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Abstract. In 1987 Harris proved-among others that for each 1 < p < 2 there exists a
two-dimensional function f € L, such that its triangular Walsh-Fourier series does not
converge almost everywhere. In this paper we prove that the set of functions from the
space Ly (12), 1 < p < 2, with subsequence of triangular partial means SZAA (f) of the
double Walsh-Fourier series convergent in measure on I? is of first Baire category in
L,(I2). We also prove that for each function f € La(I?) a.e. convergence SaA(n) H—=r

holds, where a(n) is a lacunary sequence of positive integers.
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1. INTRODUCTION

We shall denote the set of all non-negative integers by N, the set of all integers
by Z and the set of dyadic rational numbers in the unit interval T = [0,1) by Q. In

particular, each element of Q has the form £ for some p,n € N, 0 < p < 2"

Denote the dyadic expension of n € N and = € I by

o0

oo
. J?j
n:an2J7nj:O71 and mzzﬁ,szo,l.
j=0 j=0

In the case of € QQ chose the expension which terminates in zeros. n;, x; are the i-th

coordinates of n, x, respectively. Define the dyadic addition + as

rty= Z g — yx 27 FD.
k=0
Denote by @ the dyadic (or logical) addition. That is,

o0
k‘@nzZ\ki—niﬂ’,
=0
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where k;,n; are the ith coordinate of natural numbers k,n with respect to number
system based 2.

The sets I, () = {y €1:yo = x0,...,Yyn—1 = Tp—1} for x € I, I,, = I,, (0) for 0 <
n € N and Ip(x) = I are the dyadic intervals of I. For 0 < n € N denote by
In| = max{j € N:n; #0}, that is, 21"l < n < 2"+ Set e; = 1/27F!, the i-th
coordinate of e; is 1, the rest are zeros (i € N).

The Rademacher system is defined by
rn(x)=(-1)"", zelnel.

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

o In]
wa (@) = [] (e @)™ = (-1)=""

k=0

,xe€l,neN.

The Walsh-Dirichlet kernel is defined by

D, (z) = i wy (x) .
k=0

Recall that (see [13])

[ on ifxzelo,27m)
(1.1) Dar (9”)_{ 0, ifze[2,1) °

We consider the double system {wy(z') X wp,(2%) : n,m € N} on the unit square
> =1[0,1) x [0,1).

We denote by Lo(I?) the Lebesgue space of functions that are measurable and
finite almost everywhere on I2. 11 (A) is the Lebesgue measure of A C I%.

We denote by L, (112) the class of all measurable functions f that are 1-periodic
with respect to all variable and satisfy

1/p

111, = / £ ) Pdydy? | < ool
If fely (]Iz) , then
f(n*,n?) = /f(111,112)wnl(yl)wn?(y?)dylaly2
]12

is the (nl, n2)—th Fourier coefficient of f.
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The rectangular partial sums of double Fourier series with respect to the Walsh
system are defined by

N'—-1N?-1

Sy (zh,2% f) = Z Z f nt,n?) w (2w, (2?).

nl=0 n2=0

The triangular partial sums defined as

S (@t f) =3 Z () (a%).

Let a = (a(n)) be a lacunary sequence of positive integers with quotient g. That is,

a(n+1)/a(n) > g > 1 for any n € N. Now, set the maximal function
A
St ()]

In 1971 Fefferman proved [2] the following result with respect to the trigonometric

Sﬁ*f = sup
n

system. Let P be an open polygonal region in R?, containing the origin. Set
AP = {(/\1‘1,/\1'2) : (xl,xZ) € P}
for A > 0. Then for every p > 1, f € L, ([fw,w]Z) it holds the relation

Z f(n n)eXP( (ny —|—ny))—>f(y1,y2) as A — oo

(nt,n?2)expP

for a. e. (y',y?) € [~m,7]°. That is, Sxpf — f a.e. Sjulin gave [14] a better result
in the case when P is a rectangle. He proved a.e. convergence for the class f €
L (1og+ L)S loglog L and for functions f € L (1og+ L)2 loglog L when P is a square.
This result for squares is improved by Antonov [1]. There is a sharp constrant between
the trigonometric and the Walsh case. In 1987 Harris proved [8] for the Walsh system
that if S is a region in [0, 00) x [0, 00) with piecewise C'! boundary not always paralled
to the axes and 1 < p < 2, then there exists an f € L, (]Iz) such that Sypf does
not converges a. e. and in L, norms as A — oco. In particular, from theorem of Harris
follows that for any 1 < p < 2 there exists an f € L, (]IQ) such that SQAAf does not
converges a. e. as A — oo.

In this paper we improve this result of Harris for tringular partial sums (P = A), In
particular, let 1 < p < 2, then we prove that the set of the functions from the space
L,(I?) with subsequence of triangular partial means SQAA (f) of the double Walsh-
Fourier series convergent in measure on I? is of first Baire category in L, (I?). We also
prove that for each function f € Ly(I?) a.e. convergence Sa(n) (f) — f holds, where

a(n) is a lacunary sequence of positive integers.
5



G. GAT, U. GOGINAVA
For results with respect to convergence of rectangular and triangular partial sums
of Walsh-Fourier series see [6, 12, 15, 9, 10, 11, 7].
2. THE MAIN RESULTS

The following results are the main statements of the paper.

Theorem 2.1. Let 1 < p < 2. The set of the functions from the space L,(I*) with
subsequence of triangular partial sums SQAA (f) of the double Walsh-Fourier series

convergent in measure on 12 is of first Baire category in L,,(Hz).

Theorem 2.2. The operator Sﬁ* is of strong type (Lo, La). More precisely,
1S5 fll2 < Coll f2-
By Theorem 2.2 and by the usual density argument we obtain the following result.

Corollary 2.1. As n — oo we have SaA(n) (f) — f a.e. for every f € Ly(I?), where

a(n) is a lacunary sequence of positive integers.
The following theorem is proved in [4, 5].

Theorem GGT. Let {T,,}5°_; be a sequence of linear continues operators, acting
from space L,(I%) in to the space Lo(I?). Suppose that there exists the sequence
of functions {£,}32, from unit bull S,(0,1) of space L,(I?), sequences of integers

{my}2, and {\c}32, increasing to infinity such that
€0 = i%f,u{(xl,xz) cI?: |T,,, & (J;l,x2) | > Ag} > 0.

Then the set of functions f from space L,(12)), for which the sequence {T,,, f} converges

in measure to an a. e. finite function is of first Baire category in space L,(I1?).

Proof of Theorem 2.1. First we prove that there exists a function h 4 for which

(2.1) Ihall, <1
and
24/p A
22 w{@a) e st @t > 22 >
Let
A-124-1
fa(aha®) =)0 Y worg (a) wi (2?)
k=0 1=0
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and
WoA _q (l'l)

24(-1/p)\/A

ha (x17x2) =

fa (xl,;vQ) .

P 1/17
dxldxg)

We can write

HfAHp = (ﬂ/ Az_lwzk< )DQA (33 +9C)

=

A-1 P 1/p
= / Wok (.Tl) /DgA (331 + Z'Q) de dl‘l
7 Tk=0 /
A-1 P 1/p
= / Z wor (z)| da' /D];A (2°) dz?
7 Tk=0 /
A1 2 1/2
< / (Z Wok (x1)> dg;l) 9A(-1/p) _ \/A9A(1-1/p)
7 \k=0

Hence (2.1) is proved.

From simple calculation we obtain that

~

halid) = [ (o) un (o) ws () dy'a?
1
= SAG-Un VA /fA (' %) waa_y (¥") wi (v") wy (v*) dy* dy?
12

1
= m/ﬂx (¥',y%) wan 1 (") wy () dy*dy®
]12
1 N A .o
= saaunygla @ -1-0d).

Hence

Sev(ahatiha) = 3 Ta i) wi o) vy ()
<24

=t =, Fa (@ =1—ig)wi () w; (a)

2412441

e 1/p\FZ Z Fa @t =1—i,5) wi () w; (2?)

1 241 4

~ 9a0- 2A(1-1/p)\/A Z ZfA i) waa—1— (x) wy (22) .

=0 5=0
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Consequently,

Wo A
G 2A?1 11/p)fz Z warey (o) wy (2%)

k=0 <2kl

We see that [ < 2% @ [ holds if and only if I, = 0. Hence, we have

Wo A .
Sih (a,a%ha) = 2A21 11/p)\f Z war ( > wy (2 +2%).

le{l:O,l,A..,QA—lzlk:O}

Let

(1‘171'2) S GA,S = IA (t07 ~"7ts—17 17t8+17 "'7tA—1) X IA (t07 "'7ts—1707ts+17 "'7tA—1) .

Since z! + 2% = 14 (es), we can write

1 1 1 1
Z wl(acl—i-xQ) - Z Z Z Z
le{l=0,1,4..,2A—1:lk=O} lo=0 lk—1=01ky1=0 la—1=0
24-1 ifk=s
0, k+#s
Hence
A 2A71 A-1 2A/p
‘SZ“ Cat ’hA)‘ = QA0-1/)/A gHG“ CRES Z Ga. (o', 27

Set

From estimation (2.3) we get

24/p
,u{(x 3:)6]12 ’S xt x2;hA)’> }

2vVA
1 A-1 1 1 1 1 A
AR 3D IS D DD DEE=c
s=U o= Ts—1=UTs41= TA-1=

Now, we prove that there exists (21, z?), ..., (aszlg(A), I?)M)) €%, p(A):= [243/4] +
1, such that

p(A)

(2.3) pl U @at(2).27) | =

1
_ 2
Jj=1
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Indeed,
p(A) p(A)
p| U @t (@) | =10 ﬂ(w )
j=1

= 1- /Hm (t' Fa1,t* +a3) - I, (t1 Fapayt +:c§(A)) dt'dt?.
HZ
Interpreting I — (¢! + 21, 4> +23) -+ - Ig (tl Fapa,t?F xf)(A)> as a function of the
2p (A)+2 variables t', 12, (z],2%) , ..., (:U;(A), xf)(A)) and integrating over all variables,
each over I2, we note that

/"'//Hm (¢ ot 2 ad) - Ig, (¢ +apa 2+l

12 12 12
dt'dt?* dawydas - - - day g da o)

/ /]Iﬁ (tl fal, 2 F xl) datda?

12 2

1 1 2 5 .2 1 2 1 742

o p(A) » 1 p(A) 1
= @) =gy s (1- o) <

Consequently, there exists (z1,23), ..., (a:}lj(A), xi(A)) € I? such that

. . . . 1
(2.4) /]Im (' Fap,t+a?) Iy (tl Fapa,t*+ xi(A)> dt'dt* < 3
12
Combining (2.4) and (2.4) we conclude that
p(A)
1 1
2 —
L:J (Qa+ (22) | 21-5 =3
Hence (2.3) is proved. Let (¢ :=t' +t? €1)
1 p(A)
1,2 142 11 2 2
Fy (zh,2%,t) = W er (' +*) ha (2" + 25,2 —I—acj)
j=1
= — rj(t)ha (z' + 2}, 2* +23).
(4p ()" = S
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Then it is proved in ([3], pp. 7-12) that there exists ¢¢ € I, such that

(2.5) /‘FA (wl,IZ,to)’pdmldafz <1
I
and
247/ (2V/A) | 4
(2.6) I (xl,x2) cl?: ‘SA (xl,:cQ;FA) > —— 2 3 >
2“ | VIR
Set €4 (21, 2?) := F4 (2!, 2%, t0). Then from (2.5) and (2.6) we have [€all, <1 and

u{(wl,xz) el?: ‘SQAA (xl,xZ;gA)‘ > 21*3/7’141/1’*1/2} > é

and using Theorem GGT we complete the proof of Theorem 2.1. a

Proof of Theorem 2.2. First, we suppose that ¢ > 2. Let SE (f) be n-th square
partial sums of the two-dimensional Walsh-Fourier series. It is easy to see that the

spectrums of the polynomials

SaD(n) (f) - SaA(n) (f) , =12, ..

are pairwise disjoint that implies
2 2

2 ||sup SaD(n) (DOl +2
2 n 2

2
sup SE(H) (f) 2+2Z‘

n

IA

2
Sty (F) = $2, (£)]

2

San) (f)‘

sup sup
n n

IN
)

Sty (1) = S5y (1)

2
< 2|[sup [ST,,, (D[ +21£15 < cllfll3,
2

n

where the last inequality is obtained from the Lo boundedness of the square partial
sums majorant operator (see [13]). This completes the proof of Theorem 2.2 in the
case of ¢ > 2. If 2 > ¢ > 1, then let @ the least natural number for which ¢© > 2. For
any fixed j =0,...,Q — 1 we have that the quotient of lacunary sequence n integers
(a(Qn-+7)) is at least 2 since a(Q(n+1)+75) > ¢%a(Qn+ 7). From the above written

we have

S

2
AN 2
Samsa ]| €13
2

sup
n
A ) 2
and consequently we also have ‘ Saxf ’ < Cq |l fl5- O
2
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