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1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper by meromorphic functions we always mean meromorphic functions
in the complex plane.

Let f and g be two non-constant meromorphic functions and let o € C. We say
that f and g share a CM if f — a and g — @ have the same zeros with the same
multiplicities. Similarly, we say that f and g share a IM if f — a and g — a have the
same zeros ignoring multiplicities.

We adopt the standard notation of value distribution theory (see [8]). For a non-
constant meromorphic function f, we denote by T'(r, f) the Nevanlinna characteristic
of f and by S(r, f) any quantity satisfying S(r, f) = o{T(r, f)} as r — oo possibly
except a set of finite linear measure. A meromorphic function a is said to be a small
function of f if T(r,a) = S(r, f).

Throughout the paper, we denote by w(f) and p(f) the lower order and the order
of f, respectively (see [8, 19]). Let f be a transcendental meromorphic function such
that p(f) = p < 00. A complex number a is said to be a Borel exceptional value (see
[19]) if

lim sup M

r—o0 logr
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A finite value zo is said to be a fixed point of f(z) if f(z0) = zo. We will use the
following definition:
N(r,a;
O(a: f)=1- lirmfl;P —fET]Tf)
where a is a value in the extended complex plane.
In 1959, W. K. Hayman (see [7], Corollary of Theorem 9) proved the following
asscrtion.

Theorem A. [7] Lct f be a transcendental meromorphic function and let n ¢ N wilh

n > 3. Then f*f' =1 has infinitely many solutions.

In 1997, C. C. Yang and X. H. Hua [20] obtained the following uniqueness result

corresponding to Theorem A.

Theorem B. [20] Let f and g be two non-constant meromorphic functions, and
let n € N with n > 11. If f*f' and g"g’ share 1 CM, then either f(z) = c;e°,

g(z) = coe™, where c,c1, ¢z € C\{0} and (c1c2)" e = —1 or f = tg for t € C\{0}

such that t" = 1.

In 2002, using the idea of sharing fixed points, M. L. Fang and H. L. Qiu [5] further

generalized and improved Theorem B by proving the following theorem.

Theorem C. [5] Let f and g be two non-constant meromorphic functions, and let
n e N withn > 1. If f*f' — z and g"g' — z share 0 CM, then either f(z) = c1e"*,
a(z) = cae=", where c,c1, ¢z € C\ {0} end 4(cica)***e® = —1 or f = tg for
t € C\ {0} such that {"*1=1.

For the last couple of years a number of astonishing results have been obtained
regarding the value sharing of nonlinear differential polynomials, which are maiuly
the k-th derivative of some linear expression of f and g.

In 2010, J. F. Xu, F. Lii and H. X. Yi [17] studied the analogous problem corresponding
to Theorem C, where in addition to the fixed point sharing problem, sharing of
poles are also taken under consideration. More precisely, they proved the following

theorems.

Theorem D. [L7] Let f and g be two non-constant meromorphic functions, and let
n,k € N such that n > 3k+10. If (f*)® end (g™)*) share = CM, and f and g share
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oo IM, then either f(z) = ¢, e““, g(z) = 267 where c.cy, ca € T \ {0} satisfying
4n?(cre)c® = —1, or f =tg for t € C\ {0} such that t* =1.

Theorem E. [17] Let f and g be two non-constant meromorphic functions such
that ©(oo; f) > 2, and let n,k € N such that n > 3k + 12. If (f™(f — 1)) and |

n’ =

(9"(g = 1))*) share z CM, and f and g share oc IM, then f = g.

Recently X. B. Zhang and J. F. Xu [25] further generalized and improved the

results of [17] as follows (see [25], Theorem 1.3).

Theorem F. [25] Let f and g be two transcendentul meromorphic functions, p be
a non-zero polynomial with deg(p) =1 <5, k.n € N, m € NU {0} such that n >
3k +m+ 7, and let P(w) = apw™ + am—yw™ ! 4+ ... + ;yw + ag be a non-zero
polynomial. If [f*E(f)]*) and [g"P(g)]* share p CM, and f and g share oo IM,
then one of the following three cases hold:
(1) f(z) =tg(z) for t € C\ {0} such that t* = 1, where d = GCD(n+m,...,n+
m=—1i,...,n), Qu-i #0 for somei=1,2,...,m,
(2) f and g satisfy the algebraic equation R(f, g) = U, where R{w:, ws) = wi(anw™+
(1,,,_1ui"_l + ...+ ag) — WH(amwi + u,,,_lwé""' + ...+ ag);
(8) P(z) reduces to a non-zero monomial, namely P(z) = a;z* # 0 for some
i€ {0,1,...,m};
if p(z) is not a constant, then f(z) = ¢, g(z) = cac™ Q) yhere
Q(z) = [y p(t)dt, c,c1, ca € C\ {0} such that a?(cica)™[(n +i)c]® = -1,
if p(z) is a non-zero constant b, then [(z) = cze®®, g(2) = cyc™*, where ¢, ca,
cq € C\ {0} such that (—1)*a?(caca)™t¥[(n + i)c]** = b2.

Zhang and Xu made the following observation in Remark 1.2 of [25]:
“From the proof of Theorem 1.3, we can see that the computation will be very
complicated when deg(p) becomes large, so we are not sure whether Theorem 1.3
holds for the general polynomial p.” :

Also, at the end of the paper [25), the authors posed the following problem.

Open problem. What happens to Theorem 1.3 [25] if the condition I < 5" is

removed ?

Let us define m* = m if P(2) # co, and m* = 0 if P(2) = ¢y.
Regarding the above problem, P. Sahoo [15] proved the following result.
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Theorem G. [13] Let f and g be two transce nidental meromorphic functions, p be
a non-constant polynomial of degree I, and let k.n € N and m @ NU {0} such that
n > max{dk +m* + 6.k + 21} In addition, we suppose lhal cither k.| are co-prime
or k> 1. when | 2 2. Let P(w) be as in Theorem F. If [f" Pl‘f)]""’ and [g" F'('_q‘.j”‘"
share p CM, and f and q share > IM, then the following conclusions hold.
(i) If P(z) = amw™ + @m ™ L a4y is nolt @ monomial, then either
f = tg fort € C\{0} such that th =1, whered = (n+m....n4+m—i....n),
i # 0 for some i € {0,1,2,..., m}. or [ and g satisfy the algebraic
equation R(f,q) = 0, where R(f,q) is given by R(wi.wy) = wi(a,,w}
o mn + ag) — wh(awd + ..+ aywy + ag). In particular, when m = |
and ©(o0; f) + O(00; 9) > 2, then f = g,
(ii) When P(z) = co or P(w) = anuw™, then either f =ty for t € €\ {0}
such that t"*™ =1, or f(z) = bie"?3), g(z) = bae™"E where Q(2) is a
polynomial without constant such that Q' (2) = p(2), bbby € T\ {0}, and

2

A (nb)2(byba)" = =1 or ap,((n + m)b)=(bybg )" = —1.

Remark 1.1. Obscrving Theorem 1.1 of [15], it scems that the condition “1 < 57
was removed. But unfortunately it is not the case. Actually the condition “I < 5" is
replaced by the condition “n > k20", with n depending on (. In the same paper the
author claims that “Theorem 1.1 of [15] improves Theorem F by reducing the lower
bound of n”, but this is not true. For example, if we assume that k =1, m = 1 and
I = 5, then from Theorem F we get n > 11, while in Theorem G we have n > 11. On
the. other hand, we see that Theorem F holds for k¥ =1 < 5 but Theorem G does not

hold.

Therefore, by the best knowledge of the authors, the above open problem is still
open. Consequently one of the goals of this paper is to solve the above open problem

without imposing any other conditions.
Remark 1.2. In the proof of Lemma 2.7 of [15], one can easily point ont a gap.
Indeed, from the relation
aZ (n+ 171.52a’ﬁ’c("+'""“+m =p?
the authors conclude that o and A are polynomials. A question arises when af = pe?

and 3’ = peb. Actually the authors did not consider this case.
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The above discussion is enough to make oneself inquisitive to investigate the
accurate formn of Theorem G. To state our main result we need the following definition,

which also will be used throughout the paper.

Definition 1.1. [9, 10] Let k € NU {oo}. For a € CU {ox} we denote by Ei(a; f)
the set of all a-points of f, where an a-point of multiplicity m is counted m. kimes
if m < k and k + 1 times if m > k. If Ex(a; f) = Er(a;g), then we say that f and
g share the value a with weight k. We write f, g share (a,k) to mean that f and g
share the value a with weight k. Also, we say that f, g share a value a IM or CM if

and only if f and g share (a,0) or (a,0c), respectively.

Also, it is quite natural to ask the following questions.

Question 1. Can one remove the condition “Suppose that either k.l are co-prime
or k > 1, when [ > 2% in Theorem G ?

Question 2. Can “CM” sharing in Theorems F and G be reduced to a finite weight
sharing ?

In this paper, taking the possible answers of the above ‘questions into background,

we obtain the following result.

Theorem 1.1. Let f, g be two transcendental meromorphic functions, and let k,n €
N and m € NU {0} be such that n > 3k +m+ 6. Let p be a non-zero polynomial and
P(w) be defined as in Theorem F. If [f*P(£)]*) — p, [g"P(g)]'¥ — p share (0. k1),
where ky = [;T?"t';—_,] + 3 and f, g share (00,0), then one of the following three
cases hold:

(1) f(z) =tg(z) fort € C\ {0} such thatt? =1, whered = GCD(n+m,...,n+

m—i,...,n), Gm—; # 0 for somei=1,2,...,m,

(2) f and g satisfy the algebraic equation R(f,g) =0, where R(u,w2) = & (amei"+

a..,,,_,wi"‘l + .o+ ap) — W (aw + (l.,,,_lw;"_l + ...+ ap). In particular,

when m = 1 and ©(o0; f) + O(00; g) > 2, then f = g;
(3) P(z) reduces to a non-zero monomial, namely P(z) = a;z* £ 0 for some
ie{0,1,...,m};
if p(z) is not a constant, then f(z) = %), g(z) = cae=¥=), where
Q(z) = [; p(t)dt, and c1, c.c1, ca € C\ {0} are such that af(cica)"H([(n +
i)q)? = -1,
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-Cz

if p(z) is a non-zero constant b, then f(z) = cae®, g(z) = cae™*, where ¢, c3,

¢y € C\ {0} are such that (=1)*a?(ezea)™H[(n + i)c]?F = b2

Remark 1.3. Clearly Theorem 1.1 improves Theorems F and G. Also, in this paper
we can remove the condition “/ < 5” in Theorem F without imposing any other

conditions and keeping all the conclusions intact.
The following definitions and notations will be used in the paper.

Definition 1.2. [11] Let a € CU {co}. For p € N we denote by N(r,a;f |<
p) the counting function of those a-points of f (counted with multiplicities) whosc
multiplicities are not greater than p. By N(r,a; f |< p) we denote the corresponding

reduced counting function. In an analogous manner we can define N(r,a; f |> p) and

N(r,a; f |2 p).

Definition 1.3. [10] Let k € NU{oo}. We denote by Ni(r, a; f) the counting funclion
of a-points of f, where an a-point of multiplicity m. is counted m times if m < k and
k times if m > k. Then Ni(r,a; f) = N(r,a; /) + N(rya; f |2 2)+...+ N(r,a; f |> k).
Clearly Ny(r,a; f) = N(r,a; f).

Definition 1.4. [2] Let f and g be two non-constant meromorphic functions such
that f and g share the value a IM for a € CU {co}. Let zy be an a-point of f with
multiplicity p and also an a-point of g with multiplicity q. We denote by Ni(r,a: f)
(N1(r,a; ) the reduced counting function of those a-points of f and g, where p >
g=1(qg>p=1). Also, we denote by —I\Tg (rya; f) the reduced counting function of
those a-points of f and g, where p=q > 1.

Definition 1.5. [9, 10] Let f and g be two non-constant meromorphic functions such
thet f and g share the value a IM. We denote by N.(ra; f,g) the reduced counting
Junction of those a-poinis of f whose multiplicities differ from the multiplicities of the
corresponding a-points of g. Clearly, N.(r,a; f,9) = N.(r,0;9, f) and N.(r,a; f, g) =
Np(r,a; f) + Nr(r,e;9).

Definition 1.6. [13] Let a,by,bz,...,by € C U {ox}. We denote by N(r,a; fl g #
by, s, ... ,bq) the counting function of those a-points of f, counted according to multiplicity,
which are not the b;-points of g fori=1,2,...,q.
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2. LEMMAS

et h be a meromorphic function in C. Then h is called a normal function if there
exists a positive real number M such that h#(z) < M V z € C, where h#(z) =
Ti’:';%(zz'))le’f denotes the spherical derivative of h.

Let F be a family of meromorphic functions in a domain D C C. We say that F
is a normal family in 7 if every sequence {fa}n € T contains a subsequence which
converges spherically and uniformly on the compact subsets of D (see [16]).

Let I and G be two non-constant meromorphic functions defined in C. We denote

by H and V the functions defined as follows:

2 G 26 F F G G
el (F‘E_—l)‘(a‘ﬁ) X5 (F—_i o F)“(cT_—l 5 'é') ;
Lemma 2.1 ([18]). Let-f be a non-constant meromorphic function, and let a,(z)(#

L]

0), an—1(z),..., ao(z) be meromorphic functions such that T(r,a;) = S(r, f) for
i=0,1,2,...,n. Then

T(’I‘, n-nf" =T “n—'lf"—l SR onBar (‘-'l.f + (l()) = nT(Ti f) + S(”', f)
Lemma 2.2 ([24]). Let f be a non-constant meromorphic function and k,p € N.
Then

@2) Ny (r0:f®) ST (r,f®) = T(r 1) + Npsslr, 0: 1) + S(r. ),

(2.3) N, (r, 0; f""’) < kN(r, 005 f) + Npi(r,0; f) + S(r, f)-

Lemma 2.3 ([12]). If N(r,0; f® | f # 0) denotes the counting function of those
zeros of f8) which are not the zeros of f, where a zero of F*) is counted according

to its multiplicity, then
N(r,0; f®) | f #0) < kN(r,00; f) + N(1,0; f |< k) + kN (r,0; f |2 k) + S(r, f)-

Lemma 2.4 ([25]). Let f and g be two non-constant meromorphic functions, P(w)
be defined as in Theorem F, and let k,n € N, m € NU{0} be such thatn > 2k+-m+1.
I [ P(OI® = [g"P()]¥), then f"P(f) = 9" P(9).

Lemma 2.5 ([21], Lemma 6). If H =0, then I', G share 1 CM. If further I, G

share co IM then F, G share co CM.
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Lemma 2.6 ([25]). Let f, g be non-constant meromorphic functions, k.n € N, m ¢
N U {0} be such that n > k + 2, and let P(w) be defined as in Theorem F. Let
a(z)( 0,00) be a small function with respect to f with finitely many zeros and poles.
If [ P(f))®[g"P(g)]® = o2, f and g share oo IM, then P(w) is reduced to a

non-zero monomial, namely P(w) = a;w* # 0 for some i € {0.1,.... m}.

Lemma 2.7 ([6]). Let f(2) be a non-constant entire function and let k ¢ N\ {1}. If
f(2)f®)(z) # 0, then f(z) = e***Y, where a(# 0),b € C.

Lemma 2.8 ([8], Theorem 3.10). Suppose that f is o non-constant meromorphic
function and k € N\ {1}. If
Z

N(r,00, f) + N(r,0; f) + N(r,0; f¥)) = S(r, §)
then f(z) = e***®, where a(s 0),b € C.

Lemma 2.9 ([8], Lemma 3.3). Suppose that I' is meromorphic in a domain D, and
set [ = -’,—' Then for n € N, we have

(n)
L n(n M0 =1 no2p | g 3 b, (Y 4 Pay(f),

where a, = ﬁ1).(1l—-1)(1l—2), b, = gn(n—l)('n.— Yn—3) and P,_5(f) is a differential
polynomial with constant coefficients, which vanishes identically for n < 3 and hus

degree n — 3 when n > 3.

Lemma 2.10 ([4]). Let f be a meromorphic function on C with finitely many poles.

If f has bounded spherical derivative on C, then f is of order at most 1.

Lemma 2.11 ([19],' Theorem 2.11). Let f be a transcendental meromorphic function
in the complex plane such that p(f) > 0. If f has two distinct Borel exceptional values
in the extended complez plane, then u(f) = p( f) and p(f) is a positive integer or ~o.

Lemma 2.12 ([23]). Let F be a femily of meromorphic functions in the unit disc A
such that all zeros of functions in I have multiplicity greater than or equal to | and
all poles of functions in ' have multiplicity greater than or equal to j, and let o be
a real number satisfying —| < a < j. Then F is not normal in any neighborhood of
2y € A if and only if there exist
(i) points 2, € A, z, — 2,
(ii) positive numbers p,, p, — 0%, and
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(iii) functions f, € F,
such that p;;"fu(zn + paC) — 9(C) spherically locally uniformly in T, where g is
a non-constant meromorphic function. The function g may be taken to satisfy the

normalization condition: g% (C) < g% (0) = 1(¢ € T).

Remark 2.1. Suppose that in Lemma 2.12, F is a family of holomorphic [unctions
in the domain D and there exists a number 4 > 1 such that |f*)(z)| < A4, whenever
[ = 0. Then the real number o in Lemma 2.12 can be chosen to satisly 0 < o < k. In
that case, we also have f,.(zn + pnC) — g(¢) spherically locally uniformly in C, where
g is a non-constant holomorphic function. The function g may be taken to satisfy the

normalization condition: g#(¢) < ¢#(0) = kA + 1(¢ € C).

Lemma 2.13 ([19]). Let f; (7 = 1.2,3) be a meromorphic and f; be a non-constant
3
Junctions. Suppose that - fi =1 and
i=1

3 3
ZN(T, 0; fi) + 227\7-(r,oo;fj) < (A+0(1)T(r),

j=1 j=1
as 1 — +o0, r € I, where I is a set of r € (0,00) with infinite linear measure, \ < 1

and T'(r) = max)<j<a T'(r, f;). Then fa=1 or fz3=1.

Lemma 2.14 ([19], Theorem 1.24). Let f be a non-constant meromorphic function,

and let k € N. Suppose that &) # 0, then
N(r,0; f®) < N(r,0; f) + kN (r, c0; f) + S(r, f)-

Lemma 2.15. Let f, g be two transcendental entire functions such that f and g
have no zeros, and let p be a non-zero polynomial. Suppose that (") (9") = p?,
where n € N. Then the following assertions hold:

(i) if p(2) is not a constant, then f(z) = c1e°Q®), g(z) = 2R, where Q(z) =
Js p(8)dt, and c,cy, ¢z € C\ {0} are such that (nc)*(cicz)™ = -1,

(i) if p(z) = b € C\ {0}, then f(z) = cae?, g(z) = cae %, where cs,¢4,d € C\ {0}
are such that (—1)*(cacq)™(nd)?* = b2.

The proof follows from that of Theorem 1.3 of [25].

Lemma 2.16. Let f, g be two transcendental meromorphic functions, p be a non-zero

polynomial, and let k,n € N be such that n > k. Suppose that (f*)*)(g™)®) = 2
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where (f*)® —p and (g™)® —p share 0 CM and f, g share oc IM.Then the following

assertions hold:

(i) if p(z) is not a constant, then f(z) = 169) | g(2) = c2e~R), where Q(z) =
Jy p(t)dt, and ¢, c1, c2 € C\ {0} are such that (nc)*(c1c2)” = -1,

(ii) if p(z) = b € C\ {0}, then f(2) = cse®, g(2) = cse~ %, where c3,cq,d € C\ {0}
are such that (—1)*(cscs)" (nd)? = b

Proof. Suppose
(24) B =
Since f and g share co IM, from (2.4) one can easily infer that f and g are transcendental
entire functions. Let F; = U—"pﬁ and G; = 5%2 From (2.4) we get
(2.3) G =1,
If Fy = ¢;Gi, where ¢f € C\ {0}, then by (2.5), Fy is a constant and so f is a
polynomial, which contradicts our assumption. Hence Fy # ciG.

Let

ny(k
(2.6) o= ((!f]—n))(%:—;’.
Then from (2.6) we have
(2.7) ®=em,
where v is an entire function. Let fi = Iy, fa = ¢™Gy and f3 = ¢™. Here f is

transcendental. Now from (2.7), we have fi + f2 + f3 = 1. Hence by Lemma 2.14 we

get

3 3
> NG 0; f3) + 2) N(ro0if;) < N(,0;F)+N(r,0;e"Gh) + O(logr)
i=1 i=1

IA

(A+0(1))T(r),
asr —+ +o0, r € I, A < 1 and T(r) = max;<;j<3 T(r, f;)-

So, by Lemma 2.13, we infer that either € G = =1 or €™ = 1. But here the only
possibility is that e™G) = —1, that is, (9")®) = —e~"p, and so from (2.4) we get
29 (f® = cgemp and (™) = cge~™p,
where ¢j = %1. This shows that (f*)® and (g")® share 0 CM. Let z, be a zero
of f(z) of multiplicity p and z, be a zero of g(z) of multiplicity g. Since n > k,

it follows that z, will be a zero of ( 7(2))® of multiplicity np — k and z, will be
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a zero of (g"(2))®) of multiplicity ng — k. Since (f*(2))*) and (g"(2))*) share 0
CM, it follows that z, = z, and p = ¢. Consequently f and g share 0 CM. Since
N(r,0; f) = O(logr) and N(r,0;g) = O(logr), we can take

(2.9) f(z) = hi(2)e®® and g(2) = hi(2)e?@,

where h;(z) is a non-zero polynomial and &, 3 are two non-constant entire functions.
We consider the following cases.

Case 1. Suppose 0 is a Picard exceptional value of both f and g. We consider the
following sub-cases.

Sub-case 1.1. Let deg(p) =1 € N.

Since N(r,0; f) = 0 and N(r,0: g) = 0, we can take

(2.10) f(z) = e*® and g(z) = #3,
L]
where a and 3 are two non-constant entire functions.
‘We deduce from (2.4) and (2.10) that either both « and j are transcendental entire
functions, or both are polynomials. We consider the following sub-cases.
Sub-case 1.1.1. Let k € N\{1}. We first suppose that both a and 3 are transcendental

entire functions. Note that

Slrinn) = S (’}';)') mnt Sna = (an)—)

Moreover we see that

N(r.0; (FM™®)) < N(r,0;p%) = O(logr), N(r,0;(g™)*) < N(r,0;p?) = O(logr).

From these and using (2.10) we have
N(r,00: £7) + N0 £7) 4 NG, 05(7)®) = (7, m0) = 80, L
(o)
!]" )

(2.11)N(r, 00; g") + N(r,0; g") + N(r, 0; (¢™)®) = S(r,n3') = S(r,

Then from (2.11) and Lemma 2.8 we must have f(z) = ¢®*+% and g(z) = e%5+43,
where a%(# 0), b3, ¢5(% 0),d3 € C. But these types of f and g do not agree with the
relation (2.4).
Next, we suppose that o and 8 both are non-constant polynomials, since otherwise
f and g reduce to polynomials contradicting that they are transcendental. Also, from
(2.4) we get a + B = Cy € C, that is, o/ = —p’. Therefore deg(a) = deg(3). If
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deg(a) = deg(8) =1, then we again get a contradiction from (2.4). Next, we suppose

that deg(a) = deg(8) = 2. Now from (2.10) and Lemma 2.9 we sce that
< Gngne T Lt ;
(fn)(k) = (n"(a )L e _(__2__).nk l(al)k 24" 4+ PI.-—'Z(G‘ ))(‘"“.

Similarly we have

(gu)(k) = (ﬂ-k(ﬁl)k+k_(k_2—_1)nk—l(ﬂl)k—2ﬂn+ Pk—z(,"))n"’)

Since deg(c) > 2, we observe that deg((a’)*) > & deg(a’), and so (a’)*~2a” is either

a non-zero constant or deg((a’)k‘za”) > (k—1) deg(a’) — 1. Also, we see that
deg ((a')¥) > deg ((@)*~2) > deg (Pi-(@)) (o deg (Pu-a(—a'))).
Let
(a(2)) = eszt +eraz* ™ + ...+ e,
where e, €1, . - ., e¢(# 0) € C. Then we have
((@)') = ciz e T e S
where i € N. Therefore we have
(F)® = (n"‘efz'“" +hnFeb~le, 2P 4. 4+ (Dy+ D)2 4 ...)e""’
and
(@™ = ((—l)kn"'efz“ + (—l)kkn"rf,k_lcl_ﬂ“ ey
+((=1)¥Dy + (-1)*"'Dg) 2"+ + .. )r."""",
where Dy, Dy € C are such that Dy = HEDink-1k=1 Since (/)% and (g")®
share 0 CM, we have
nkebz¥ 4 knkef~le,_12M 4 .. 4 (D1 + Do)t 4
= dj ((—l)kn"efz“ + (—1)*knFeftep1 Mt + ...
+((=1)%D1 + (~1)*2Dg) 21 + .. )
where d} & C\ {0}. From (2.12) we get Dy =0, that is, kfk=2) ypk~1g5~1 = 0, which
is impossible for k > 2.
Sub-case 1.1.2. Let k = 1. The result follows from Lemima 2.15.

Sub-case 1.2. Let p(z) = b € C\ {0}. Since n > k, we have f # 0 and g # 0.
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Now using Sub-case 1.1 we can show that f = ¢ and g = ¢?, where a and 3 are
non-constant entire functions. We now consider the following two sub-cases.
Sub-case 1.2.1. Let k > 2. We see that N(r,0; (f)*)) = 0. It is clear that

(2.12) )™)Y # 0and g"(2)(9"(2)) ™ # 0.

Then from (2.12) and Lemma 2.7 we must have f(z) = e%a>*+b3 g(z) = e®i+9i where
aj(# 0),b3,ci(# 0),ds € C. Tn view of (2.4) it is clear that aj + ¢ = 0. Finally, by
(2.4) we take f(z) = cze™, g(z) = ecqe%*, where c3, ¢y and d € C\ {O} are such that
(=1)*(csea)" (nd)?* = b2.

Sub-case 1.2.2. Let k = 1. The result follows from Lemma 2.15.

Case 2. Suppose 0 is not a Picard exceptional value of f and g.

Let H=f" H=g" F=%and G= D and let = {F.} and § = {G}, where
F,(2) = F(z+w) = g::: and G,(z) = G(z+w) = %‘:—4_"'7“’)), z € C. Clearly & and
G are two families of meromorphic functions defined on €. We now consider following
two sub-cases.

Sub-case 2.1. Suppose that one of the families F and G, say ¥, is normal on C. Then
by Marty’s theorem F#(w) = F#(0) < M for some M > 0 and for all w . C. Hence
by Lemma 2.10 we have that F(= -Lp:) is of order at most 1. Now from (2.4) we have
(2.13)

olf) = p(%) = o(F™) = ((FM) = p((a™)®) = p(a™) = p(L)

o =plg) 1.
Since f and g are transcendental entire functions, {rom (2.9) we have p(j) > 0
and p(g) > 0. We observe from (2.13) and Lemma 2.11 that p(f) = p(f) = 1 and
1(g) = p(g) = 1. Now from (2.9) we get

(2.14) f=hc* g= hi€?,

where a and A are non-constant polynomials of degree 1. From (2.4) we see thal

a+fB=CyeC, and so o + 8’ = 0. Again, from (2.14) we have

k
(M@ = e 3 kGi(nal)— (7)1,

i=0
where we define (A?)©® = h7. Similarly we have
k
(gn)(k) s enB Z kci(_l)k—i(nal)k—i(h111)(i).

=0
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Since (f™)®) and (g™)*) share 0 CM, it follows that

k k
(2.15) Z kg (na’)*~ (R = dy Z kCi(-1)k i na’)-{(RM)D,

i=0 i=0

where d3 € C \ {0}. But from (2.15) we arrive at a contradiction.
Sub-case 2.2. Suppose that one of the families F and G, say F is not normal on C
Then there exists at least one zg € A such that J is not normal 2, we assume that
20 = 0. Now by Marty’s theorem there exists a sequence of meromorphic functions
{F(z4w;)} C F, where z € {z : |z < 1} and {w;} C C is some sequence of complex
numbers, such that F#(w;) — oo as |wj| — 0.

Note that p has only finitely many zeros. So there exists a number r > 0 such that
p(z) #0in D = {z: |2| > r}. Since p is a polynomial, for all z € C satisfying |z| > r,

we have

(2.16) 0 %K%q p(z) 0.

Also, since w; — oo as j — oo, without loss of generality we may assume that
|wj] =7+ 1 for all j. Let Dy = {z: |z| <1} and
H(w; + 2
F(wj +2) = ((w_,J+ z))
Since |w; + z| > |wj| — |z, it follows that w; +z € D for all z € D,. Also, since
p(z) # 0 in D, it follows that p(w; + 2) # 0 in D; for all j. Observing that F(z) is
analytic in D, we conclude that F(w; + 2) is analytic in Dy. Therefore, all F(w; + z)
are analytic in D;. Also, from (2.8) we see that every zero of h; must be a zero of p.
Thus, we have structured a family {F(w; + z)} of holomorphic functions such that
F(wj + z) # 0 in D, for all j.
Then by Lemma 2.12 there exist:
(i) points zj, |2;] < 1,
(ii) positive numbers pj, p; = 0%,
(iil) asubsequence {F(w;j+z;+p;¢)} of {F(w;+2)}, such that h;(¢) = p;"'F(:.,-_,- 4
zj + pi¢) = h((), that is,
@17) W= P
p(w; + 2 + ps()
spherically locally uniformly in C, where h(¢) is some non-constant holomorphic
function such that h#(¢) < A#(0) = 1.
58

— h(¢)



ON AN OPEN PROBLEM OF ZIHANG AND XU

Now from Lemma 2.10 we see that p(h) < 1. In view of the proof of Zaleman's
lemma (see [14, 22| ), we sce that p; = F*l((a,) and I#(b;) > I'#(w;), where b; =
wj + zj. By Hurwitz’s theorem we see that h(¢) # 0. Note that
P'(wj + 25 +;C)
plw; + 2 + p;C)

(2.18) —+0 as j— 0.

Now we prove that

H® (w; + 2z + p;¢)
plw; + 2 + pi€)

To this end, note first that by (2.17) we have

(2.19) (h3(C)® = — h®)(¢).

k1 H'(wj + 2z + p;€) 1 P'(wj + 25 + piC)
~k+1 3 J J =h'-(( +p k+1 = J J 5 I wi + z; + piC
e P(w; + 2 + p;¢) 1(€) d P (wj + 2 + piC) il #)

/(i + 2 + pi€)
2.20 = Wi(0) +p 2 T piC)
(&20) 3+ s Plw; + zj + p;iC)

Now from (2.22), (2.18) and (2.20) we observe that

—pp1 ' (wj + zj + pi€)
—k+1 J ¢l d _)h‘l 2
P plwj+ 2+ 50 ©

h;(Q)-

Suppose
k4t H“)(w]- + zj + p;€)
7 plwi+z+p50)
Then G;(¢) = A (¢). Note that
(2.21) P b CRt by
2 p(wj + 2 + pi€)
i1 P(wi + 2 +pi€)
PA(wj + 2 + pj€)
P'(wj + 25 +pi€)
——————22G;(¢).
p(wj + zj + p;C) i€)
So, from (2.18) and (2.21), we see that
prhHH H D (w; + 20 + pi€)
J P(w; + zj + p;C)
Then by mathematical induction we get desired result (2.19). Let
H® (w; + 2 + p;iC)
plw;j + 2 +p¢)

et HO(w; + 25 + pi€)
- h® and let Gj(¢) = p7htt———2L -2 " 0io7
©) i(C) = pj e, + 25 + piC)

G_’, (C) + Pj H(’)(w]- + z; + ij)

G3(€) +p;

i (9]

(2.22) (hi()® =

From (2.4) we have ;
H®(w; + 2 +0;0) B¥w; + 2 +p50) _

plwj+zj +pi¢)  plwj+2z+p0)
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and so, from (2.19) and (2.22), we get
(2.23) (h ()@ (hs(N® = 1.

Now from (2.19), (2.23) and the formula of higher derivatives we can deduce that
2l R, x

h;(¢) — h(C), that is,

H(w; + 25 + pi€)
p(w; + 2 + i)

spherically locally uniformly in C, where h(¢) is some non-constant holomorphic

(2.24) - h(C),

function in the complex plane. By Hurwitz’s theorem we sce that h(¢ ) # 0. Therefore,
by (2.24) we have
(2.25) ()™ — (R(¢)™
spherically locally uniformly in C. From (2.19), (2.23) and (2.25) we get
(2.26) (RO P (h(¢)® = 1.
Since p(h) < 1, from (2.26) we see that
(227) p(h) = p(h™®)) = p(h™®)) = p(h) < 1.
Since h and h are non-constant entire functions such that h # 0 and h # 0, we
can take h = e and i = e, where oy and $; are non-constants entire functions.
Consequently, p(h) > 0 and p(h) > 0. Now we observe from (2.27) and Lemma 2.11
that je(h) = p(h) = 1 and pu(h) = p(h) = 1. Therefore, we have
(2.28) h(z) = &1e%%, h(z) = &%,
where &, é1, & € C\ {0} are such that (—1)¥(#162)(8)%* = 1. Also, from (2.28) we have
hi(Q) _  F'(w; + 2+ piQ)° n U4(9)
W©Q) " Fw 2+ p0) | MO
spherically locally uniformly in €. From (2.28) and (2.29) we get
(Pt z)) _ 1+ | Pw; + )P | (wj+ )| 1+ |F(w; +2)?  (h(0) i
= = = |¢&],
NFwj+2) |~ P+ z) [Flw; +2) |F(wj + 25)| h(0)

which implies that

=f:‘

(2.29)

(2.30) lim F(w; + z;) # 0, 0.
i—ece ;
From (2.29) and (2.30) we see that

(2.31) hj(0) = pj* F(w;j + z;) -+ 0.
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Again. from (2.29) and (2.28) we have
(2:82) h;i(0) — h(0) = é.
Now from (2.31) and (2.32) we arrive at a contradiction. Lemma 2.16 is proved. L]
Lemma 2.17. Let f, g be two transcendental meromorphic functions, and let P(w)
be defined as in Theorem F. Let F = £ "Pf,f I =l P;;"" el . where p is a non-zero
polynomial, and k,n € N and m € N\ {0} are such that n > 3k+m-+3. If f, g share

oo IM and IT = 0, then either [fPP(f)]*®)[g" P(f)]*) = p?, where [[*P(/))*) — p
and [g"P(9)]"® — p share 0 CM, or f*P(f) = g"P(g).

Proof. Since H = 0, by Lemma 2.5 we conclude that F and G share 1 CM. By
integration we get

[ 1 _WG+a-0

where a(# 0),b € C. Now we consider the following cases.
Case 1. Let b # 0 and a # b.
If b = —1, then from (2.33) we obtain

—-a
F=—-———r0r
G-a-1
Therefore

N(r,a+1;G) = N(r,00; F) = N(r, c0; f).
So, in view of Lemmas 2.1 and 2.2 with p = 1 and the second fundamental theorem,
we can write

(n+m) T(r,g) < T(r,G) + Ni4a (.0, " P(g)) - N(r, 0: G)

< N(roo;Q) + N(r,0:C) + N(r,a+ 1;C) + Niwa (1, 06" P(9)) — N(r,0;G) + S(r, g)
< N(r,00;9) + Niwa(r, 0;g" P(g)) + N(r. o0; f) + S(r, 9)

< N(r,00; f) + N(r,00: ) + Nie1(r, 0 ¢™) + Nieg1 (r.0; P(g)) + S(r. )

< 2N(r,009) + (k + N(r,0;9) + T(r, P(g)) + S(r. 9)

< (k+34m)T(rg)+S(r 9).

which is a contradiction since n > k + 3. If b # —1, then from (2.33) we obtain
1 —a
F-(1+)= ———,
U, %G + %54
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and hence
b-a

N(r, :G) = N(r.00: I") = N(r,00; f).

Using Lemnmas 2.1 and 2.2 and the samne argunent as used in the case when b= -1

we can get a contradiction.
Case 2. Let b# 0 and a = b. If b = —1, then from (2.33) we have FG = 1, that is,

(PP [g" P(9))*) = p?, where [F*P(H)]™ — p and [g" P(g)]*) — p share 0 CM.
If b # —1, then from (2.33) we obtain

l:_ﬁ-—_
B = AEbe -1

Therefore
= 1 has
[(r,——;G) = N(r,0; F).
N(r Sy G) (r,0; F)
So, in view of Lemmas 2.1 and 2.2 with p =1 and the second fundamental theorem,

we can write

(n+m)T(r,g)
< NrwiG)+F(0:6) + Wl 1556 + Nena (097 P(9) = N (.0:6) + 5(r.0)
< N(r.ooig) + (k+ 1)N(r,0;9) + T(r, P(9)) + N(r,0: E) + S(r,9)
< N(r,o0ig) + (k+ )N(r,0;9) + T(r, P(9)) + (k + YN(r,0: f) + T(r, P(f))
+kN(r.00; f) + S(r, f) + S(r,9)
< (k+2+m)T(r,g)+ 2k + 1+m) T(r, f) + S(r. ) + S(r,9).

Without loss of generality, we can assume that there exists a set / with infinite
measure such that T(r, f) < T(r,g) for r € I. So, for r € I, we have

(n— 3k —3—m)T(r,g) < S(r.g),

which is a contradiction since n > 3k + 3 +m.
Case 3. Let b = 0. From (2.33) we obtain
(2.34) praStont,

If a # 1, then from (2.34) we obtain N(r,1—a;G) = N(r,0; F). Similarly we can get
a contradiction as in Case 2. Therefore a = 1 and from (2.34) we obtain F' = G, that
is, [f*P(N)]® = [¢"P(g)]®). Then by Lemma 2.4 we have " P(f) = g"P(g). This

completes the proof. Lemma 2.17 is proved. a
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Lemma 2.18. Let f and g be two transcendental meromorphic functions, n,k € N,
m € NU {0} such that n > k + 2, and let p be a non-zero polynomial. Suppose thot
(F*P()]*) — p, [9"P(g)]"™ — p share 0 CM, and f, g share oo IM, where P(w)
is defined as in Theorem F. If [f"P(f)]®[g" P(g)]*) = p?, then P(z) reduces to a

non-zero monomial, namely P(z) = a;z' # 0 for some i € {0.1,..., m}; if p(z) is
not a constant, then f(z) = ¢1e°?), g(z) = c2e=°U=) | where Qz) = .ln: p(t)di, and
c,c1,ca € C\ {0} are such that af(cico)" ' [(n + i)c]? = —1, if p(z) is a non-zero

constant b, then f(z) = cze™, g(z) = cse™%, where ¢,c3,c4 € C\ {0} are such that
(=1)ka2(cacs)™[(n + 1))k = b2.

The proof follows from Lemmas 2.6 and 2.16.

Lemma 2.19 ([1]). Let f and g be two non-constant meromorphic funclions sharing
(1,k1), where 2 < k; < oc. Then

WﬁJJh=ﬂ+2ﬁmth=m+“A{h—]ﬁthﬂ=k04*4NMnkﬂ

+(ka + 1) Ni(r.139) + k1 Nz 7 (. 159) < N(r,159) - N(r, 11 g).
Lemma 2.20. Let f and g be two transcendental meromorphic functions, p be a
non-zero polynomial, and let F = [f"P(f)]*)/p, G = [¢" P(g)|*) /p, where n.k € N,
m € NU {0} and P(w) 4s defined as in Theorem F. Suppose H % 0. If f, g share
(00,0) and F, G share (1,k;), where 0 < k; < oo, then (n +m—-k— l)ﬂ’(r, oo f) <
(k+m+1)(T(r, f) + T(r.g)) + Nu(r,1; F,G) +S(r, f) + S(r,g)-

Proof. Suppose that 0o is an e.v.P of f and g, then the result follows immediately.
Next, suppose that oo is not an e.v.P of f and g. Since H # 0, we have F # G. We
claim that V' # 0. Suppose the opposite V' = 0. Then by integration we obtain
1-%=4A(1-3),
where A is a constant such that A # 0,1. Note that if zo (p(zp) # 0) is a pole of [,
then it is a pole of g as well. Hence, from the definition of F' and G we have T(IT-.TJ =0
and 3?1?65 = (. So A = 1, which is a contradiction.

Next, suppose that 2y is a pole of f with multiplicity ¢ and a pole of g with
multiplicity r such that p(z9) # 0. Clearly zg is a pole of F' with multiplicity (n+
m)q+ k and a pole of G with multiplicity (n+m)r+ k. Noting that f, g share (o, 0)
from the definition of V' it follows that zp is a zero of V' with multiplicity at least
n+m+k — 1. Now using the Milloux theorem (see [8], p. 55), and Lemma 2.1, we
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obtain from the definition of V' that m(r, V') = S(r. f) + S(r. 7). Thus, using Lemma

2.1 and (2.3). we can write

(n+m+k-— 1)N(r,00; f) S N(r,0: V) + O(logr) < T(r. V) + Olog 1)

< N(r.oo; V) +m(r,V) +O(logr)

< N(r,0:F) + N(r,0:C) + N.(r. 1: F.G) + S(r. f) + S(r.9)

< Niga(r, 05 fP(f)) + Nieaa (r,0: 9" P(9)) + kN(r, 003 f)
+EN(r, 001 g) + Nu(r,1: F.G) + S(r. f) + S(r.9)

< Npepr (105 ) + Nigr (0,03 P(F)) + N (. 03 9™)

- Npep1 (705 P(9)) + 26N (1,00 f) + Nu(r. L F.G) 4 S(r, [) + S(r.9)
< (k+ O)N(@,0: ) + N 0: P(f)) + (k + 1)N(r.0: )
+N(r,0; P(g)) + 2kN(r,00; f) + N.(rn 1 F.G)+ S(r, f) + S(r.g),

implying that

(n-+m—k-— 1)1_\7(1'. ooi f) < (kA4m4 1L f) 4 T(r,g)) + No(r. L F.GY
+S(r, f) + S(r.g).

Lemma 2.20 is proved. =]

3. PROOF OF THE THEOREM

n By (0 i n PRt : -
Let F' = [I__{_%/L" and G = 15L£::!.)JL__ Note that since [ and ¢ are transceudental

meromorphic functions, p is a small function with respect to both [f"P(f)]") and
[g"P(g)]®: Also, F, G share (1, k1) except the zeros of p, and f, g share (c0,0). Now
we consider two cases.

Case 1. Let H # 0.

From (2.1) it can easily be deduced that the possible poles of A occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are
different, (iii) those poles of F' and G whose multiplicities are dillerent, (iv) zeros of
F'(G") which are not the zeros of F(F —1)(G(G —1)).

Since H has only simple poles we get

N(r,00; H) < Nu(r,00; F,G) + Nuo(1,1; F,G) + N(1,0; F| > 2) + N(r,0; G| > 2)

(3.1) +Ny(r,0; F') + No(r,0; G') + S(r, f) + S(r, 9).
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where Ng(r,0; F') is the reduced counting function of those zeros of F’ which are
not the zeros of F(F — 1), and Ny(r, 0; G’) is defined similarly.
Let zo be a simple zero of F — 1 but p(zp) # 0. Then 2 is a simple zero of G — 1

and a zero of I1. So, we have

(3.2) N(r,1; F]=1) £ N(r,0; H) < N(r,00: H) + S(r, f) + S(r, g).
Using (3.2) and (3.3) we get
(3.3) N(r,1;F) < N(r,1; F|=1) + N(r,1: F| > 2)
N.(r,00; f, ) + N(r,0; F| = 2) + N(r,0; G| > 2) + N.(r,1; F,G)
+N(r,1; F| > 2) + No(r,0; F') + No(r,0: G") + S(r, f) + S(r. 9)
N(r,00; f) + N(r,0; F| > 2) + N(r,0;G| > 2) + N.(r,1;F, C)

L]
+N(r,1; F| 2 2) + No(r, 0; F') + No(r,0; G') + S(r, f) + S(r, 9).

IA

IA

Now in view of Lemmas 2.3 and 2.19 we get

(3.4) No(,0;G") + N(r,1;F |>2) + N.(r, 1; F,G)

No(r,0;G')+ N(r, ; F| =2) + N(r, 1: F| = 3) +... + N(r. 1, F| = k1)
+NEH G 1 F) + N 1 F) + Ni(r, 1;,G) + Nu(r, 1, F,G)
No(r,0;G") = N(r,1;F|=3)— ... — (ks — 2Q)N(r,1; F| = ky)

—(ky = YNL(rn L, F) = aNe(r 1;6) = (ks — NG T (n 1, F)
+N(r,1;G) = N(r,1;G) + N.(r, 1; F,G)

No(r,0;G') + N(r,1;G) — N(r,1;G) — (k1 — 2)NL(r, I F)

—(ky —1)Ng(r,1:G)

N(r,0;G' | G #0) = (ks —2)Ny(r,; F) — (ka — DN1(r,1;6)

< N(r,0;G) + N(r,00;9) — (k1 — 2)N,(r,1;F,G) — Ni(r, ;G).

IA

IA

IA

IN

Hence, using (3.3), (3.4), Lemmas 2.2 and 2.20, and the second fundamental theorem,

we can write

(n+m)T(r, f) < T(r, F) + Nisa(r, 0; f" P(f)) = Na(r, 0; F) + S(r, f)

< N(r,0; F)+N(r, 00; F)+ N (r, 1; F)+Niga(r, 0; f* P(f))—Na(r, 0; F)—Ny(r, 0; F')+S(r, f)
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T(I‘, 00, f) + A_T(r x;g) + F(T. 0: F) -+ -'\"k-d-'!("" 0; f"P(f)) + T(l 0:F|>2)

IA

+N(0;G |2 2) + N 1; F |2 2) + No(r. 1; F.G) + No(r, 0: ")
—Na(r.0; F) + S(r, f) + S(r,g)

3N (r,00: f) + Niwa(r,0; f*P(F)) + Na(r,0:G) — (ky — 2) N, (r,1: I, ()
~NiL(r1;G) + S(r, f) + S(r,9)

3N (r,00; f) + Nis2(r,0; fP(£)) + k N(r,00: g) + Niya(r, 0; g" P(a))
—(kr = 2) N, (r,1; F,G) + S(r, f) + S(r, 9)

(34 k) N(r,00; f) + (k +2) N(r, 05 ) + T(r, P(f)) + (k +2) N(r,0; 9)
+T(r, P(9)) — (k1 —2) N.(r,1; F,G) + S(r, f) + S(r. 9)

(k+m+2) (T(r, f) +T(r,9)) + (B + k)N (r,oc; f)

—(kr —2) N, (r,1; F,G) + S(r, f) + S(r, 9)

IA

IA

IA

IA

B+Ek)(k+m+1)

< (k+m+2) (T(r, f)+T(r,g)) + (TC, 1)+ T(r,g))

n+m-—k—1
— 3T N ure (h =~ M 1 F G) 4+ S )
n+m-—-~k—1 ? = i

B+k)(k+m+1)

R ] (T £) +T(r.9)) + 80, 1) + 5.

< [I.':-}-'lu+2+
In a similar way we can obtain

(3.5) (n+m)T(r,g)
B+k)k+m+1)

Tt ] @0 1) +T6,9) + St 1)+ 5000,

< [Ic-q‘-m,-i-2+

Adding (3.4) and (3.5) we get

(6 + 2k)(k +m + 1)

et ] (TN +709)) < S, 1) + 5(r,9).

['n—m—Zk—4—

Since the quantity in the third bracket can be written as

(3.6) (n+m—k—1)2—(2m+k+3)(n+m—k—1)—2(k+3)(k+m+1)
y n+m—k-1 : g

by a simple computation one can easily verify that when

n+m—-k—-1 > 2m+2k+5
2m+k+3++/(2m+k+3)2+8(k+3)(k+m+1)
2 E
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that is, when n > 3k + m + 6, we obtain a contradiction from (3.6).
Case 2. Let H = 0. Then by Lemma 2.17 we have either

(3.7) (PP P(g)]® = p?,
or
(3.8) f"P(f) = g" P(g).

From (3.8) we get

(3.9) Famf™ + am f"7 + ...+ o) = 9" (@mg™ + m—19™ T + ... + ap).

Let h = _5. If h is a constant, then substituting f = gh into (3.9) we deduce that
g T (A" = 1) + e g™ TR 1) 4L 4 agg™(B™ - 1) =0,

which implies h? = 1, where d = GCD(n+m,...,n+m —i,...,n), am; # 0
for some i = 0,1,...,m. Thus, f = tg for t € C \ {0} such that ¢4 = 1, where
d=GCD(n+m,...,n+m —1,...,n), Gp—; # 0 for somei=0,1,...,m.

If h is non-constant, then by (3.9) f and g satisfy the algebraic equation R(f.g) =

0, where R(w;,ws) = wP(@nw + a.,,._lw;"" +...+ap) — Wi (Wi + a.,,._]wg"" +
...+ ag). In particular, when P(w) = ajw + az and ©(c0; f) + ©(c0; g) > 2, then by
Lemma 2.12 of [3], we have f = g. Note that when P(w) = ag, then we must have
F=tgfort € C\ {0} such that t* = 1. The remaining part of the proof follows from

(3.7) and Lemma 2.18. (]
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