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Abstract. Let f be a nonconstant meromorphic function of lower order . (f) > 1/2in T,
and let a; (5 — 1,2,3) be three distinct finite complex numbers. We show that there exists
an angular domain D — {z : o < argz < 8}, where 0 < f — a < 2m, such that if f share a;
(j = 1,2,3) CM with its k-th linear differential polynomial L{f] in D, then f = L{f]. This
generalizes the corresponding results from Frank and Schwick [Results. Math. 22 (1992)
679-684], Zheng [Cz‘nad. Math. Bull. 47 (2004) 152-160] and Li-Liu-Yi [Results. Math. 68
(2015) 441-453].
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1. INTRODUCTION

We use C and C = CU {oo} to denate the whole complex plane and the extended
complex plane, respectively. In what follows, we shall suppose that the reader is
familiar with standard notations and fundamental results of the Nevanlinna theory
(see [7, 14, 13]). For a nonconstant meromorphic function f, we denote by T(r, f) the
Nevanlinna characteristic function of f and by &(a, f) the Nevanlinna deficiency of f.
Also, by A(f) and p (f) we denote the order and the lower order of a meromorphic
function f, respectively.

Let f and g be nonconstant meromorphic functions in the domain D C C, and let
ceC. If f — c and g — ¢ have the same zeros with the same multiplicities in D, then
we say that f and g share cCM in D.If f - cand g c only have the same zcros,
then we say that f and g share ¢ IM in D. The zeros of f — ¢ imply the poles of f
when ¢ = cc.
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In 1979, Gundersen [6] and Mues-Steinmetz [10] have considered the nniqueness

of a meromorphic function f and its derivative " and obtained the following result.

Theorem A (sec [6, 10]). Let f be a nonconstant meromorphic fonction in C, and
let aj (j = 1,2,3) be three distinct finite complex numbers. If [ und [' share o
(j=1,2,3) IMinC, then f = f'.

In 1992, Frank and Schwick [3] generalized Theorem A and proved the following
result.
Theorem B (see [3]). Let [ be a nonconstant meromorphic function in C and a;
(j = 1,2,3) be three distinct finite complex numbers, and let k be a posilive integer.
If f and [® share a; (j =1,2,3) IM in C, then [ = [V,

Remark 1.1. Three IM shared values in Theorem B can be reploced by two CA]

shared values (see Irank and Weissenborn [4]).

In 2004, Zheng [16] has extended Theorem B from complex plane to an angular
domain, and proved the following theorem.
Theorem C (see [16]). Let f be a transcendental meromorphic function of finitc
lower order i (f) in C such that 8(a, f®) > 0 for some a € T and an integer p > 0.
Let the pairs of real numbers {a;,B;} (j =1,...,q) be such that

Tf<ffam<fe<--La<f<n
with w = max {r/(Bj — aj) : 1 < j < ¢}, and

q (»)
Z(ajﬂ -Bj) < A arcsin —M.
] 2
i=1
where 0 = max{w,p}. For a positive integer k, assume that f and f®) share q;
(=123 IMin X := | {z:aj <argz < B;}, where a; (j = 1,2,3) are three
=1
distinct finite complex numbers such thal a # a; (j = 1,2,3). If A(f) > w, then
f=r®.
In 2015, Li, Liu, and Yi [9] observed that Theorem C is invalid for ¢ > 2, and
proved the following more general result, which extends Theorem C (see [9, p. 443]).
Theorem D (sec [9]). Lei f be a transcendental meromorphic function of finite
lower order ;1 (f) in C and such that &(a, f) > 0 for some a € C. Assume that q > 2
pairs of real numbers {o;, B;} solisfy the condilions:

TS <fifm<f<--<aq<B<m
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with w = max {7/(3; - aj) : 1 < j < q}, and
q e
- 4 d(a,
L(a,“ — Bj) < — arcsin —M,
; a 2
=1
where ¢ = max{w, p}. For a k-th order linear differential polynomial L{f} in [ with
constant coefficients given by
(@) L{f] = b f® 4 by fED 4o by f,
where k is a positive integer, by, br—1, -+, by are constants and b, # 0, assume
q
that [ and L[[] share a; (j =1,2,3) IM in X = |J {z: a; < argz < 3;}, where a;
=1
(j = 1.2,3) are three distinct finite complex numbers such that « # a; (j = 1,2,3).
If M f) # w, then f = L[f].
Based on Theorem D, we naturally arise the following question.
Question 1.1. Does;there exist an angular domain D = {z: o < argz < 3}, where
0 < 8 —a < 2w, such that if f and L{f] share a; (j =1,2,3) CM or IM in D, then
f = L[f] in Theorem D?
In this paper, we investigate the above question and prove the following result,

which generalizes Theorems C and D.

Theorem 1.1. Let f be a nonconstant meromorphic function of lower order p (f) >
1/2in C, aj (j = 1,2,3) be three dislinct finite complex numbers, and let L[f] be
given by (1.1). Then there exists an angular domain D = {z : a < argz < 3}, where
0 < 3—a < 2m, such that if [ and L{f] share a; (j =1,2,3) CM in D, then f = L{J].

As an immediate consequence of Theorem 1.1, we have the following result.

Corollary 1.1. Let f be a nonconstant meromorphic function of lower order u(f) >
1/2 in C, a, (j = 1.2,3) be three distinct finite complex numbers, and let k be a
positive integer. Then there exists an angular domain D = {z : o < argz < 3},
where 0 < 3 — & < 2, such that if [ and [*) share a; (j = 1.2,3) CM in D, then
=

In order to prove our results, we recall the Nevanlinna theory on an angular domain.
Let f be a meromorphic function in D = {z: o € argz < A}, where 0 < 3 — v < 27,
Nevanlinna [5, 11] defined the following symbols.

dt

X JRGATS (] { i e ; a
(1.2) A f) = %/1 (F - ﬁ:) {log® |f (te"*)| + log™ | f (te')[} e
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B
(1.3) B (r, f) = :—7%/ log* |f (re')|sinw (6 — ) do,
1 '"l & .
(1.4) Cop(r,f)=2 Z (W = (:_ll )smw((),,, —a),
1<|bm|<r
(1.5) Se8(r, f) = Aa,g(r ) + Bas(r, ) + Cas(r, /).

wherew = 7/ (8 — a), and by, = |bm|e*®™ are the poles of f in D counting multiplicities.
If we ignore their multiplicities, then we replace Ci, (1, f) by Caslr, ). Also, Saa(r, f)
will stand for the Nevanlinna’s angular characteristic function in D.

Throughout the paper, we denote by R(r,*) a quantity satisfying the following
relation:

(1.6) R(r,*) = O {log (rT(r,*))} , V¢ L.

where E denotes a set of positive real numbers with finite linear measure, which will
not necessarily be the same in each occurrence.
Also, we will need the following definitions.

Definition 1.1. (see [8, cf.1]). Assume that f is a meromorphic function of infinile
order in C. Then there exists a prozimate order p(r) of f such that:
(i) p(r) is continuous and nondecreasing for v > 1o, and p(r) = +oc as r — +00;
(ii) U(r) = r*™ (r > 1) satisfies the condition:

logU(R) _ 1

EH;T_H-X'W =1, R=r

5
3 log U(r)'
(iii) the following relation holds:

logT(r /) _,

lmr—y oo p(r)logr

Definition 1.2. (see [13, ¢f.1, 8]). Let f be a meromorphic function of infinite order
in C, and let p(r) be the prozimate order of f. A direction argz = 0y is called a Borel
direction of prowimate order p(r) of f if for arbitranily small ¢ > 0 the following

relation holds:
logn(r,0o,¢, f = a)
—_ =1
p(r)logr
for alla € C except at most two exceptional values, where n(r,by,¢, f = a) denotes

lim, 400

the number of the zeros of [ — a counting multiplicities in the sector |argz — 0| < €
|z] <.
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Definition 1.3. (see [12]). Let f be a meromorphic function of finite order A{(f) > 0
in C. A direction argz = 0y is called a Borel direction of order A (f) if for arbitrarily
small € > 0 the following relation holds:

log n(r,0p,¢, f = a)

logr =t

limr—v+u€

for all a € T except at most two exceptional values, where n(r,0p,¢, f = a) is as in
Definition 1.2.

2. SOME LEMMAS

Lemma 2.1. (see [5, 11]). Let f be a meromorphic function in C. Then for any
a € C the following relation holds:

fa (r, ﬁ) = Suplr, ) +0O(1).

‘Lemma 2.2. (see [5, 11, c¢f.2]). Let f be a meromorphic function in C. Then the
following assertions hold:
(i) for g (= 3) distinct complex numbers aj € C (j =1,2,--- ,q) we have

(a-2) ..ﬁ(:f)<g 0=

(i1) for a positive integer k we have

Ao (m f—;ﬁ) +Bas (n 1?) = R, )

(iii) if [ is of finite order, then R(r, f) = O(1);
(iv) if f is of infinite order and of prozimate order p(r), then R(r, f) = O(logU(r)), -
where U(r) = (") is as in Definition 1.

)4 R(r, f);

Lemma 2.3. (see [7]). Let f be a meromorphic function in C, and let L[f] be given
by (1.1). Then T (r,L[f]) < (k+ 1)T(r, f) + O (log rT'(7, f)) .

Lemma 2.4. (see [12]). Let f be a meromorphic function -of finite order A (f) > 0
in C. Then f has at least one Borel direction argz = 6 (0 < 0y < 27) of order A(f).

Using the same arguments applied in Lemma 1.3 of [15, p.14], we can easily obtain

the following result.
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Lemma 2.5. Let f be a nonconstant meromorphic function in C, and let o, ¢

(j=1,2,---,q) be q distinct complex numbers. Then we have

g 1 L :
(An A+ Bn.ﬂ) ("'- '"—'—) o (AI).,i + Bu.ﬁ) r, L —— -+ ()(_I %
j§=1: ) f—a i f—aj

Lemma 2.6. Let f be a nonconstant meromorphic function in C, a; (j = 1,2,3) be
three distinct finite complex numbers, and let L{f] be given by (1.1). Suppose thal [
and L{f] share a; (j =1,2,3) CMin D = {z: a < argz < B}, where 0 < --a < 2r.

If [ # L[f), then Sag (r. f) = R(r, [).

Proof. By Lemma 2.5, the Nevanlinna basic reasoning (see [7], p. 5), the definition

(1.5) of Sa,g (r,*), Lemma 2.1, and Lemma 2.2(ii), we can write

o1 (Aag + Bo,p) ( = ) = (Aa,p + Ba.p) (1 Tie 7 ) +0(1)
< (Aap + Bap) (1 iy 74L) + (Aap + Bug) (. 7fyy) + O)
<8, (A + Bas) (1 L) + S () + OU) < S (. LU + R ).

that is,

L) < San LI+ RO ).

Z (Aap + Bo,g) (

j=1

Therefore, we have

Z(Amﬂ + Bo,3) (7‘1 3 ) +LC:, 4 (7 —_— —-) <

=1

3
< Soa (r L) + ZC., B ( f—l-) +R(r, f).
Jj=1

which together with definition {1.5) of S, g (7, *) and Lemma 2.1 implies that

3
g 3 5 1 1 ( I3
(2.1) 3Sup(r f) < S (r,L{f]) + le(.,,‘,ﬂ- (l' = n,-) + R(r. f).

Next, since [ and L[f] share a; (j = 1,2,3) CM in D, by the Nevanlinna basic
reasoning [7, p. 5], Lemma 2.1, the definition (1.5) of S, 3 (7, %), and Lemma 2.2(i),
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we can write

: N f i Noos o L oy
L( ( I—u,) 2 N\ L{f / P : : o)
< (A3 + Bog) (r. [ — L[f]) + Ca,5 (1, [ — L]} -+ O(1)
I — L[]} e 5 e .
< (Anp+ Bao.a) 7 + (Aa.g + Bng) (r. f) + Cu.a (r, L[f]) + O(1)

< Aag(r, f)+Bajs(r, [)+Caplr fi+ kCap )+ R@.[)

< Sap(n, f)+ ('a.k ('.f“") + R, f) < Sap )+ —_f 1—(’.._,_;:;:-. Lip+ R 1)
< Saa(m, f)+——" lbc. s LM+ R0 T).

Combining this with (2.1), we get

(2.2) 2503 (r. /) € 2L Saa (r LU + R ().

Set F = 1/(f - r') and Ly[f] = 1/(L[f] — c), where c € C (¢ & {a1,02,03}), and
observe that f and L{f] share a; (j = 1,2,3) CM in D. Since f and L|[f] always share
oc IM in D, F and Ly[f] share 0 IM, and 1/(a; —c) (j = 1,2,3) CM in D, then by
Lemma 2.1, Lemma 2.2(i), the definition (1.6) of Rq,g (v, %), and Lemma 2.3 we get

J):Ll(“,a (’WTI/(TJ—T)) +ﬁu.ﬂ( o [f]) + R(r. Ia[f])

Cus (r i) + RO ) S S (o F = L)+ R(0.1)
Sa,B (r,F)+ Sa,p (r LIU]) +R(f),

280,58 (r, L1[f])

1A

IA

IA

implying that

Sn.d (Ty Ll[f]) < Sa.ﬂ (‘l', 1") +R (T-. ,f) -
Hence, by Lemnma 2.1 we have
(2.3) SL\.-‘.‘ (T- L{f!) < Sﬁ.ﬂ ("') f) +R (T, f) .
In view of (2.2) and (2.3) we obtain the conclusion of the lemma. Lemma 2.6 is pr oved.
@
Lemma 2.7. Let f be a meromorphic function in D = {z : 0 < argz < B} (0 <
A—a <27), and w = 7/ (8 — @). Then for any ¢ € C and arbitrarily small v > 0,
we have

i il
n(r,Dy. f=¢) < Kr Caps ( —f——r) <
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where K is a positive constant, D, = {2: a+v S argz < 3—v}, andn(r,D,. f =¢)
denotes the number of zeros of [ — c counting multiplicities in D, 1 {z : |z| < r}.

Proof. Let 7, be the zeros of f — ¢ counting multiplicities in D. Pul n(x) :=
n (#, Dy, f = c) for the sake of simplicity. Then for arbitrarily small v > 0 we can
write

1 1 nml” \ . o
GhEL Gl T Pl (@r2e ) 22 O — )

1< |nm|<2r,a<0m <B

1 [7m | o
> 2 Z Tl = _(21.)2“ sinw (O, — )
1<iml<r et o<tm<g—r ST
i 1 |7Im| )
> 2sin(wr
=, ( ) Z ('""llu (27 ) 2w

1< pml|<r 410 <0,, <8—v

= 2sin(wv) (‘/: lh;ft) - /T (2#;2‘” dn (t))

= 2sin(ww) (Eg +¢,,-/l :Z(g ";‘“‘(:“)J (?7%/‘"[}#—1"“)’”>

> 2sin(wv) (% = ;i(;uz) = 2hlll(wu)n e

~n(r)
>.l ;
4u. Vs

Therefore

i
n(r) < Kr¥Cop (21‘, = c) .
where I is a positive constant not necessarily the same for each occurrence. This

completes the proof of the lemma. Lemma 2.7 is.proved. O

Lemma 2.8. (see [13]). Let f be @ meromorphic function of infinite order in C, and
let p(r) be a prozimate ovder of f. Then f has at least one Borel direction argz =l
(0 £ 0y < 2m) of prozimate order p(r).

Lemma 2.9. (see [12]). Let f be a meromorphic function of infinite order in C, and
let p(r) be a prozimate order of f. Then a direction argz = 6y is a Borel direction of
prozimate order p(r) of f, if and only if for arbitrarily small > 0 we have

lim sup ____g Sto—e,00 (7, f) =15

r—+o0 p(r)logr
3. PROOF OF THEOREM 1.1

Suppose that f # L[f]. Since A(f) > p(f) and p(f) > 1/2, it follows that
A(f) > 1/2. Now we consider the following two cases.
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Case 1. Assume that 1/2 < A(f) < +00. Choose w such that 1/2 < w < A(f),
where w = 7/ (8 —¢) and 0 < 3 — o < 27. Then for one given angular domain
D ={z:a <argz < B}, we have A (f) > w. Thus, by Lemma 2.4, we can assume
that f has at least one Borel direction argz = @y in D of order A (f). Therefore, in
view of Definition 2.3 there exists a finite complex number ¢ such that for arbitrarily

small £ > 0,

(3.1) lim sup log (1, 0,80 = ) =A(f) > w.

r—r+0o0 IOgr
Next, since f and L[f] share a; (j = 1,2,3) CM in D, by Lemma 2.6 and Lemma

2.2(iii), we have

(3.2) Sas (1, f) = R(r f) = O().

On the other hand, for arbitrarily small » > 0, by Lemma 2.7 we get
L]

(3.3) n(r,D,, f=c) < Kr“Cap (2r, ﬁ) :

where K is a positive constant, D, = {z: a+v <argz < f—v},andn(r,D,. f =¢)
denotes the number of zeros of f — ¢ counting multiplicities in D, N {z : |2| < r}.
Thus, by (3.2), (3.3), and Lemma 2.1 it follows that

n(r,0o,e,f =¢c)<n(r.D,,f=¢) <

< Kr¥Cop (21-, ) < K1* (Says (2r, f) + O(1)) < O(*),

1
f-c
and hence, we have

n(r,00,¢, f =c) =0(").
This contradicts (3.1) and so we obtain f = L[f].
Case 2. Assume that A (f) = +oo and p(r) is a proximate order of f. Then in view
of Lemma 8 we can assume that f has at least one Borel direction argz = ) in D of

proximate order p(r). Moreover, by Lemma 2.2(iv) and Lemma 2.6 we have
Sa.(r,f) = R(r, f) = O(logU(r)),  U(r) =r""),

implying that ;

(34) Soo—s.00+s (1. f) = OlogU(r)),  U(r) =7,

Now by Lemma. 2.9, for arbitrarily small € > 0, we have

(3.5) lim sup 108 Sto—e.tn+e (1, f) =}

P T o) log
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Combining (3.4) and (3.5) we arrive at a contradiction. This completes the proot of

Theorem 1L
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