,
R R i1 R 51

where by (4.11) and Lemma 4.5 below

| < Z / sl TT (il + [l
i=1 z;éj
4
(1.13) <Cu Y [ 1ldinr] < ol < Cu
j=1"% j=1

By Lemma 4.3 we have

4 4

(4.14) /H oi(u) —Pi(u du—/¢uuuu)du—|—J

where

@) =Y [l T] (6] + lehde < Cae.
j=1"Rk i=1,i#j

From (4.12) — (4.15) we get (4.8). Lemma 4.4 is proved.
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Lemma 4.5. If f € L*(R), then the following inequalities hold:

@) 1 [ fGolder] < Ol i=1.23.4
R

@) 2 [ f@ose)durl < Call Al 60=12.34 17

where C1 and Cy are absolute constants, and ur is as in (4.7).

Proof. Since h is a function of bounded variation with support on [0,1], in view of
(1.7), for T > 0 we have

(4.18) |Hy r(x)] < CpoTYr(z), where vp(x) r R

B 1
1+ T
We use the following inequality for function v (z), which was proved in Ginovyan

and Sahakyan [17] (see proof of Lemma 5):
(4.19) T/ Yr(x 4+ uw)r(z +v)de < Cshi*(u—v), §>0, u,veR.
R

To prove (4.16) for ¢ = 1 (say), we use (4.6), (4.7) and the inequality (4.19) with
0 = 1/4 to obtain

/ |f(z1)|d|pr| < CT3/ |f(z1) |7 (21 — 23)¢7 (23 — 2)
R4 R4
Xi//T(J?4 — $1)1/)T(172 — ZE4)dl‘1diE2diE3d$4
< CT/ | f (1) / U3 (@1 — @) daada, < Cullfllerw)-
R R

This proves (4.16). To prove (4.17) for i = 1, j = 2 (say), we use (4.6), (4.7), the
inequality (4.19) with § = 1/4, and Cauchy inequality to obtain

/ |f(z1) f(z2)]d|pr| < CTg/ |f(z1) f(z2) |97 (21 — 23)Y7 (23 — 22)Y7 (24 — 21)
R4 R4

< CT/ |f($1)f($2)|¢§/2(1‘1 - l‘z)dl‘ldl‘z
R2
. 1/2
§ C {T/ fz(l’l)’(/ﬁ;«/z(a?l — Ig)dl‘ldiﬂg}
R2

1/2
+ {T FA(@2) 0y (a1 — $2)d$1d$2} < 02/ 2 (z)dx.
R? .

Lemma, 4.5 is proved.

Lemma 4.6. Let ¢(u) € L*(R)NLP(R), with 1 < p < oo, and let the taper function
h satisfy assumption (T). Then

(4.20) Ar = [[WEW)||oo = o(TH?) as T — oo

Proof. Let Nt be a positive function of T, which we will specify later. We set

(4.21) My = {\€R; [$(\)] > Nr}.
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We have
A = |[Wi ()] = S (Wi ()u,u)| =
H:|1\12p:1 /0 /0 Yt — s)u(t)u(s)h(t)h(s) dtds| =
4z s / ' / ' [ [ e d)\] w(t)u(s)h(t)h(s) d ds|.

A square integrable function u(t) is also integrable on [0,7T]. Hence, switching the

order of integration in (4.22), we get

= S ! itA ’ —isA
AT?J‘EL/RW) l/o u(OMO dt [ u(oh(e)e ds] ax
T 2
it
(4.23) <5|uzp_1/R¢(>\)|/O w(t)h(t) eMdt| dX.

Since for u(t) € L?[0,T] with ||u||2 = 1 and h is bounded, we have UOT u(t)h(t) e“‘tdt|2 <
CyT, and by Plancherel’s theorem from (4.23) we obtain

(124) A < Ch (NT o7 [ dA) |
Mt
where My is as in (4.21). We show that for every p (1 < p < 00)
(425) | wlar < g N,
Mt

where

1/p
(1.26) o= ([ woran)

Mt
Indeed, by Holder inequality
(427) [ Wlax < ar m(ar) ",
Mt

where m(Mr) is the Lebesgue measure of the set M. Next, by Chebyshev inequality
(4.28) m(My) < b Ny?.
A combination of (4.27) and (4.28) yields (4.25). Now from (4.24) and (4.25) we
have
(4.29) Ar < C (Np+ T NG
If ¢ € L°(R), then putting Ny = ||9)||e for all T > 0, we will have v = 0 and
(4.29) implies Ay = O(1).
Now suppose 1 € L*(R) and for fixed T' > 0 consider the function
1/p
F(N) :N—Tl/p</ w()\)|”d>\) ,  Ne€0,00).
A (AN [>N}
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Since F(0) < 0 and limy_,o F(IN) = +00 there exists a positive number N = Ny
with F(N7) = 0, that is,

(4.30) vy =10 ( [ BOIP) = Trar.
A (A)[>Nr}

It is easy to see that for ¢ ¢ L°°(R) the equality (4.30) implies lim7_, oo N7 = oo
Hence yr = o(1) and from (4.29) and (4.30) we obtain A\p < C,T /Py = o(T/?)

as T — oo. Lemma 4.6 is proved.

Lemma 4.7. Let ¢ € L'(R) N L%(R), and let W}E(v)) be the tapered truncated
Toeplitz operator defined by (1.18) with taper function h satisfying assumption (T).
Then

1
(4.31) FIWE@IE — 2nHa[Y[5 as T — oo,
where Hy is as in (1.4).

Proof. Using the formula for Hilbert—Schmidt norm of integral operators (see [22]),
by (1.13) we have

(4.32) IWh@)|2 = / / Bt — 9)2 b (Db () 2 de ds.

Using the change of variables ¢t — s = u and taking into account that by assumption

(T) the taper function h is supported on [0, 1], from (4.32) we get
(4.33) WE()|2 = / / [B() 2l (s + u)he(s)[? duds.

Next, taking into account that hp(t) = h(t/T) and using the change of variables

s/T = v, from (4.33) we can write

R T
FWEOIE = 5 [ 19 [/ Ih(s/T +w/T)h(s/T) ds] du

/RIQZ(U)IQI Uol |h(v + u/T)h(v)[? dv] du

For the inside integral on the right-hand side of (4.34), in view of (1.4), we have

1 1
(4.35) im [ Ao+ u/T)h()[? dv = / B (v) dv = Hy.
T— o0 0 0

(4.34)

Finally, using Parseval-Plancherel’s equality, from (4.34) and (4.35), we obtain
(4.31). Lemma 4.7 is proved.

Lemma 4.8. Let Y(t), t € R, be a real-valued, centered, separable stationary
Gaussian process with the spectral density fy (\) € L*(R) N L?(R), and let hp(t) =
h(t/T) with a taper function h satisfying assumption (T). Define

(4.36) L= / T[hT(t)Y(t)]2 dt.
0
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Then the distribution of the normalized quadratic functional

(4.37) Lh.=17'2 (Lh ~ELL)

tends (as T — 00) to the normal distribution N(0,0% ) with variance
(4.38) 0% = 4nH, /R fE(N) d,

where Hy is as in (1.4).

Proof. Let R(t) be the covariance function of Y'(¢). For T' > 0 denote by \; = \;(T),
j € N, the eigenvalues of the operator W (fy) (see (1.13)), and let e;(¢) = ¢;(t,T) €
L,[0.T], j € N, be the corresponding orthonormal eigenfunctions, that is,
T
(4.39) / K(t — s)e;j(s)ds = A\je;(t), jeN,
0
where K(t — s) := R(t — s)hr(t)hr(s). Since by Mercer’s theorem (see, e.g., [22],
§3.10)
(4.40) K(t—s) =Y Xej(t)e;(s)
j=1
with positive and summable eigenvalues {); }, we have the Karhunen-Loéve expansion:

(4.41) hr()Y (t) = Z VA& (t),

where {{;} are independent N(0,1) random variables. Therefore by (4.37) and
(4.41)

o0
(4.42) Lh =773 "\ - 1).
=1
Denote by yx(L%) the k-th order cumulant of L. By (4.42) (cf. (2.2)) we have

_ 0 for k=1
4.43 L) =4 ’
(4.43) Xk (L) {(k — D12 IR 24 [WR( fy )]k, for k > 2.

By (4.43) and Lemma 4.7 we have
~ 2
@) i) = ZIWREIE — s [ B as T oo,
R
Next, by (4.43) for k > 3, we have
~ 1 B B

(4.45) k(L) < C o WE(F)IBT 2072,
where Ay = |[W2(fy)||o. By Lemmas 4.6 and 4.7 the right hand side of (4.45)
tends to zero as T'— oco. Lemma 4.8 is proved.

The next lemma, which is the well-known Hardy-Littlewood type embedding
theorem for the Holder classes H,(53) (see Nikol’skii [28]), will be used in the proof

of Theorem 3.1.
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Lemma 4.9. Let ¥(\) € Hy(B) with B > 0 and p > 1. The following assertions
hold:

a)if 6 <1/p and p <p1 <p/(1— Bp), then

11
YO € Hp (B 2+ )

b) if B> 1/p, then () is continuous and ||1||c < 00.

5. PROOFS

Since the proofs of Theorems 2.3 and 2.4 are almost the same (with some minor
changes) as in the non-tapered case given in Ginovyan and Sahakyan [17], here we
prove only Theorems 2.1, 2.2 and 2.5.

Proof of Theorem 2.1. By Theorem 16.7.2 from [27] the underlying process X (t)

admits the moving average representation
(5.1 X(0) = [ ate -5 de(o)
R

where @(+) is a function from L?(R), and £(s) is a process with orthogonal increments
such that E[d¢(s)] = 0 and E|d€(s)|> = ds. Moreover the spectral density f()\) can

be represented as

(5-2) F) =27 [a(V)P,

where a(\) is the inverse Fourier transform of a(t). We set
(5.3) a1(A) = (2m)' 2 a(A) - [g(V)]'/2,

where g(A) is the generating function, and consider a process Y (¢) (¢t € R) defined
by

(5.4) V() = [t = s)dss).

where @ (¢) is the Fourier transform of a; ()\) and £(s) is as in (5.1). Since fg € L'(R)

by Parseval-Plancherel’s identity we have

(5.5) / [, (t)|* dt = 27/ lar(\) 2 d)\ = 47r2/ FN) g(\) dX < oo.
R R R
So, Y (t) is well-defined stationary process with spectral density

(5.6) fr(A) ==l (V)]? =27 f(A) g(N).

Since by assumption f(\)g(A\) € L*(R) N L%(R), the process Y (t) defined by (5.4)
satisfies the conditions of Lemma 4.8. Hence Lemma 4.8 and Lemma 5.1 that follows

imply Theorem 2.1.
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Lemma 5.1. Under assumptions of Theorem 2.1
(5.7) Var(Qh — Lh) = o(T) as T — oo,
where Q% and L% are as in (1.2) and (4.36) respectively.

Proof. By (1.2) and (5.1) we have

e b= [ |f ' / "t )it —ur)ils — un)hr (Do (s) dtds| () ).

R2
Similarly, by (4.36) and (5.4)

(5.9) Lh = /R UOT a1 (t — w)a (t — u)h2 (%) dt} de (uy) dE (us).

Setting

(5.10) dir(uy,ug) == /0 /0 g(t — s)a(t — ur)a(s — uz)hr(t)hr(s) dtds

and

T ,T
dgT(ul, ’LLQ) = /0 /0 Zil (t — ul)?il(s — UQ)h%p(t) dtds
(5.11) = /o @1 (t — w)a (t — ug)hp(t) dt,

from (5.8)—(5.11) we get

(5.12) Q- 1h = /W [dir(u1,uz) — dor (ur, ug)] dé(ur) dé(us).

Since the underlying process X (t) is Gaussian, we obtain

(5.13) Var(Qf — L) =2 /2 [dyr(ur, ug) — dQT(Uhuz)}z duy dus.
R

We set
(5.14)  p1(A1, A2, p) = a(M)a(A2)g(p),
(5.15)  pa(A1, Ao, i) = a1 (A)ar(A2)d (i) = a(Ar)a(A2)[g(A)] 2 [g(A2)] V2.

By Parseval-Plancherel’s identity we have

/2 d?T(Ul, ’LLQ) du1 d’ILQ
R

= [

2
/ Hyr(A — p)Hy (g — A2)pi(Ar, Ao, i) dpp| dAg dAg
R

(5.16) = @0 T3, i=12,

where Hy r(u) is given by (1.7), Hp||2T = (p,p)1,

(5.17) (0,0 )r = / P(A1, A2, A3)p (A1, Ao, Ag) dpr,
R4

and the measure pp is defined by (4.7).
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As in (5.16) (see also (5.13)), we have
(5.18) Var(Qr — Lr) = 87T ||p1 — p2||7-

For any K > 0 we consider the sets

(5.19) EE={ueR:|a(u)| < K}, E¥={uecR:gu)<K},
and denote
(5.20) it (w) = pr(w)xy (w)x (u2)xs (uz),

p5(u) = pa(w)xf (un)x1 (u2) x5 (u1)xs (uz),

where u = (uy, u2,u3) € R® and x ¥ (u) is the characteristic function of the set £},
7 =1,2. Then

(5.21) Ip1 = p2ll7 < 3 (lIpF — p5°1I7 + llp1 — PR N7 + llp2 — P5°117,).

Now, (5.14), (5.15) and (5.20) imply that [|p{* — pf||F = [g Tdpr, where I' =
L (uy,ug,us, uq) is a sum of four functions satisfying the conditions of Lemma 4.4.

Since I'(u, u,u,u) = 0 for u € R, applying Lemma 4.4 we get
(5.22) lim |pf — p& |7 = / I (u, u, u, u)du = 0.
T—o0 R
Next, according to (5.17) we have
o1l = Nl + (o1 = pONF = 17 + 28, 21— 1) + o2 — 07 |[7-
Therefore
(5.23) o1 = P 17 < [IpalF = o8 13| + 2] (ot 1 = p1) 7).
By (2.5), (5.16) and Lemma 4.2 we have
51 2
(5.24) P17 = (2m) =2 te [WR(N)Wi(9)]” — 27TH4/ F2(u)g? (u)du,
R
while according to Lemma 4.4 and (5.16)
(5.25) lpi* |17 — 27 Hy ; F2(u)g? (u)du,
K
where Fx :={u e R: f(u) < K, g(u) < K}. From (5.24) and (5.25) we get
(5:20) Jim (Ipilf = IpKIB) =2t [ Plogdde=o(t) as K - oo,
T— o0 ]R\FK
To estimate the last term on the right hind side of (5.23) we denote
T (ur, uz, us, ug) = pi (ur, uz, us) [p1(ur, uz, ug) — pi* (ur, uz, ug)] .
From (5.19) and (5.20) for I'k (u1, ug, ug, us) # 0 we have

(5.27) la(u1)| < K, Ja(uz)] < K, g(us) < K, g(us) > K,
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Next, for any L > K and u = (uy, ug, us, uq) we have

(5.28) (1, p1 — P )1 = /w L (w)dur = /R4 T ()3 (ua)dpr + 1,
where with some constant C'x depending on K
(5.20) 1< Ck [ alus) (1= xb(ws)) |

It follows from (5.14), (5.15) and (5.20) that T's (u)x% (u4) is a linear combination of
functions satisfying the conditions of Lemma 4.4. Applying Lemma 4.4 and taking

into account that T'x (u,u,u,u) = 0 for u € R (see (5.27)), we obtain

(5.30) lim Txc (W) xE (ug)dpr = / Tk (w, w, w, ) x5 (u)du = 0.

T—oo Jpa R
For given £ > 0 and sufficiently large L by (4.16) we get
631 Cx [ o) (@) durl <Cx [ gwdu<e
R

{u: g(u)>L}

From (5.28) — (5.31) we obtain

lim (pf(’]h —pf)T =0.
T— 00

This combined with (5.23) and (5.26) yields

(5.32) lim ||py — pf*[|lr = 0.
T—o0

Finally, we prove that

(5.33) lim ||ps — p5°[|7 = 0.
T—o0

Indeed, according to (5.15), (5.20) and (4.17), we have

p2 — p¥llr < / [1— X1 (ua)]f (wr)g(ua) f(u2)g(uz)d| pr
R4

+ [ = )l )y ) gl
R4
< / 2 (u)g? (u)du + / 2 (w)g?(u)du = o(1),
{u:lg(w)|>K}
{wlf(w)|>VK}
when K — oo (uniformly on 7). A combination of (5.18), (5.22), (5.32) and (5.33)
yields (5.7). This completes the proof of Lemma 5.1. Theorem 2.1 is proved.
Proof of Theorem 2.2. By a change of variables x1 = u, x1 — 2 = U1, To — T3 = Ug,

3 — T4 = ug, in view of (4.1), (4.2), (4.5) and (4.6), we can write
2
tr [W%(f)W%(g)] / /f g(u —up) flu—u —uz)g(u —uy —ug — ug)du
Hy p(uwi)Hyr(u2)Hi r(us) Hyr(—ur — ug — us)dugduadus
(5.34) = :87°H, / T (u)®%(u)du,
R3

X
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where u = (uy, ug,u3), ®}(u) := @} 1(u) is defined by (4.1), ¥(u) := @(u1,u1 +
ug,u1 + us + ugz) and p(uq, ug, us) is defined by (2.6). By Theorem 2.1 and (5.34)
we need to prove that

(5.35) Jin [ W)@ - /R F2(2)g(z)da

Now, since both functions ¢(uy,us, u3) and ¥(uy, ug, us) = @(u1, ug + uz, ug +us +

ugz) are square integrable and continuous at (0,0,0), and

\I/(O,O,O):/Rf2(x)g2(w)dx

from Lemma 4.1 we obtain (5.35). Theorem 2.2 is proved.
Proof of Theorem 2.5. In view of (4.5) and (4.7), we need to prove that (2.8) and
(2.9) imply

(5.36)  dim = [ f(en)f@)e(es)g(ea)dur = SxOH, / £ ()9 ().

T—o0 R4

If o, B > 0, then (2.8), (2.9) imply f € L'/*(R), g € L'/#(R), and the result follows
from Theorem 2.3. Assuming 8 < 0, from (2.8) we have g € L>°(R).

Denote

Ta) = {0, if = G. [—2, 4] , d(z) = {0, if x 6. [—a,a)

f(x), otherwise g(z), otherwise,

where the number a > 0 is as in the statement of the theorem, and let f = f — 1,
g =g —g. Then we have

7 [ e ssgadir = 5 [ T faatoendun

+ % /11&4 i(ml)?($2)g($3)g($4)dMT + % /R4 Sf(a1) f(x2)g(x3)g(xa)dpr
(5.37) =Ih+ 1211

Since f, g € L®(R) and f € L'(R) we obtain

Th_r}nOo I} = 87T3H4/ flz x)dr = 87° Hy /|x>g f2(2)g?(x)dx,
(5.38) Tlim 2 = 87T3H4/ f(x)f(2)g*(x)dx = 0.
—00 R
Next, we can write
I3 = f(Il)f( w2)g(w3)g(wa)dpr + %/th f(@1) f(w2)g(x3)g(za)dpr

(5.39)

4
+ % s f(@1) f(z2)g(z3)g(za)dpr + % /11@4 f(@1) f(x2)g(x3)g(2s)dpr = Z Jh.

i=1
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We have 1
=g [ S

Arguments similar to those leading to equality (4.3) from [16] may be used to prove
that

a a/2
(5.40) Th_I)lgo Jh = 87T3H4/ ()¢ (x)dx = 87r3H4/ f2(z)g?(z)d.

—a —a/2
Since f(x1)f(x2) € L'(R?) for any ¢ > 0 we can find § > 0 satisfying
/ |f(z1) f(22)|dar1dzs < e
|y —x2|<6

Because g € L*°(R), in view of (4.18) and (4.19) for sufficiently large T we obtain

a/2 a/2 a/2
Bzer [ [ 5@l [ vr - st - o)
—a/2—a/2 —a/2

X / szddecgdﬂcldxg

|z4]>a
a/2 a/2
<c / / () f(@)](1 + Tl — ws])~2daydzs
—a/2—a/2
<c [ 1) )dndes
|z1—x2|<d
+(1+T6) 12 / @) f () |dirydicy < 22,
|z1—22|>0
This means that
(5.41) Jim J7 =0,
—00
Likewise, we get
(5.42) lim J3 = 0.
—00

To estimate the integral J7 in (5.39) note that in this case |z; — z;| > %, = 1,2,
j = 3,4. Therefore

|J§11| < %/ i(,’El)i(.%‘g)§($3)§($4>d$1d$2d$3d$4
RA

C
(5.43) < T”f”%l(]R)Hgnil(R) —0 as T — oo

From (5.39) — (5.43) we obtain
a/2
lim I3 = 87T3H4/ 2(z)g*(z)dx,
T—o0 70‘/2
which combined with (5.37) and (5.38) yields (5.36). Theorem 2.5 is proved.
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Proof of Theorem 3.1. Taking into account the equality

(5.44)  TY2[Jh—J] =TV [E(JE) — J] + T2 [Jp - E(JB)],

to prove the theorem we have to establish the following two asymptotic relations:
(5.45) TY2[E(JE) —J] -0 as T — o0,

(5.46) TV (I — E(JR] S~ N(0,03(J) as T — oo,

where o7 (J) is given by (3.2).

Observe first that the relation (5.45) is an immediate consequence of Theorem
2.1 of Ginovyan and Sahakyan [18], since under each of the conditions a)-d) in
assumption (A), we have 81 + 2 > 1/2.

Now we proceed to show that the relation (5.46) follows from Theorem 2.3. To
do this we need to show that, under the assumption (A), there exist numbers p;
(p1 > p) and ¢1 (¢1 > q), such that H,(81) C Ly, Hy(B2) C Ly, and 1/p1 +1/q1 <
1/2.

The case 81 > 1/p, B2 > 1/q is obvious, since in view of Lemma 4.9 b) we have
H,(81) C Lo and Hy(B2) C Leo-

Let 51 < 1/p, B2 < 1/q and 1 + B2 > 1/2. For an arbitrary number ¢ > 0
satisfying 81 > ¢ and (B2 > ¢, we set

i:1—,614—6 and l:1—[324—5.

pr P Q1 q
It is easy to see that p < p1 < p/(1 —B1p) and ¢ < ¢1 < q/(1 — B2q). Hence by
Lemma 4.9 a) we obtain Hy,(81) C Ly, and Hy(f2) C Lg,. On the other hand, we

have

1 1

7+7:1+1_(51+52)+2521—(ﬁ1+52)+2€~
Ppr @1 p q

Since 31 + B2 > 1/2, choosing ¢ sufficiently small, we obtain 1/p; +1/q; < 1/2.
Now let f1 > 1/p and 1/q — 1/2 < B3 < 1/q. By Lemma 4.9 b) we have
H,(f1) C Loo. For an arbitrary number ¢ > 0 satisfying (8, > ¢, we set
l = 1 — P2 +e.
q1 q
Obviously ¢ < ¢1 < ¢/(1 — B2q), and hence H,(f2) C L, by Lemma 4.9 a).

Further, we have
1 1 1
—+—=—-—[a+e=.
P ¢ q
Since 1/q — B2 < 1/2, choosing ¢ sufficiently small we obtain 1/p; +1/q; < 1/2.
The case 83 > 1/g and 1/p —1/2 < 1 < 1/p can be treated similarly.

Thus, we can apply Theorem 2.3, to obtain that

(547) Qb =T"Y2 (Qh —E[Q4]) Ly~ N(0,07) as T — oo,
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where Q% and o2 = 02(Q) are given by (1.2) and (2.3), respectively.
Also, in view of (1.10), (1.12) and (2.3), we have

(5.48) o2 (J) =

1 2

(@ = amelt) [ PO o) = B

Putting together (5.47) and (5.48), we obtain the relation (5.46). Theorem 3.1 is

proved.
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